metal-organic compounds
Dichloridobis(1-ethyl-2,6-dimethylpyridinium-4-olate-κO)zinc(II)
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and bDepartment of Physics, Bharathidasan University, Tiruchirappalli 620024, India.
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, [ZnCl2(C9H13NO)2], the ZnII ion is coordinated by two Cl− anions and two O atoms of two zwitterionic organic ligands in a distorted tetrahedral arrangement. In the crystal, molecules are linked into sheets parallel to the bc plane by C—H⋯Cl and C—H⋯O hydrogen bonds and weak π–π interactions [centroid–centroid distance = 3.669 (1) Å].
Related literature
For general background to pyridinium compounds, see: Anwar et al. (1997, 1999); Damiano et al. (2007); Darensbourg et al. (2003); Mootz & Wusson (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation of 1-ethyl-2,6-dimethyl-4(1H)-pyridinone trihydrate, see: Garratt (1963).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S160053681004119X/ci5172sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004119X/ci5172Isup2.hkl
1-Ethyl-2,6-dimethyl-4(1H)pyridinone trihydrate (EDMP.3H2O) was synthesized according to the reported method (Garratt, 1963). The title complex was prepared by the reaction of ZnCl2 with EDMP.3H2O in a 1:2 molar ratio in aqueous medium. Single crystals were harvested after a typical growth period of 15 days from a saturated aqueous solution at 303 K by slow evaporation of the solvent.
H atoms were positioned geometrically (C-H = 0.93-0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.
Organic pyridinium salts have been widely used as guest molecules in the construction of supramolecular architecture in the field of chemistry (Damiano et al., 2007). Pyridinium cations are good candidates for second-harmonic generation (SHG) materials because they possess large hyperpolarizabilities (β) irrespective of the short cutoff wavelength. Since pyridinium cations are ionic species, they possess an easy tunability into noncentrosymmetric structures by changing counter anions (Anwar et al., 1997, 1999). The zinc halides substituted in pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active for the coupling of carbon dioxide and to provide high molecular weight polycarbonates and cyclic carbonates (Darensbourg et al., 2003). As a part of our interest, we report here the of the title pyridinium dichlorozinc(II) complex.
In the title molecule (Fig. 1), the ZnII atom is coordinated by a pair of pyridinium oxide group and terminal halide ions in a distorted tetrahedral arrangement. The organic ligand exists in a zwitterionic structure, involving a conjugated pyridinium fragment. The C atoms of methyl substituents at C2, C6, C12 and C16 lie in the plane of the corresponding pyridinium rings, which are evident from the C9—C2—N1—C6 [176.99 (16)°], C10—C6—N1—C2 [-175.51 (17)°], C19—C12—N11—C16 [178.46 (18)°] and C20—C16—N11—C12 [-178.4 (2)°] torsion angles. The C—C bond of the ethyl groups attached at N1 and N11 are approximately perpendicular to the attached pyridinium ring, which can be seen from the C8—C7—N1—C2 [93.7 (2)°] and C18—C17—N11—C12 [90.0 (2)°] torsion angles. The sum of the bond angles around the protonated nitrogen atoms N1 [360.0°] and N11 [359.99°] of both the pyridinium rings is in accordance with sp2 character. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2—N1—C6 and C12—N11—C16 angles are widened in comparison with the literature value (Mootz & Wusson, 1981). The pyridinium rings are planar and oriented each other at an angle of 67.79 (8)°.
The packing of the molecules in the π···π types of intermolecular interactions. The C8—H8A···O1 interaction leads to the formation of a centrosymmetric R22(16) dimer (Bernstein et al., 1995). The Cl1 atom acts as an acceptor in a linear fashion for the methyl group hydrogen from the neighbouring molecule [Fig. 2 and Table 2]. The C13—H13···Cl2 intermolecular interaction also contributes to the crystal packing, which form zigzag chains along the c axis. The is further augmented by π···π interaction between adjacent pyridinium rings [Cg1(x, y, z)···Cg1(-x, y, 1/2-z) = 3.669 (1) Å; where Cg1 is the centroid of the (N1-C6) ring, Fig.2].
is promoted by the existence of weak C—H···O, C—H···Cl andFor general background to pyridinium compounds, see: Anwar et al. (1997, 1999); Damiano et al. (2007); Darensbourg et al. (2003); Mootz & Wusson (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation of 1-ethyl-2,6-dimethyl-4(1H)-pyridinone trihydrate, see: Garratt (1963).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).[ZnCl2(C9H13NO)2] | F(000) = 1824 |
Mr = 438.68 | Dx = 1.427 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5069 reflections |
a = 30.365 (2) Å | θ = 1.3–28.3° |
b = 8.5366 (6) Å | µ = 1.48 mm−1 |
c = 15.7982 (12) Å | T = 293 K |
β = 94.281 (4)° | Block, yellow |
V = 4083.7 (5) Å3 | 0.25 × 0.25 × 0.23 mm |
Z = 8 |
Bruker SMART APEXII area-detector diffractometer | 5069 independent reflections |
Radiation source: fine-focus sealed tube | 4248 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω and φ scans | θmax = 28.3°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS, Bruker, 2008) | h = −40→40 |
Tmin = 0.709, Tmax = 0.727 | k = −11→10 |
19140 measured reflections | l = −21→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0343P)2 + 3.3394P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
5069 reflections | Δρmax = 0.61 e Å−3 |
233 parameters | Δρmin = −0.56 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00082 (11) |
[ZnCl2(C9H13NO)2] | V = 4083.7 (5) Å3 |
Mr = 438.68 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 30.365 (2) Å | µ = 1.48 mm−1 |
b = 8.5366 (6) Å | T = 293 K |
c = 15.7982 (12) Å | 0.25 × 0.25 × 0.23 mm |
β = 94.281 (4)° |
Bruker SMART APEXII area-detector diffractometer | 5069 independent reflections |
Absorption correction: multi-scan (SADABS, Bruker, 2008) | 4248 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 0.727 | Rint = 0.042 |
19140 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.61 e Å−3 |
5069 reflections | Δρmin = −0.56 e Å−3 |
233 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | −0.01906 (5) | 1.0155 (2) | 0.10794 (11) | 0.0359 (4) | |
C3 | 0.01997 (6) | 0.9693 (2) | 0.14837 (11) | 0.0374 (4) | |
H3 | 0.0255 | 0.8629 | 0.1558 | 0.045* | |
C4 | 0.05235 (5) | 1.0787 (2) | 0.17944 (11) | 0.0364 (4) | |
C5 | 0.04059 (5) | 1.2375 (2) | 0.16743 (12) | 0.0383 (4) | |
H5 | 0.0603 | 1.3145 | 0.1880 | 0.046* | |
C6 | 0.00144 (6) | 1.2821 (2) | 0.12668 (11) | 0.0377 (4) | |
C7 | −0.07005 (6) | 1.2200 (3) | 0.04757 (12) | 0.0466 (4) | |
H7A | −0.0797 | 1.1375 | 0.0082 | 0.056* | |
H7B | −0.0646 | 1.3131 | 0.0147 | 0.056* | |
C8 | −0.10658 (6) | 1.2540 (3) | 0.10526 (14) | 0.0568 (5) | |
H8A | −0.1111 | 1.1639 | 0.1399 | 0.085* | |
H8B | −0.1334 | 1.2777 | 0.0715 | 0.085* | |
H8C | −0.0984 | 1.3419 | 0.1409 | 0.085* | |
C9 | −0.05273 (7) | 0.8962 (3) | 0.07675 (14) | 0.0507 (5) | |
H9A | −0.0810 | 0.9241 | 0.0956 | 0.076* | |
H9B | −0.0442 | 0.7949 | 0.0988 | 0.076* | |
H9C | −0.0545 | 0.8931 | 0.0159 | 0.076* | |
C10 | −0.00998 (7) | 1.4522 (2) | 0.11818 (15) | 0.0554 (5) | |
H10A | −0.0341 | 1.4755 | 0.1520 | 0.083* | |
H10B | −0.0183 | 1.4759 | 0.0598 | 0.083* | |
H10C | 0.0152 | 1.5142 | 0.1374 | 0.083* | |
C12 | 0.26273 (6) | 0.9691 (2) | 0.45067 (12) | 0.0416 (4) | |
C13 | 0.21875 (6) | 0.9588 (2) | 0.42739 (12) | 0.0419 (4) | |
H13 | 0.1987 | 0.9930 | 0.4650 | 0.050* | |
C14 | 0.20270 (6) | 0.8981 (2) | 0.34832 (11) | 0.0391 (4) | |
C15 | 0.23516 (6) | 0.8424 (2) | 0.29655 (13) | 0.0459 (4) | |
H15 | 0.2263 | 0.7964 | 0.2447 | 0.055* | |
C16 | 0.27915 (6) | 0.8540 (2) | 0.32029 (13) | 0.0434 (4) | |
C17 | 0.34104 (6) | 0.9425 (2) | 0.41988 (14) | 0.0468 (4) | |
H17A | 0.3451 | 1.0363 | 0.4542 | 0.056* | |
H17B | 0.3561 | 0.9581 | 0.3686 | 0.056* | |
C18 | 0.36164 (8) | 0.8059 (3) | 0.46811 (18) | 0.0676 (7) | |
H18A | 0.3477 | 0.7925 | 0.5202 | 0.101* | |
H18B | 0.3926 | 0.8254 | 0.4805 | 0.101* | |
H18C | 0.3578 | 0.7127 | 0.4344 | 0.101* | |
C19 | 0.27833 (7) | 1.0377 (3) | 0.53495 (15) | 0.0652 (7) | |
H19A | 0.2934 | 1.1346 | 0.5264 | 0.098* | |
H19B | 0.2981 | 0.9657 | 0.5649 | 0.098* | |
H19C | 0.2534 | 1.0567 | 0.5676 | 0.098* | |
C20 | 0.31287 (8) | 0.7970 (4) | 0.26254 (16) | 0.0698 (7) | |
H20A | 0.2981 | 0.7509 | 0.2127 | 0.105* | |
H20B | 0.3315 | 0.7201 | 0.2916 | 0.105* | |
H20C | 0.3306 | 0.8836 | 0.2463 | 0.105* | |
Cl1 | 0.08868 (2) | 0.63005 (6) | 0.23807 (5) | 0.06526 (17) | |
Cl2 | 0.163428 (18) | 0.86170 (7) | 0.10513 (3) | 0.05362 (14) | |
N1 | −0.02813 (5) | 1.17136 (17) | 0.09508 (9) | 0.0364 (3) | |
N11 | 0.29302 (5) | 0.92018 (19) | 0.39652 (10) | 0.0401 (3) | |
O1 | 0.08947 (4) | 1.04133 (16) | 0.21754 (10) | 0.0509 (3) | |
O2 | 0.16095 (4) | 0.89431 (19) | 0.32761 (9) | 0.0514 (3) | |
Zn1 | 0.126091 (6) | 0.85132 (2) | 0.221676 (13) | 0.03522 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0331 (8) | 0.0397 (9) | 0.0349 (9) | −0.0027 (7) | 0.0028 (6) | −0.0047 (7) |
C3 | 0.0367 (8) | 0.0331 (8) | 0.0420 (10) | 0.0009 (7) | 0.0001 (7) | −0.0038 (7) |
C4 | 0.0311 (8) | 0.0414 (9) | 0.0365 (9) | 0.0019 (7) | 0.0006 (6) | −0.0082 (7) |
C5 | 0.0337 (8) | 0.0372 (9) | 0.0442 (10) | −0.0028 (7) | 0.0040 (7) | −0.0086 (7) |
C6 | 0.0366 (8) | 0.0377 (9) | 0.0395 (9) | 0.0019 (7) | 0.0082 (7) | −0.0019 (7) |
C7 | 0.0382 (9) | 0.0612 (12) | 0.0391 (10) | 0.0070 (8) | −0.0048 (7) | 0.0064 (9) |
C8 | 0.0358 (10) | 0.0771 (15) | 0.0569 (13) | 0.0145 (10) | −0.0002 (9) | 0.0079 (11) |
C9 | 0.0406 (10) | 0.0522 (11) | 0.0583 (13) | −0.0106 (8) | −0.0028 (9) | −0.0086 (10) |
C10 | 0.0540 (12) | 0.0411 (11) | 0.0712 (15) | 0.0064 (9) | 0.0054 (10) | 0.0025 (10) |
C12 | 0.0338 (8) | 0.0507 (10) | 0.0400 (10) | −0.0015 (7) | 0.0008 (7) | −0.0080 (8) |
C13 | 0.0310 (8) | 0.0549 (11) | 0.0399 (10) | 0.0011 (7) | 0.0034 (7) | −0.0087 (8) |
C14 | 0.0317 (8) | 0.0471 (10) | 0.0380 (9) | 0.0013 (7) | 0.0003 (7) | −0.0002 (8) |
C15 | 0.0391 (9) | 0.0613 (12) | 0.0366 (10) | 0.0061 (8) | −0.0023 (7) | −0.0105 (8) |
C16 | 0.0363 (9) | 0.0532 (11) | 0.0408 (10) | 0.0074 (7) | 0.0042 (7) | −0.0036 (8) |
C17 | 0.0316 (8) | 0.0511 (11) | 0.0574 (12) | −0.0015 (8) | 0.0010 (8) | 0.0057 (9) |
C18 | 0.0505 (13) | 0.0731 (15) | 0.0773 (17) | 0.0136 (11) | −0.0076 (11) | 0.0157 (13) |
C19 | 0.0414 (11) | 0.0977 (19) | 0.0556 (13) | −0.0049 (11) | −0.0026 (9) | −0.0305 (13) |
C20 | 0.0456 (12) | 0.106 (2) | 0.0580 (14) | 0.0179 (12) | 0.0083 (10) | −0.0213 (14) |
Cl1 | 0.0609 (3) | 0.0442 (3) | 0.0936 (5) | −0.0149 (2) | 0.0257 (3) | −0.0035 (3) |
Cl2 | 0.0553 (3) | 0.0670 (3) | 0.0395 (3) | −0.0098 (2) | 0.0095 (2) | 0.0006 (2) |
N1 | 0.0302 (7) | 0.0440 (8) | 0.0349 (8) | 0.0032 (6) | 0.0014 (5) | −0.0004 (6) |
N11 | 0.0280 (7) | 0.0478 (9) | 0.0439 (8) | 0.0019 (6) | −0.0009 (6) | −0.0009 (7) |
O1 | 0.0375 (7) | 0.0462 (7) | 0.0660 (9) | 0.0066 (6) | −0.0154 (6) | −0.0122 (7) |
O2 | 0.0296 (6) | 0.0840 (10) | 0.0399 (7) | 0.0028 (6) | −0.0032 (5) | −0.0090 (7) |
Zn1 | 0.02879 (11) | 0.03822 (13) | 0.03829 (13) | −0.00233 (7) | 0.00007 (8) | −0.00281 (8) |
C2—C3 | 1.362 (2) | C12—C19 | 1.498 (3) |
C2—N1 | 1.371 (2) | C13—C14 | 1.406 (3) |
C2—C9 | 1.500 (2) | C13—H13 | 0.93 |
C3—C4 | 1.416 (2) | C14—O2 | 1.286 (2) |
C3—H3 | 0.93 | C14—C15 | 1.409 (3) |
C4—O1 | 1.278 (2) | C15—C16 | 1.364 (3) |
C4—C5 | 1.412 (3) | C15—H15 | 0.93 |
C5—C6 | 1.363 (2) | C16—N11 | 1.368 (2) |
C5—H5 | 0.93 | C16—C20 | 1.502 (3) |
C6—N1 | 1.372 (2) | C17—N11 | 1.490 (2) |
C6—C10 | 1.496 (3) | C17—C18 | 1.503 (3) |
C7—N1 | 1.488 (2) | C17—H17A | 0.97 |
C7—C8 | 1.515 (3) | C17—H17B | 0.97 |
C7—H7A | 0.97 | C18—H18A | 0.96 |
C7—H7B | 0.97 | C18—H18B | 0.96 |
C8—H8A | 0.96 | C18—H18C | 0.96 |
C8—H8B | 0.96 | C19—H19A | 0.96 |
C8—H8C | 0.96 | C19—H19B | 0.96 |
C9—H9A | 0.96 | C19—H19C | 0.96 |
C9—H9B | 0.96 | C20—H20A | 0.96 |
C9—H9C | 0.96 | C20—H20B | 0.96 |
C10—H10A | 0.96 | C20—H20C | 0.96 |
C10—H10B | 0.96 | Cl1—Zn1 | 2.2292 (5) |
C10—H10C | 0.96 | Cl2—Zn1 | 2.2349 (6) |
C12—C13 | 1.361 (2) | O1—Zn1 | 1.9649 (13) |
C12—N11 | 1.367 (2) | O2—Zn1 | 1.9472 (13) |
C3—C2—N1 | 120.57 (15) | O2—C14—C15 | 124.24 (17) |
C3—C2—C9 | 120.36 (17) | C13—C14—C15 | 115.41 (16) |
N1—C2—C9 | 119.07 (16) | C16—C15—C14 | 121.93 (18) |
C2—C3—C4 | 121.94 (16) | C16—C15—H15 | 119.0 |
C2—C3—H3 | 119.0 | C14—C15—H15 | 119.0 |
C4—C3—H3 | 119.0 | C15—C16—N11 | 120.19 (17) |
O1—C4—C5 | 120.54 (16) | C15—C16—C20 | 120.50 (19) |
O1—C4—C3 | 124.33 (17) | N11—C16—C20 | 119.30 (17) |
C5—C4—C3 | 115.12 (15) | N11—C17—C18 | 112.90 (17) |
C6—C5—C4 | 122.31 (16) | N11—C17—H17A | 109.0 |
C6—C5—H5 | 118.8 | C18—C17—H17A | 109.0 |
C4—C5—H5 | 118.8 | N11—C17—H17B | 109.0 |
C5—C6—N1 | 120.23 (16) | C18—C17—H17B | 109.0 |
C5—C6—C10 | 120.08 (17) | H17A—C17—H17B | 107.8 |
N1—C6—C10 | 119.67 (16) | C17—C18—H18A | 109.5 |
N1—C7—C8 | 112.78 (16) | C17—C18—H18B | 109.5 |
N1—C7—H7A | 109.0 | H18A—C18—H18B | 109.5 |
C8—C7—H7A | 109.0 | C17—C18—H18C | 109.5 |
N1—C7—H7B | 109.0 | H18A—C18—H18C | 109.5 |
C8—C7—H7B | 109.0 | H18B—C18—H18C | 109.5 |
H7A—C7—H7B | 107.8 | C12—C19—H19A | 109.5 |
C7—C8—H8A | 109.5 | C12—C19—H19B | 109.5 |
C7—C8—H8B | 109.5 | H19A—C19—H19B | 109.5 |
H8A—C8—H8B | 109.5 | C12—C19—H19C | 109.5 |
C7—C8—H8C | 109.5 | H19A—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
H8B—C8—H8C | 109.5 | C16—C20—H20A | 109.5 |
C2—C9—H9A | 109.5 | C16—C20—H20B | 109.5 |
C2—C9—H9B | 109.5 | H20A—C20—H20B | 109.5 |
H9A—C9—H9B | 109.5 | C16—C20—H20C | 109.5 |
C2—C9—H9C | 109.5 | H20A—C20—H20C | 109.5 |
H9A—C9—H9C | 109.5 | H20B—C20—H20C | 109.5 |
H9B—C9—H9C | 109.5 | C2—N1—C6 | 119.74 (14) |
C6—C10—H10A | 109.5 | C2—N1—C7 | 120.04 (15) |
C6—C10—H10B | 109.5 | C6—N1—C7 | 120.21 (15) |
H10A—C10—H10B | 109.5 | C12—N11—C16 | 119.99 (15) |
C6—C10—H10C | 109.5 | C12—N11—C17 | 119.84 (15) |
H10A—C10—H10C | 109.5 | C16—N11—C17 | 120.15 (16) |
H10B—C10—H10C | 109.5 | C4—O1—Zn1 | 134.31 (12) |
C13—C12—N11 | 120.20 (16) | C14—O2—Zn1 | 133.29 (12) |
C13—C12—C19 | 120.27 (17) | O2—Zn1—O1 | 98.22 (6) |
N11—C12—C19 | 119.51 (16) | O2—Zn1—Cl1 | 107.99 (5) |
C12—C13—C14 | 122.15 (17) | O1—Zn1—Cl1 | 114.29 (5) |
C12—C13—H13 | 118.9 | O2—Zn1—Cl2 | 115.09 (4) |
C14—C13—H13 | 118.9 | O1—Zn1—Cl2 | 105.10 (5) |
O2—C14—C13 | 120.34 (16) | Cl1—Zn1—Cl2 | 115.06 (2) |
N1—C2—C3—C4 | 0.7 (3) | C10—C6—N1—C7 | 4.0 (2) |
C9—C2—C3—C4 | −179.34 (17) | C8—C7—N1—C2 | 93.7 (2) |
C2—C3—C4—O1 | −179.80 (18) | C8—C7—N1—C6 | −85.9 (2) |
C2—C3—C4—C5 | 1.7 (3) | C13—C12—N11—C16 | −3.0 (3) |
O1—C4—C5—C6 | 179.59 (18) | C19—C12—N11—C16 | 178.4 (2) |
C3—C4—C5—C6 | −1.8 (3) | C13—C12—N11—C17 | 175.60 (18) |
C4—C5—C6—N1 | −0.4 (3) | C19—C12—N11—C17 | −3.0 (3) |
C4—C5—C6—C10 | 178.01 (17) | C15—C16—N11—C12 | 2.7 (3) |
N11—C12—C13—C14 | 0.2 (3) | C20—C16—N11—C12 | −178.4 (2) |
C19—C12—C13—C14 | 178.8 (2) | C15—C16—N11—C17 | −175.92 (18) |
C12—C13—C14—O2 | −178.01 (19) | C20—C16—N11—C17 | 3.0 (3) |
C12—C13—C14—C15 | 2.7 (3) | C18—C17—N11—C12 | 90.0 (2) |
O2—C14—C15—C16 | 177.7 (2) | C18—C17—N11—C16 | −91.4 (2) |
C13—C14—C15—C16 | −3.0 (3) | C5—C4—O1—Zn1 | −160.08 (14) |
C14—C15—C16—N11 | 0.4 (3) | C3—C4—O1—Zn1 | 21.5 (3) |
C14—C15—C16—C20 | −178.5 (2) | C13—C14—O2—Zn1 | 169.24 (15) |
C3—C2—N1—C6 | −3.1 (3) | C15—C14—O2—Zn1 | −11.6 (3) |
C9—C2—N1—C6 | 176.98 (17) | C14—O2—Zn1—O1 | −127.09 (19) |
C3—C2—N1—C7 | 177.37 (16) | C14—O2—Zn1—Cl1 | 113.97 (19) |
C9—C2—N1—C7 | −2.6 (2) | C14—O2—Zn1—Cl2 | −16.1 (2) |
C5—C6—N1—C2 | 2.9 (3) | C4—O1—Zn1—O2 | −159.12 (19) |
C10—C6—N1—C2 | −175.51 (17) | C4—O1—Zn1—Cl1 | −45.1 (2) |
C5—C6—N1—C7 | −177.53 (17) | C4—O1—Zn1—Cl2 | 82.02 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.96 | 2.53 | 3.344 (3) | 143 |
C10—H10A···Cl1ii | 0.96 | 2.82 | 3.740 (2) | 162 |
C10—H10C···Cl1iii | 0.96 | 2.82 | 3.745 (2) | 162 |
C13—H13···Cl2iv | 0.93 | 2.82 | 3.709 (2) | 161 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y+1, −z+1/2; (iii) x, y+1, z; (iv) x, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C9H13NO)2] |
Mr | 438.68 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 30.365 (2), 8.5366 (6), 15.7982 (12) |
β (°) | 94.281 (4) |
V (Å3) | 4083.7 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.48 |
Crystal size (mm) | 0.25 × 0.25 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS, Bruker, 2008) |
Tmin, Tmax | 0.709, 0.727 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19140, 5069, 4248 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.084, 0.99 |
No. of reflections | 5069 |
No. of parameters | 233 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.56 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.96 | 2.53 | 3.344 (3) | 143 |
C10—H10A···Cl1ii | 0.96 | 2.82 | 3.740 (2) | 162 |
C10—H10C···Cl1iii | 0.96 | 2.82 | 3.745 (2) | 162 |
C13—H13···Cl2iv | 0.93 | 2.82 | 3.709 (2) | 161 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y+1, −z+1/2; (iii) x, y+1, z; (iv) x, −y+2, z+1/2. |
Acknowledgements
MT and AP thank the UGC, India, for financial support in the form of a Research Fellowship in Science for Meritorious Students.
References
Anwar, A., Duan, X.-M., Komatsu, K., Okada, S., Matsuda, H., Oikawa, H. & Nakanishi, H. (1997). Chem. Lett. pp. 247–248. Google Scholar
Anwar, A., Komatsu, K., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (1999). Proc. SPIE, 3796, 219–228. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735–2752. Web of Science CrossRef PubMed CAS Google Scholar
Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003). Inorg. Chem. 42, 581–589. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Garratt, S. (1963). J. Org. Chem. 28, 1886–1888. CrossRef CAS Web of Science Google Scholar
Mootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517–1522. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic pyridinium salts have been widely used as guest molecules in the construction of supramolecular architecture in the field of chemistry (Damiano et al., 2007). Pyridinium cations are good candidates for second-harmonic generation (SHG) materials because they possess large hyperpolarizabilities (β) irrespective of the short cutoff wavelength. Since pyridinium cations are ionic species, they possess an easy tunability into noncentrosymmetric structures by changing counter anions (Anwar et al., 1997, 1999). The zinc halides substituted in pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active for the coupling of carbon dioxide and epoxides to provide high molecular weight polycarbonates and cyclic carbonates (Darensbourg et al., 2003). As a part of our interest, we report here the crystal structure of the title pyridinium dichlorozinc(II) complex.
In the title molecule (Fig. 1), the ZnII atom is coordinated by a pair of pyridinium oxide group and terminal halide ions in a distorted tetrahedral arrangement. The organic ligand exists in a zwitterionic structure, involving a conjugated pyridinium fragment. The C atoms of methyl substituents at C2, C6, C12 and C16 lie in the plane of the corresponding pyridinium rings, which are evident from the C9—C2—N1—C6 [176.99 (16)°], C10—C6—N1—C2 [-175.51 (17)°], C19—C12—N11—C16 [178.46 (18)°] and C20—C16—N11—C12 [-178.4 (2)°] torsion angles. The C—C bond of the ethyl groups attached at N1 and N11 are approximately perpendicular to the attached pyridinium ring, which can be seen from the C8—C7—N1—C2 [93.7 (2)°] and C18—C17—N11—C12 [90.0 (2)°] torsion angles. The sum of the bond angles around the protonated nitrogen atoms N1 [360.0°] and N11 [359.99°] of both the pyridinium rings is in accordance with sp2 character. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2—N1—C6 and C12—N11—C16 angles are widened in comparison with the literature value (Mootz & Wusson, 1981). The pyridinium rings are planar and oriented each other at an angle of 67.79 (8)°.
The packing of the molecules in the unit cell is promoted by the existence of weak C—H···O, C—H···Cl and π···π types of intermolecular interactions. The C8—H8A···O1 interaction leads to the formation of a centrosymmetric R22(16) dimer (Bernstein et al., 1995). The Cl1 atom acts as an acceptor in a linear fashion for the methyl group hydrogen from the neighbouring molecule [Fig. 2 and Table 2]. The C13—H13···Cl2 intermolecular interaction also contributes to the crystal packing, which form zigzag chains along the c axis. The crystal structure is further augmented by π···π interaction between adjacent pyridinium rings [Cg1(x, y, z)···Cg1(-x, y, 1/2-z) = 3.669 (1) Å; where Cg1 is the centroid of the (N1-C6) ring, Fig.2].