organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl-3-meth­­oxy-4-oxo-5-tri­phenyl­phospho­ranyl­­idene­cyclo­pent-1-ene-1,2,3-tri­carboxyl­ate

aFaculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, bNational Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland, and cInstitute of Atomic Energy, 05-400 Otwock-Świerk, Poland
*Correspondence e-mail: czarnoz@chem.uw.edu.pl

(Received 16 August 2010; accepted 21 September 2010; online 9 October 2010)

The title compound, C30H27O8P (2), was formed as one of two products {(1) [Krawczyk et al. (2010[Krawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2791.]). Acta Cryst. E66 (cv2752)] and (2)} in the reaction of dimethyl acetyl­enedicarboxyl­ate with triphenyl­phosphine. The mol­ecule of (2) consists of a five-membered carbocyclic ring. The P atom is a part of a triphenylphosphoranylidene substituent. In contrast to (1), the five-membered ring of (2) is planar, the r.m.s. deviation being only 0.009 (2) Å.

Related literature

For a detailed study of adduct formation from triaryl­phosphines and acetyl­enedicarboxyl­ate, see: Waite et al. (1971[Waite, N. E., Tebby, J. C., Ward, R. S., Shaw, M. A. & Williams, D. H. (1971). J. Chem. Soc. C, pp. 1620-1622.]). For related structures, see: Spek (1987[Spek, A. L. (1987). Acta Cryst. C43, 1233-1235.]); Thomas & Hamor (1993[Thomas, J. A. & Hamor, T. A. (1993). Acta Cryst. C49, 355-357.]); Krawczyk et al. (2010[Krawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2791.]).

[Scheme 1]

Experimental

Crystal data
  • C30H27O8P

  • Mr = 546.49

  • Monoclinic, P 21 /n

  • a = 10.9220 (1) Å

  • b = 15.1215 (1) Å

  • c = 16.7423 (1) Å

  • β = 92.145 (1)°

  • V = 2763.17 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.37 × 0.18 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Ruby CCD

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.717, Tmax = 0.926

  • 24587 measured reflections

  • 5014 independent reflections

  • 3667 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.01

  • 5014 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1-ene-1,2,3- tricarboxylate (2) is one of two 1:2 adducts formed as the minor compound in the reaction of triphenylphosphine and acetylenedicarboxylate, described already in 1971 (Waite et al.). By using dry toluene instead of diethyl ether, and by reducing the temperature of the reaction to -78%C we menaged to raise the yield of the reaction from 21% to 28%. Crystal structure of the other compound - tetramethyl 1,1,2-triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate was also published recently (Krawczyk et al., 2010). In the present comunication we report on the crystal structure of compound (2).

In molecule (2) (Fig. 1), one of the acetyl groups at C4 is almost co-planar with the five-membered ring with a dihedral angle of 8.60 (3)° whereas all other acetyl and methoxy groups at C3 and C5 atoms are perpendicular to it with the dihedral angles of 86.31 (14), 84.95 (12) and 89.09 (9)°, respectively. The phenyl rings bonded to the phosphorous atom in (2) have similar conformations to that observed at room temperature for the parent triphenylphosphine in both polymorphic structures (Spek, 1987; Thomas & Hamor, 1993) assuring the lowest repulsion of the neighboring fragments.

Related literature top

For a detailed study of adduct formation from triarylphosphines and acetylenedicarboxylate, see: Waite et al. (1971). For related structures, see: Spek (1987); Thomas & Hamor (1993); Krawczyk et al. (2010).

Experimental top

A mixture of acetylenedicarboxylate (0.5 g, 3,52 mmol) in 3 ml of dry toluene was placed in a two-neck round bottom flask, and cooled to -78°C (solid CO2/acetone bath) with stirring. The solution of triphenylphosphine (0.47 g, 1.80 mmol) in 3 ml of dry toluene was then added dropwise under argon during 20 min. The reaction was then left to reach slowly room temperature overnight. After evaporation of the solvent under reduced pressure, the remaining oil was dissolved in ethyl acetate and purified by column chromatography (Merck silica gel, 230 - 400 mesh, ethyl acetate, and then ethyl acetate/methanol 19:1 as eluent). Both products could be easily recrystallized from ethyl acetate/diethyl ether. The 2H-phosphole 1 (0.61 g, 63%) had Rf = 0.46 (ethyl acetate) and a melting point of 253–255°C (Waite, et al.1971). The second eluted product - (2) (0.27 g, 28%) - showed a green fluorescence in UV light (λ = 365 nm), had Rf = 0.18 (ethyl acetate) and melted at 243–244°C [(Waite et al., 1971), m.p. 222–224°C]. The single-crystal of (2) was obtained by slow evaporation of its ethyl acetate/diethyl ether solution.

Refinement top

H atoms were placed in calcluated positions and were included in the refinement with Uiso(H) = 1.2Ueq(C) [1.5 in the case of methyl groups H atoms]. Isotropic displacement parameters for hydrogen atoms bonded to either oxygen or nitrogen atoms were refined independently.

Structure description top

Trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1-ene-1,2,3- tricarboxylate (2) is one of two 1:2 adducts formed as the minor compound in the reaction of triphenylphosphine and acetylenedicarboxylate, described already in 1971 (Waite et al.). By using dry toluene instead of diethyl ether, and by reducing the temperature of the reaction to -78%C we menaged to raise the yield of the reaction from 21% to 28%. Crystal structure of the other compound - tetramethyl 1,1,2-triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate was also published recently (Krawczyk et al., 2010). In the present comunication we report on the crystal structure of compound (2).

In molecule (2) (Fig. 1), one of the acetyl groups at C4 is almost co-planar with the five-membered ring with a dihedral angle of 8.60 (3)° whereas all other acetyl and methoxy groups at C3 and C5 atoms are perpendicular to it with the dihedral angles of 86.31 (14), 84.95 (12) and 89.09 (9)°, respectively. The phenyl rings bonded to the phosphorous atom in (2) have similar conformations to that observed at room temperature for the parent triphenylphosphine in both polymorphic structures (Spek, 1987; Thomas & Hamor, 1993) assuring the lowest repulsion of the neighboring fragments.

For a detailed study of adduct formation from triarylphosphines and acetylenedicarboxylate, see: Waite et al. (1971). For related structures, see: Spek (1987); Thomas & Hamor (1993); Krawczyk et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (2) showing the atomi labelling and 30% probability displacement ellipsoids.
Trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1-ene- 1,2,3-tricarboxylate top
Crystal data top
C30H27O8PF(000) = 1144
Mr = 546.49Dx = 1.314 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 10.9220 (1) ÅCell parameters from 8837 reflections
b = 15.1215 (1) Åθ = 2.6–70.3°
c = 16.7423 (1) ŵ = 1.31 mm1
β = 92.145 (1)°T = 293 K
V = 2763.17 (4) Å3Parallelepiped, colourless
Z = 40.37 × 0.18 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby CCD
5014 independent reflections
Radiation source: fine-focus sealed tube3667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ο and φ scansθmax = 70.4°, θmin = 3.9°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1213
Tmin = 0.717, Tmax = 0.926k = 1718
24587 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0824P)2]
where P = (Fo2 + 2Fc2)/3
5014 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H27O8PV = 2763.17 (4) Å3
Mr = 546.49Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.9220 (1) ŵ = 1.31 mm1
b = 15.1215 (1) ÅT = 293 K
c = 16.7423 (1) Å0.37 × 0.18 × 0.07 mm
β = 92.145 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby CCD
5014 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
3667 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.926Rint = 0.043
24587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
5014 reflectionsΔρmin = 0.21 e Å3
352 parameters
Special details top

Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.98130 (5)0.33555 (3)0.23236 (3)0.03465 (16)
O10.78889 (16)0.31389 (11)0.08918 (8)0.0499 (4)
O20.4783 (2)0.40415 (17)0.08401 (15)0.0969 (8)
O30.6135 (2)0.47924 (12)0.15999 (11)0.0676 (5)
O40.55002 (18)0.25150 (12)0.14528 (10)0.0587 (5)
O50.40520 (18)0.34126 (14)0.28230 (12)0.0676 (5)
O60.52975 (17)0.33087 (15)0.39062 (10)0.0690 (6)
O70.78341 (18)0.41525 (11)0.41526 (9)0.0579 (5)
O80.78057 (17)0.26709 (11)0.41634 (8)0.0519 (4)
C10.8225 (2)0.33213 (13)0.23123 (11)0.0344 (4)
C20.7528 (2)0.32327 (12)0.15769 (12)0.0373 (5)
C30.6140 (2)0.32578 (14)0.17661 (12)0.0396 (5)
C40.6183 (2)0.33365 (13)0.26716 (12)0.0392 (5)
C50.7364 (2)0.33655 (12)0.29464 (11)0.0342 (4)
C60.5565 (2)0.40552 (18)0.13463 (14)0.0541 (6)
C70.5738 (4)0.5607 (2)0.1224 (2)0.0985 (13)
H7A0.62020.60910.14500.148*
H7B0.48830.56980.13110.148*
H7C0.58650.55750.06600.148*
C80.5827 (4)0.17164 (18)0.18298 (19)0.0814 (10)
H8A0.53590.12420.15900.122*
H8B0.56610.17540.23880.122*
H8C0.66840.16070.17690.122*
C90.5071 (2)0.33579 (15)0.31160 (13)0.0440 (5)
C100.7700 (2)0.34554 (14)0.38231 (11)0.0390 (5)
C111.0463 (2)0.22934 (14)0.20702 (12)0.0419 (5)
C120.9720 (3)0.16379 (15)0.17490 (15)0.0522 (6)
H120.89050.17580.16110.063*
C131.0193 (3)0.07979 (18)0.16328 (18)0.0683 (8)
H130.96920.03550.14160.082*
C141.1395 (3)0.06166 (18)0.18364 (19)0.0720 (8)
H141.17040.00490.17700.086*
C151.2136 (3)0.1272 (2)0.2137 (2)0.0718 (8)
H151.29550.11500.22640.086*
C161.1685 (2)0.21181 (17)0.22555 (16)0.0558 (6)
H161.21970.25620.24570.067*
C170.4260 (3)0.3308 (3)0.4409 (2)0.0909 (11)
H17A0.45390.32730.49590.136*
H17B0.37490.28070.42800.136*
H17C0.38000.38420.43250.136*
C180.7974 (3)0.2668 (2)0.50317 (14)0.0760 (9)
H18A0.80410.20700.52190.114*
H18B0.72840.29480.52650.114*
H18C0.87080.29860.51820.114*
C211.0310 (2)0.42131 (14)0.16544 (11)0.0427 (5)
C221.1493 (3)0.42166 (18)0.13731 (15)0.0590 (7)
H221.20280.37540.14990.071*
C231.1869 (3)0.4911 (2)0.09070 (18)0.0762 (9)
H231.26570.49110.07140.091*
C241.1094 (3)0.5600 (2)0.07247 (17)0.0731 (9)
H241.13570.60630.04080.088*
C250.9937 (3)0.56107 (18)0.10071 (17)0.0685 (8)
H250.94170.60830.08870.082*
C260.9535 (3)0.49155 (16)0.14749 (14)0.0554 (6)
H260.87460.49230.16670.066*
C311.04400 (19)0.36215 (14)0.33050 (11)0.0362 (5)
C321.0687 (2)0.44928 (14)0.35069 (13)0.0446 (5)
H321.05480.49360.31290.053*
C331.1136 (2)0.47116 (18)0.42599 (14)0.0542 (6)
H331.12940.52990.43920.065*
C341.1349 (2)0.40574 (19)0.48145 (14)0.0566 (7)
H341.16580.42040.53230.068*
C351.1113 (3)0.31865 (19)0.46293 (14)0.0583 (7)
H351.12630.27490.50110.070*
C361.0653 (2)0.29617 (16)0.38761 (13)0.0469 (5)
H361.04860.23740.37510.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0370 (3)0.0358 (3)0.0312 (3)0.0019 (2)0.0013 (2)0.00179 (19)
O10.0546 (11)0.0653 (10)0.0298 (7)0.0056 (8)0.0028 (7)0.0040 (6)
O20.0973 (19)0.1003 (17)0.0891 (15)0.0024 (14)0.0496 (15)0.0148 (13)
O30.0841 (15)0.0491 (10)0.0682 (11)0.0071 (9)0.0154 (10)0.0070 (8)
O40.0622 (12)0.0619 (10)0.0516 (9)0.0204 (9)0.0027 (8)0.0095 (7)
O50.0404 (11)0.0935 (14)0.0688 (11)0.0029 (10)0.0008 (9)0.0047 (10)
O60.0470 (11)0.1185 (16)0.0423 (9)0.0043 (11)0.0120 (8)0.0006 (9)
O70.0722 (13)0.0582 (10)0.0432 (8)0.0052 (9)0.0007 (8)0.0150 (7)
O80.0619 (12)0.0585 (9)0.0349 (7)0.0014 (8)0.0024 (7)0.0075 (7)
C10.0373 (12)0.0367 (10)0.0291 (9)0.0007 (9)0.0006 (8)0.0021 (7)
C20.0421 (12)0.0354 (10)0.0342 (10)0.0051 (9)0.0023 (9)0.0002 (8)
C30.0385 (12)0.0473 (11)0.0327 (10)0.0073 (10)0.0048 (9)0.0029 (8)
C40.0399 (13)0.0415 (11)0.0360 (10)0.0016 (10)0.0006 (9)0.0009 (8)
C50.0375 (12)0.0326 (9)0.0323 (9)0.0016 (9)0.0009 (9)0.0021 (7)
C60.0502 (16)0.0706 (17)0.0405 (12)0.0056 (13)0.0100 (11)0.0057 (11)
C70.145 (4)0.0617 (18)0.088 (2)0.022 (2)0.009 (2)0.0175 (16)
C80.120 (3)0.0521 (16)0.0733 (18)0.0230 (17)0.0140 (19)0.0109 (13)
C90.0382 (13)0.0468 (12)0.0469 (12)0.0011 (10)0.0004 (10)0.0039 (9)
C100.0378 (12)0.0474 (12)0.0316 (10)0.0003 (10)0.0005 (9)0.0027 (9)
C110.0453 (14)0.0412 (11)0.0398 (10)0.0030 (10)0.0077 (10)0.0050 (8)
C120.0517 (15)0.0456 (12)0.0594 (14)0.0004 (11)0.0013 (12)0.0117 (10)
C130.073 (2)0.0461 (14)0.0859 (19)0.0030 (14)0.0050 (16)0.0171 (13)
C140.076 (2)0.0473 (14)0.094 (2)0.0142 (14)0.0189 (17)0.0128 (13)
C150.0529 (17)0.0661 (17)0.097 (2)0.0155 (15)0.0097 (15)0.0092 (15)
C160.0432 (15)0.0530 (14)0.0713 (16)0.0022 (12)0.0050 (12)0.0120 (12)
C170.070 (2)0.136 (3)0.0689 (19)0.002 (2)0.0368 (17)0.0042 (19)
C180.094 (3)0.098 (2)0.0358 (12)0.0006 (19)0.0035 (14)0.0162 (13)
C210.0521 (15)0.0436 (11)0.0325 (10)0.0067 (10)0.0022 (10)0.0006 (8)
C220.0573 (17)0.0634 (15)0.0572 (14)0.0048 (13)0.0148 (12)0.0041 (12)
C230.077 (2)0.084 (2)0.0702 (18)0.0189 (18)0.0276 (16)0.0059 (15)
C240.095 (3)0.0680 (18)0.0565 (15)0.0271 (17)0.0095 (16)0.0160 (13)
C250.086 (2)0.0552 (15)0.0634 (16)0.0090 (15)0.0081 (16)0.0184 (12)
C260.0581 (17)0.0534 (14)0.0544 (14)0.0054 (12)0.0013 (12)0.0105 (11)
C310.0326 (11)0.0422 (10)0.0337 (9)0.0007 (9)0.0004 (9)0.0013 (8)
C320.0487 (14)0.0420 (11)0.0429 (11)0.0054 (10)0.0002 (10)0.0030 (9)
C330.0557 (16)0.0598 (14)0.0472 (13)0.0084 (12)0.0027 (11)0.0156 (11)
C340.0478 (15)0.0851 (18)0.0366 (11)0.0052 (13)0.0011 (11)0.0119 (11)
C350.0570 (17)0.0771 (18)0.0405 (12)0.0070 (14)0.0010 (11)0.0122 (11)
C360.0513 (15)0.0487 (12)0.0405 (11)0.0028 (11)0.0022 (10)0.0032 (9)
Geometric parameters (Å, º) top
P1—C11.734 (2)C13—H130.9300
P1—C311.802 (2)C14—C151.363 (4)
P1—C211.810 (2)C14—H140.9300
P1—C111.813 (2)C15—C161.389 (4)
O1—C21.235 (2)C15—H150.9300
O2—C61.181 (3)C16—H160.9300
O3—C61.338 (3)C17—H17A0.9600
O3—C71.443 (3)C17—H17B0.9600
O4—C81.403 (4)C17—H17C0.9600
O4—C31.413 (3)C18—H18A0.9600
O5—C91.202 (3)C18—H18B0.9600
O6—C91.339 (3)C18—H18C0.9600
O6—C171.437 (3)C21—C261.384 (4)
O7—C101.196 (3)C21—C221.393 (4)
O8—C101.319 (3)C22—C231.380 (4)
O8—C181.458 (3)C22—H220.9300
C1—C21.430 (3)C23—C241.370 (5)
C1—C51.446 (3)C23—H230.9300
C2—C31.561 (3)C24—C251.366 (5)
C3—C41.520 (3)C24—H240.9300
C3—C61.519 (3)C25—C261.392 (4)
C4—C51.355 (3)C25—H250.9300
C4—C91.448 (3)C26—H260.9300
C5—C101.506 (3)C31—C321.384 (3)
C7—H7A0.9600C31—C361.395 (3)
C7—H7B0.9600C32—C331.376 (3)
C7—H7C0.9600C32—H320.9300
C8—H8A0.9600C33—C341.371 (4)
C8—H8B0.9600C33—H330.9300
C8—H8C0.9600C34—C351.375 (4)
C11—C121.378 (3)C34—H340.9300
C11—C161.384 (3)C35—C361.382 (3)
C12—C131.388 (4)C35—H350.9300
C12—H120.9300C36—H360.9300
C13—C141.372 (4)
C1—P1—C31111.24 (9)C15—C14—C13119.7 (3)
C1—P1—C21109.71 (10)C15—C14—H14120.1
C31—P1—C21106.98 (10)C13—C14—H14120.1
C1—P1—C11111.81 (10)C14—C15—C16120.9 (3)
C31—P1—C11105.80 (10)C14—C15—H15119.6
C21—P1—C11111.15 (10)C16—C15—H15119.6
C6—O3—C7116.4 (2)C11—C16—C15119.3 (2)
C8—O4—C3113.8 (2)C11—C16—H16120.4
C9—O6—C17117.3 (2)C15—C16—H16120.4
C10—O8—C18116.02 (19)O6—C17—H17A109.5
C2—C1—C5107.24 (18)O6—C17—H17B109.5
C2—C1—P1120.83 (15)H17A—C17—H17B109.5
C5—C1—P1131.93 (15)O6—C17—H17C109.5
O1—C2—C1129.2 (2)H17A—C17—H17C109.5
O1—C2—C3122.51 (19)H17B—C17—H17C109.5
C1—C2—C3108.26 (16)O8—C18—H18A109.5
O4—C3—C4115.39 (17)O8—C18—H18B109.5
O4—C3—C6105.61 (18)H18A—C18—H18B109.5
C4—C3—C6113.33 (18)O8—C18—H18C109.5
O4—C3—C2112.08 (17)H18A—C18—H18C109.5
C4—C3—C2102.15 (17)H18B—C18—H18C109.5
C6—C3—C2108.24 (18)C26—C21—C22119.4 (2)
C5—C4—C9129.16 (19)C26—C21—P1119.29 (18)
C5—C4—C3109.55 (18)C22—C21—P1121.04 (19)
C9—C4—C3121.3 (2)C23—C22—C21119.6 (3)
C4—C5—C1112.75 (17)C23—C22—H22120.2
C4—C5—C10121.88 (18)C21—C22—H22120.2
C1—C5—C10125.35 (19)C24—C23—C22120.7 (3)
O2—C6—O3123.9 (3)C24—C23—H23119.6
O2—C6—C3126.4 (3)C22—C23—H23119.6
O3—C6—C3109.6 (2)C25—C24—C23120.2 (3)
O3—C7—H7A109.5C25—C24—H24119.9
O3—C7—H7B109.5C23—C24—H24119.9
H7A—C7—H7B109.5C24—C25—C26120.1 (3)
O3—C7—H7C109.5C24—C25—H25120.0
H7A—C7—H7C109.5C26—C25—H25120.0
H7B—C7—H7C109.5C21—C26—C25119.9 (3)
O4—C8—H8A109.5C21—C26—H26120.1
O4—C8—H8B109.5C25—C26—H26120.1
H8A—C8—H8B109.5C32—C31—C36119.16 (19)
O4—C8—H8C109.5C32—C31—P1119.95 (16)
H8A—C8—H8C109.5C36—C31—P1120.87 (16)
H8B—C8—H8C109.5C33—C32—C31120.8 (2)
O5—C9—O6122.8 (2)C33—C32—H32119.6
O5—C9—C4125.0 (2)C31—C32—H32119.6
O6—C9—C4112.2 (2)C34—C33—C32119.5 (2)
O7—C10—O8125.88 (19)C34—C33—H33120.2
O7—C10—C5123.38 (19)C32—C33—H33120.2
O8—C10—C5110.73 (17)C33—C34—C35120.8 (2)
C12—C11—C16119.9 (2)C33—C34—H34119.6
C12—C11—P1119.90 (19)C35—C34—H34119.6
C16—C11—P1120.01 (17)C34—C35—C36120.0 (2)
C11—C12—C13119.8 (3)C34—C35—H35120.0
C11—C12—H12120.1C36—C35—H35120.0
C13—C12—H12120.1C35—C36—C31119.7 (2)
C14—C13—C12120.4 (3)C35—C36—H36120.2
C14—C13—H13119.8C31—C36—H36120.2
C12—C13—H13119.8
C31—P1—C1—C2172.06 (15)C18—O8—C10—C5172.4 (2)
C21—P1—C1—C253.89 (18)C4—C5—C10—O789.4 (3)
C11—P1—C1—C269.89 (18)C1—C5—C10—O789.1 (3)
C31—P1—C1—C58.1 (2)C4—C5—C10—O889.8 (2)
C21—P1—C1—C5126.25 (19)C1—C5—C10—O891.7 (2)
C11—P1—C1—C5110.0 (2)C1—P1—C11—C1212.7 (2)
C5—C1—C2—O1177.0 (2)C31—P1—C11—C12133.97 (19)
P1—C1—C2—O12.9 (3)C21—P1—C11—C12110.25 (19)
C5—C1—C2—C32.1 (2)C1—P1—C11—C16162.32 (18)
P1—C1—C2—C3177.97 (14)C31—P1—C11—C1641.1 (2)
C8—O4—C3—C448.1 (3)C21—P1—C11—C1674.7 (2)
C8—O4—C3—C6174.1 (2)C16—C11—C12—C131.7 (4)
C8—O4—C3—C268.3 (3)P1—C11—C12—C13173.3 (2)
O1—C2—C3—O453.3 (3)C11—C12—C13—C140.1 (4)
C1—C2—C3—O4125.94 (18)C12—C13—C14—C151.6 (5)
O1—C2—C3—C4177.36 (18)C13—C14—C15—C161.3 (5)
C1—C2—C3—C41.8 (2)C12—C11—C16—C152.0 (4)
O1—C2—C3—C662.8 (2)P1—C11—C16—C15173.1 (2)
C1—C2—C3—C6118.00 (19)C14—C15—C16—C110.4 (4)
O4—C3—C4—C5122.7 (2)C1—P1—C21—C2624.4 (2)
C6—C3—C4—C5115.4 (2)C31—P1—C21—C2696.3 (2)
C2—C3—C4—C50.8 (2)C11—P1—C21—C26148.61 (18)
O4—C3—C4—C956.5 (3)C1—P1—C21—C22161.12 (19)
C6—C3—C4—C965.5 (3)C31—P1—C21—C2278.1 (2)
C2—C3—C4—C9178.30 (18)C11—P1—C21—C2236.9 (2)
C9—C4—C5—C1179.5 (2)C26—C21—C22—C231.3 (4)
C3—C4—C5—C10.5 (2)P1—C21—C22—C23175.7 (2)
C9—C4—C5—C101.8 (3)C21—C22—C23—C240.6 (5)
C3—C4—C5—C10179.16 (17)C22—C23—C24—C250.3 (5)
C2—C1—C5—C41.7 (2)C23—C24—C25—C260.7 (5)
P1—C1—C5—C4178.44 (16)C22—C21—C26—C250.9 (4)
C2—C1—C5—C10179.66 (18)P1—C21—C26—C25175.5 (2)
P1—C1—C5—C100.2 (3)C24—C25—C26—C210.0 (4)
C7—O3—C6—O20.6 (4)C1—P1—C31—C3292.5 (2)
C7—O3—C6—C3176.8 (3)C21—P1—C31—C3227.3 (2)
O4—C3—C6—O22.9 (4)C11—P1—C31—C32145.84 (19)
C4—C3—C6—O2130.1 (3)C1—P1—C31—C3685.8 (2)
C2—C3—C6—O2117.3 (3)C21—P1—C31—C36154.43 (19)
O4—C3—C6—O3178.97 (19)C11—P1—C31—C3635.8 (2)
C4—C3—C6—O353.8 (3)C36—C31—C32—C330.0 (4)
C2—C3—C6—O358.8 (2)P1—C31—C32—C33178.32 (18)
C17—O6—C9—O51.1 (4)C31—C32—C33—C340.5 (4)
C17—O6—C9—C4178.9 (3)C32—C33—C34—C350.4 (4)
C5—C4—C9—O5172.6 (2)C33—C34—C35—C360.1 (4)
C3—C4—C9—O58.4 (3)C34—C35—C36—C310.5 (4)
C5—C4—C9—O67.4 (3)C32—C31—C36—C350.5 (4)
C3—C4—C9—O6171.55 (19)P1—C31—C36—C35178.79 (19)
C18—O8—C10—O76.8 (4)

Experimental details

Crystal data
Chemical formulaC30H27O8P
Mr546.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.9220 (1), 15.1215 (1), 16.7423 (1)
β (°) 92.145 (1)
V3)2763.17 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.31
Crystal size (mm)0.37 × 0.18 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Ruby CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.717, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
24587, 5014, 3667
Rint0.043
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.01
No. of reflections5014
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Polish Ministry of Science and Higher Education for financial support (grant No. N204 030636).

References

First citationKrawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1987). Acta Cryst. C43, 1233–1235.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationThomas, J. A. & Hamor, T. A. (1993). Acta Cryst. C49, 355–357.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWaite, N. E., Tebby, J. C., Ward, R. S., Shaw, M. A. & Williams, D. H. (1971). J. Chem. Soc. C, pp. 1620–1622.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds