organic compounds
(E)-Ethyl 2-(3-cinnamoylthioureido)acetate
aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my
In the title compound, C14H16N2O3S, the phenyl ring and the ethyl 2-(3-formylthioureido)acetate fragment adopt an E configuration with respect to the C=C bond. An intramolecular N—H⋯O hydrogen bond generating an S(6) ring motif is observed. In the crystal, molecules are linked by N—H⋯S, C—H⋯S and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane.
Related literature
For bond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the synthesis, see: Hassan et al. (2008a).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810037918/ci5178sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810037918/ci5178Isup2.hkl
The title compound was synthesized according to a previously reported procedure (Hassan et al., 2008a). Single crystals were obtained by slow evaporation of a CH2Cl2 solution at room temperature (yield 71%).
H atoms were positioned geometrically [N–H = 0.86 Å and C–H = 0.93–0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).
The title compound, I, is an ethyl ester derivative of glycine thiourea analogoue to our previously reported molecules, ethyl-2-(3- benzoylthioureido)acetate (II) (Hassan et al., 2008a). As in most carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, such as in methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004), the molecule maintains its E—Z configuration with respect to the positions of the cinnamoyl and ethyl acetate groups, respectively, relative to the S atom across the C10—N2 bond (Fig 1). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those observed in (II). However, the C═S bond length [1.675 (3) Å] is slightly longer than that of (II) [1.666 Å]. The cinnamoylthiourea fragment, [S1/O1/N1/N2/C1-C11, A], is essentially planar with a maximum deviation of 0.079 (3) %A, for the atom C1. In the ethyl acetate moeity, [O2/O3/N2/C11-C13, B], the maximum deviation from the mean plane is 0.007 (3) %A for the atom C13. The phenyl ring [C1–C6, C] is inclined to the ethyl acetate mean plane with a dihedral angle of 13.9 (2)° which is larger than that observed in compound (II) [3.6 (1)°]. The additional CH2 group introduced a more steric geometry to the ethyl acetate moiety. The dihedral angle between the fragments A/B is 10.8 (1)°. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1) which resulted in a formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by N1—H1A···S1, C4—H4A···O3 and C8—H8A···S1 intermolecular hydrogen bonds, which form a sheet parallel to the ab plane.
For bond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the preparation, see: Hassan et al. (2008a).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).C14H16N2O3S | F(000) = 616 |
Mr = 292.35 | Dx = 1.318 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2524 reflections |
a = 5.1867 (9) Å | θ = 2.2–25.5° |
b = 9.7417 (16) Å | µ = 0.23 mm−1 |
c = 29.154 (5) Å | T = 298 K |
V = 1473.1 (4) Å3 | Block, colourless |
Z = 4 | 0.49 × 0.38 × 0.24 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3637 independent reflections |
Radiation source: fine-focus sealed tube | 2747 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scan | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −6→6 |
Tmin = 0.897, Tmax = 0.947 | k = −12→13 |
10938 measured reflections | l = −32→38 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.036 |
3637 reflections | Δρmax = 0.35 e Å−3 |
182 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1497 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (13) |
C14H16N2O3S | V = 1473.1 (4) Å3 |
Mr = 292.35 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.1867 (9) Å | µ = 0.23 mm−1 |
b = 9.7417 (16) Å | T = 298 K |
c = 29.154 (5) Å | 0.49 × 0.38 × 0.24 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3637 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2747 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.947 | Rint = 0.033 |
10938 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.164 | Δρmax = 0.35 e Å−3 |
S = 1.03 | Δρmin = −0.21 e Å−3 |
3637 reflections | Absolute structure: Flack (1983), 1497 Friedel pairs |
182 parameters | Absolute structure parameter: −0.04 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.18635 (18) | 0.08578 (8) | 0.03548 (2) | 0.0573 (2) | |
O1 | 0.3380 (5) | 0.2635 (3) | 0.14456 (7) | 0.0694 (7) | |
O2 | 0.0044 (6) | −0.0041 (3) | 0.20692 (9) | 0.0952 (10) | |
O3 | −0.3348 (5) | −0.1415 (2) | 0.19707 (7) | 0.0712 (7) | |
N1 | 0.1857 (5) | 0.2377 (2) | 0.07184 (7) | 0.0446 (5) | |
H1A | 0.2047 | 0.2655 | 0.0440 | 0.053* | |
N2 | −0.0312 (5) | 0.0950 (2) | 0.12136 (8) | 0.0494 (6) | |
H2A | 0.0690 | 0.1285 | 0.1420 | 0.059* | |
C1 | 0.9341 (6) | 0.5968 (3) | 0.05420 (11) | 0.0540 (7) | |
H1B | 0.8379 | 0.5558 | 0.0310 | 0.065* | |
C2 | 1.1166 (7) | 0.6944 (3) | 0.04298 (12) | 0.0630 (9) | |
H2B | 1.1426 | 0.7182 | 0.0124 | 0.076* | |
C3 | 1.2592 (6) | 0.7563 (3) | 0.07652 (12) | 0.0635 (9) | |
H3A | 1.3788 | 0.8236 | 0.0689 | 0.076* | |
C4 | 1.2251 (7) | 0.7186 (3) | 0.12129 (13) | 0.0661 (9) | |
H4A | 1.3249 | 0.7593 | 0.1441 | 0.079* | |
C5 | 1.0440 (7) | 0.6208 (3) | 0.13305 (11) | 0.0581 (8) | |
H5A | 1.0234 | 0.5962 | 0.1637 | 0.070* | |
C6 | 0.8916 (5) | 0.5586 (3) | 0.09962 (10) | 0.0450 (6) | |
C7 | 0.7010 (6) | 0.4568 (3) | 0.11298 (10) | 0.0487 (6) | |
H7A | 0.6949 | 0.4335 | 0.1439 | 0.058* | |
C8 | 0.5352 (6) | 0.3939 (3) | 0.08554 (10) | 0.0451 (6) | |
H8A | 0.5372 | 0.4125 | 0.0543 | 0.054* | |
C9 | 0.3480 (6) | 0.2950 (3) | 0.10411 (9) | 0.0465 (6) | |
C10 | −0.0050 (6) | 0.1404 (3) | 0.07938 (10) | 0.0439 (6) | |
C11 | −0.2162 (6) | −0.0072 (3) | 0.13555 (10) | 0.0514 (7) | |
H11A | −0.2033 | −0.0869 | 0.1158 | 0.062* | |
H11B | −0.3892 | 0.0297 | 0.1328 | 0.062* | |
C12 | −0.1669 (7) | −0.0482 (3) | 0.18390 (11) | 0.0604 (8) | |
C13 | −0.3116 (12) | −0.1938 (5) | 0.24386 (13) | 0.1039 (16) | |
H13A | −0.1398 | −0.2299 | 0.2490 | 0.125* | |
H13B | −0.3433 | −0.1210 | 0.2658 | 0.125* | |
C14 | −0.5011 (16) | −0.3012 (7) | 0.24893 (19) | 0.165 (3) | |
H14A | −0.4645 | −0.3534 | 0.2761 | 0.247* | |
H14B | −0.4953 | −0.3606 | 0.2227 | 0.247* | |
H14C | −0.6697 | −0.2612 | 0.2514 | 0.247* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0656 (5) | 0.0633 (4) | 0.0430 (4) | −0.0139 (4) | −0.0054 (4) | −0.0001 (3) |
O1 | 0.0813 (16) | 0.0836 (14) | 0.0431 (11) | −0.0360 (15) | −0.0067 (11) | 0.0109 (10) |
O2 | 0.105 (2) | 0.113 (2) | 0.0677 (17) | −0.049 (2) | −0.0235 (16) | 0.0243 (17) |
O3 | 0.0789 (16) | 0.0854 (15) | 0.0494 (12) | −0.0338 (14) | −0.0044 (12) | 0.0145 (11) |
N1 | 0.0475 (12) | 0.0476 (11) | 0.0386 (11) | −0.0068 (12) | 0.0019 (11) | 0.0020 (9) |
N2 | 0.0518 (14) | 0.0541 (13) | 0.0422 (12) | −0.0123 (12) | −0.0024 (10) | 0.0020 (11) |
C1 | 0.0510 (17) | 0.0602 (16) | 0.0509 (16) | −0.0087 (15) | −0.0081 (13) | 0.0023 (14) |
C2 | 0.063 (2) | 0.0684 (18) | 0.0579 (19) | −0.0092 (17) | 0.0024 (15) | 0.0120 (15) |
C3 | 0.053 (2) | 0.0544 (16) | 0.084 (2) | −0.0068 (15) | 0.0053 (16) | −0.0015 (16) |
C4 | 0.059 (2) | 0.0655 (19) | 0.073 (2) | −0.0121 (16) | −0.0086 (17) | −0.0198 (17) |
C5 | 0.0598 (19) | 0.0647 (19) | 0.0497 (17) | −0.0059 (17) | −0.0031 (14) | −0.0092 (14) |
C6 | 0.0396 (14) | 0.0439 (14) | 0.0513 (15) | 0.0033 (11) | −0.0010 (12) | −0.0043 (11) |
C7 | 0.0519 (16) | 0.0515 (14) | 0.0427 (14) | 0.0005 (14) | 0.0013 (13) | 0.0001 (11) |
C8 | 0.0464 (15) | 0.0455 (14) | 0.0433 (14) | −0.0002 (13) | −0.0003 (12) | 0.0017 (11) |
C9 | 0.0473 (16) | 0.0472 (14) | 0.0449 (14) | −0.0019 (13) | −0.0044 (12) | 0.0012 (11) |
C10 | 0.0431 (16) | 0.0393 (12) | 0.0492 (15) | 0.0014 (12) | −0.0004 (12) | −0.0028 (11) |
C11 | 0.0502 (16) | 0.0538 (15) | 0.0503 (15) | −0.0080 (14) | −0.0016 (13) | 0.0065 (12) |
C12 | 0.0631 (19) | 0.0642 (18) | 0.0538 (17) | −0.0143 (18) | 0.0004 (17) | 0.0043 (13) |
C13 | 0.124 (4) | 0.125 (3) | 0.062 (2) | −0.041 (4) | −0.012 (3) | 0.038 (2) |
C14 | 0.184 (6) | 0.229 (8) | 0.083 (3) | −0.108 (6) | −0.038 (4) | 0.083 (4) |
S1—C10 | 1.675 (3) | C4—C5 | 1.381 (5) |
O1—C9 | 1.219 (3) | C4—H4A | 0.93 |
O2—C12 | 1.193 (4) | C5—C6 | 1.393 (4) |
O3—C12 | 1.316 (4) | C5—H5A | 0.93 |
O3—C13 | 1.462 (4) | C6—C7 | 1.453 (4) |
N1—C9 | 1.380 (4) | C7—C8 | 1.325 (4) |
N1—C10 | 1.387 (4) | C7—H7A | 0.93 |
N1—H1A | 0.86 | C8—C9 | 1.472 (4) |
N2—C10 | 1.308 (4) | C8—H8A | 0.93 |
N2—C11 | 1.443 (4) | C11—C12 | 1.487 (4) |
N2—H2A | 0.86 | C11—H11A | 0.97 |
C1—C2 | 1.381 (4) | C11—H11B | 0.97 |
C1—C6 | 1.393 (4) | C13—C14 | 1.443 (7) |
C1—H1B | 0.93 | C13—H13A | 0.97 |
C2—C3 | 1.366 (5) | C13—H13B | 0.97 |
C2—H2B | 0.93 | C14—H14A | 0.96 |
C3—C4 | 1.367 (5) | C14—H14B | 0.96 |
C3—H3A | 0.93 | C14—H14C | 0.96 |
C12—O3—C13 | 117.3 (3) | C7—C8—H8A | 119.7 |
C9—N1—C10 | 127.1 (2) | C9—C8—H8A | 119.7 |
C9—N1—H1A | 116.5 | O1—C9—N1 | 122.2 (3) |
C10—N1—H1A | 116.5 | O1—C9—C8 | 123.2 (3) |
C10—N2—C11 | 124.8 (2) | N1—C9—C8 | 114.6 (2) |
C10—N2—H2A | 117.6 | N2—C10—N1 | 117.0 (2) |
C11—N2—H2A | 117.6 | N2—C10—S1 | 123.3 (2) |
C2—C1—C6 | 121.2 (3) | N1—C10—S1 | 119.7 (2) |
C2—C1—H1B | 119.4 | N2—C11—C12 | 110.0 (3) |
C6—C1—H1B | 119.4 | N2—C11—H11A | 109.6 |
C3—C2—C1 | 120.3 (3) | C12—C11—H11A | 109.6 |
C3—C2—H2B | 119.8 | N2—C11—H11B | 109.7 |
C1—C2—H2B | 119.8 | C12—C11—H11B | 109.7 |
C2—C3—C4 | 119.7 (3) | H11A—C11—H11B | 108.2 |
C2—C3—H3A | 120.2 | O2—C12—O3 | 125.3 (3) |
C4—C3—H3A | 120.2 | O2—C12—C11 | 124.3 (3) |
C3—C4—C5 | 120.6 (3) | O3—C12—C11 | 110.4 (3) |
C3—C4—H4A | 119.7 | C14—C13—O3 | 107.0 (4) |
C5—C4—H4A | 119.7 | C14—C13—H13A | 110.3 |
C4—C5—C6 | 120.8 (3) | O3—C13—H13A | 110.3 |
C4—C5—H5A | 119.6 | C14—C13—H13B | 110.3 |
C6—C5—H5A | 119.6 | O3—C13—H13B | 110.3 |
C5—C6—C1 | 117.3 (3) | H13A—C13—H13B | 108.6 |
C5—C6—C7 | 119.7 (3) | C13—C14—H14A | 109.5 |
C1—C6—C7 | 123.0 (3) | C13—C14—H14B | 109.5 |
C8—C7—C6 | 126.5 (3) | H14A—C14—H14B | 109.5 |
C8—C7—H7A | 116.7 | C13—C14—H14C | 109.5 |
C6—C7—H7A | 116.7 | H14A—C14—H14C | 109.5 |
C7—C8—C9 | 120.6 (3) | H14B—C14—H14C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.79 | 3.631 (2) | 166 |
N2—H2A···O1 | 0.86 | 1.92 | 2.611 (4) | 137 |
C4—H4A···O3ii | 0.93 | 2.54 | 3.457 (4) | 170 |
C8—H8A···S1i | 0.93 | 2.86 | 3.716 (3) | 153 |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x+2, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H16N2O3S |
Mr | 292.35 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 5.1867 (9), 9.7417 (16), 29.154 (5) |
V (Å3) | 1473.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.49 × 0.38 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.897, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10938, 3637, 2747 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.164, 1.03 |
No. of reflections | 3637 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.21 |
Absolute structure | Flack (1983), 1497 Friedel pairs |
Absolute structure parameter | −0.04 (13) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.79 | 3.631 (2) | 166 |
N2—H2A···O1 | 0.86 | 1.92 | 2.611 (4) | 137 |
C4—H4A···O3ii | 0.93 | 2.54 | 3.457 (4) | 170 |
C8—H8A···S1i | 0.93 | 2.86 | 3.716 (3) | 153 |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x+2, y+1, z. |
Acknowledgements
The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009. The authors also thank Dr J.-C. Daran, CNRS, Tolouse, for his advice.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, I, is an ethyl ester derivative of glycine thiourea analogoue to our previously reported molecules, ethyl-2-(3- benzoylthioureido)acetate (II) (Hassan et al., 2008a). As in most carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, such as in methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004), the molecule maintains its E—Z configuration with respect to the positions of the cinnamoyl and ethyl acetate groups, respectively, relative to the S atom across the C10—N2 bond (Fig 1). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those observed in (II). However, the C═S bond length [1.675 (3) Å] is slightly longer than that of (II) [1.666 Å]. The cinnamoylthiourea fragment, [S1/O1/N1/N2/C1-C11, A], is essentially planar with a maximum deviation of 0.079 (3) %A, for the atom C1. In the ethyl acetate moeity, [O2/O3/N2/C11-C13, B], the maximum deviation from the mean plane is 0.007 (3) %A for the atom C13. The phenyl ring [C1–C6, C] is inclined to the ethyl acetate mean plane with a dihedral angle of 13.9 (2)° which is larger than that observed in compound (II) [3.6 (1)°]. The additional CH2 group introduced a more steric geometry to the ethyl acetate moiety. The dihedral angle between the fragments A/B is 10.8 (1)°. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1) which resulted in a formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by N1—H1A···S1, C4—H4A···O3 and C8—H8A···S1 intermolecular hydrogen bonds, which form a sheet parallel to the ab plane.