metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-hydroxido-bis­­[aqua­(pyridine-2,6-di­carboxyl­ato)iron(III)] monohydrate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA
*Correspondence e-mail: heshtiagh@um.ac.ir, pfanwick@purdue.edu

(Received 5 September 2010; accepted 16 October 2010; online 23 October 2010)

In the dinuclear title complex, [Fe2(OH)2(C7H3NO4)2(H2O)2]·H2O, the two Fe atoms are separated by 3.063 (1) Å. Inter­molecular O—H⋯O hydrogen bonds form an extensive three-dimensional hydrogen-bonding network, which consolidates the crystal packing.

Related literature

The crystal structure of the anhydrous form of the title dinuclear complex has been reported by Thich et al. (1976[Thich, J. A., Ou, C. C., Powers, D., Vasiliou, B., Mastropaolo, D., Potenza, J. A. & Schugar, H. J. (1976). J. Am. Chem. Soc. 98, 1425-1433. ]). For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(OH)2(C7H3NO4)2(H2O2)2]·H2O

  • Mr = 529.97

  • Monoclinic, P 21 /c

  • a = 11.4786 (11) Å

  • b = 21.7080 (16) Å

  • c = 7.3291 (6) Å

  • β = 90.099 (7)°

  • V = 1826.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 13.53 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.14 mm

Data collection
  • Rigaku Rapid II diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.120, Tmax = 0.150

  • 14275 measured reflections

  • 2831 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.153

  • S = 1.07

  • 2831 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1W 0.70 (5) 2.34 (5) 2.966 (3) 151 (5)
O2—H2⋯O1Wi 0.72 (5) 2.28 (5) 2.936 (3) 151 (5)
O15—H151⋯O12ii 0.83 (5) 1.78 (5) 2.611 (5) 173 (5)
O15—H152⋯O14iii 0.80 (4) 1.79 (4) 2.577 (4) 171 (5)
O25—H251⋯O24iv 0.78 (4) 1.80 (4) 2.577 (4) 176 (5)
O25—H252⋯O22v 0.71 (5) 1.87 (5) 2.576 (5) 173 (6)
O1W—H1W1⋯O23iii 0.87 (4) 2.10 (4) 2.962 (4) 176 (4)
O1W—H1W2⋯O13iii 0.87 (5) 2.22 (4) 3.072 (4) 169 (4)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; method used to solve structure: charge flipping (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]) implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our structural study of coordination compounds bearing different dicaroxylic acid and amine base fragments via proton transfer methodology (Aghabozorg et al., 2008 and references therein; Eshtiagh-Hosseini et al. 2010), we present here the title compound, (I). The crystal structure of anhydrous form of I already has been reported by Thich et al. (1976); [(pydc)H2OFeOH]2 (II). The considerable feature of the title compound, is that the basic properties of (pydc)2- did not allow 5-bromo-6-methyl-2-(4-methylpiperazine-1-yl)pyrimidine-4-amine (bmpa) participitate in the crystalline network. The other interesting point is that two FeIII ions have different chemical environment making them non equivalent but with similar coordination geometry, that is, each FeIII ion is hexa-coordinated by one tridentate (pydc)2-, two µ-hydroxo, and one coordinated water molecule (Fig. 1).

The above-mentioned complexes are very similar in terms of molecular structure but with different crystal structures. Both structures consist of [(pydc)H2OFe(OH)]2 dimeric units but the only difference between them is the peresence of a crystalline water molecule in the I.

In I (Fig. 1), all bond lengths and angles are normal and comparable with those observed in anhydrous form of the title dinuclear complex (Thich et al., 1976). In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network, which consolidate the crystal packing. Indeed, firstly, covalent bonds cause to constructe dinuclear skeleton, and then the classical hydrogen bond interactions caused by O—H···O, lead to the self-aggregation process.

Related literature top

The crystal structure of anhydrous form of the title dinuclear complex has been reported by Thich et al. (1976). For related structures, see: Aghabozorg et al. (2008); Eshtiagh-Hosseini et al. (2010).

Experimental top

A solution of FeCl3.6H2O was added to a mixture of pydcH2 and bmpa in molar ratios of 1:2:2, respectively. The obtained solution was refluxed for 6 hrs in the 343 K. Suitable orange chunk [(µ-OH)2Fe2(pydc)2(H2O)2].H2O crystals for single crystal X-ray structure determination were obtained after slow evaporation of solvent in R.T.

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). O-bound H atoms were located on a difference map and isotropically refined.

Structure description top

In continuation of our structural study of coordination compounds bearing different dicaroxylic acid and amine base fragments via proton transfer methodology (Aghabozorg et al., 2008 and references therein; Eshtiagh-Hosseini et al. 2010), we present here the title compound, (I). The crystal structure of anhydrous form of I already has been reported by Thich et al. (1976); [(pydc)H2OFeOH]2 (II). The considerable feature of the title compound, is that the basic properties of (pydc)2- did not allow 5-bromo-6-methyl-2-(4-methylpiperazine-1-yl)pyrimidine-4-amine (bmpa) participitate in the crystalline network. The other interesting point is that two FeIII ions have different chemical environment making them non equivalent but with similar coordination geometry, that is, each FeIII ion is hexa-coordinated by one tridentate (pydc)2-, two µ-hydroxo, and one coordinated water molecule (Fig. 1).

The above-mentioned complexes are very similar in terms of molecular structure but with different crystal structures. Both structures consist of [(pydc)H2OFe(OH)]2 dimeric units but the only difference between them is the peresence of a crystalline water molecule in the I.

In I (Fig. 1), all bond lengths and angles are normal and comparable with those observed in anhydrous form of the title dinuclear complex (Thich et al., 1976). In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network, which consolidate the crystal packing. Indeed, firstly, covalent bonds cause to constructe dinuclear skeleton, and then the classical hydrogen bond interactions caused by O—H···O, lead to the self-aggregation process.

The crystal structure of anhydrous form of the title dinuclear complex has been reported by Thich et al. (1976). For related structures, see: Aghabozorg et al. (2008); Eshtiagh-Hosseini et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: charge flipping (Oszlányi & Sütő, 2004) implemented in PLATON (Spek, 2009); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Di-µ-hydroxido-bis[aqua(pyridine-2,6-dicarboxylato)iron(III)] monohydrate top
Crystal data top
[Fe2(OH)2(C7H3NO4)2(H2O2)2]·H2OF(000) = 1072
Mr = 529.97Dx = 1.927 Mg m3
Monoclinic, P21/cCu - Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2932 reflections
a = 11.4786 (11) Åθ = 2–63°
b = 21.7080 (16) ŵ = 13.53 mm1
c = 7.3291 (6) ÅT = 150 K
β = 90.099 (7)°Chunk, orange
V = 1826.2 (3) Å30.20 × 0.20 × 0.14 mm
Z = 4
Data collection top
Rigaku Rapid II
diffractometer
2695 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.048
ω scansθmax = 63.3°, θmin = 2.0°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1112
Tmin = 0.120, Tmax = 0.150k = 250
14275 measured reflectionsl = 08
2831 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.1304P)2 + 0.6186P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.153(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.97 e Å3
2831 reflectionsΔρmin = 0.76 e Å3
311 parameters
Crystal data top
[Fe2(OH)2(C7H3NO4)2(H2O2)2]·H2OV = 1826.2 (3) Å3
Mr = 529.97Z = 4
Monoclinic, P21/cCu - Kα radiation
a = 11.4786 (11) ŵ = 13.53 mm1
b = 21.7080 (16) ÅT = 150 K
c = 7.3291 (6) Å0.20 × 0.20 × 0.14 mm
β = 90.099 (7)°
Data collection top
Rigaku Rapid II
diffractometer
2831 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2695 reflections with I > 2σ(I)
Tmin = 0.120, Tmax = 0.150Rint = 0.048
14275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.97 e Å3
2831 reflectionsΔρmin = 0.76 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson [Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410.]

Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.63100 (5)0.12044 (2)0.72067 (7)0.0080 (3)
Fe20.89320 (5)0.11910 (2)0.79919 (7)0.0082 (3)
O10.7813 (3)0.11982 (10)0.5976 (4)0.0131 (7)
O20.7419 (3)0.11662 (10)0.9247 (4)0.0111 (6)
O110.6011 (2)0.02831 (10)0.6877 (3)0.0135 (6)
O120.4819 (2)0.05113 (9)0.7494 (3)0.0161 (6)
O130.57708 (19)0.20747 (9)0.8073 (3)0.0115 (5)
O140.4320 (2)0.26115 (10)0.9362 (3)0.0186 (6)
O150.5550 (2)0.14072 (12)0.4813 (3)0.0159 (6)
O1W0.7628 (2)0.19217 (14)0.2554 (3)0.0220 (7)
O221.0531 (2)0.04764 (10)0.7153 (3)0.0163 (6)
O230.9419 (2)0.20979 (9)0.7383 (3)0.0133 (5)
O241.0833 (2)0.26950 (10)0.6214 (3)0.0191 (6)
O250.9767 (2)0.13003 (13)1.0362 (4)0.0150 (6)
O2210.9281 (2)0.02666 (10)0.8040 (3)0.0118 (5)
N110.4717 (2)0.10535 (13)0.8448 (4)0.0076 (6)
N211.0478 (3)0.11096 (12)0.6582 (4)0.0091 (7)
C120.4279 (3)0.04863 (14)0.8479 (4)0.0109 (7)
C130.3222 (3)0.03599 (14)0.9274 (4)0.0123 (7)
C140.2600 (3)0.08500 (16)1.0037 (4)0.0164 (8)
C150.3062 (3)0.14464 (15)0.9951 (4)0.0154 (8)
C160.4128 (3)0.15301 (15)0.9138 (4)0.0111 (7)
C170.5088 (3)0.00355 (14)0.7540 (4)0.0110 (7)
C180.4780 (3)0.21304 (14)0.8853 (4)0.0116 (7)
C221.0924 (3)0.05521 (14)0.6318 (4)0.0100 (7)
C231.1952 (3)0.04648 (15)0.5364 (4)0.0131 (7)
C241.2517 (3)0.09854 (16)0.4704 (4)0.0156 (8)
C251.2059 (3)0.15709 (15)0.5038 (4)0.0149 (7)
C261.1027 (3)0.16140 (14)0.5996 (4)0.0100 (7)
C271.0193 (3)0.00617 (14)0.7233 (4)0.0110 (7)
C281.0388 (3)0.21935 (14)0.6557 (4)0.0125 (7)
H10.799 (5)0.132 (2)0.514 (8)0.026 (14)*
H20.724 (5)0.132 (2)1.007 (8)0.032 (15)*
H130.29300.00390.93040.015*
H140.18860.07801.05970.020*
H150.26560.17791.04350.019*
H231.22530.00720.51720.016*
H241.32010.09440.40370.019*
H251.24400.19230.46270.018*
H1510.539 (4)0.111 (2)0.414 (7)0.028 (12)*
H1520.522 (4)0.173 (2)0.474 (6)0.041 (14)*
H1W10.817 (4)0.2200 (19)0.255 (6)0.025 (11)*
H1W20.704 (4)0.217 (2)0.262 (6)0.042 (15)*
H2511.006 (4)0.161 (2)1.063 (6)0.039 (14)*
H2520.973 (5)0.106 (2)1.101 (8)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0075 (4)0.0056 (4)0.0109 (4)0.00088 (17)0.0042 (2)0.00093 (16)
Fe20.0078 (4)0.0058 (4)0.0108 (4)0.00005 (17)0.0047 (2)0.00054 (16)
O10.0074 (17)0.0223 (15)0.0096 (14)0.0017 (9)0.0030 (11)0.0039 (9)
O20.0066 (16)0.0154 (14)0.0114 (14)0.0015 (9)0.0032 (11)0.0035 (9)
O110.0179 (15)0.0068 (11)0.0158 (12)0.0024 (9)0.0035 (10)0.0009 (8)
O120.0242 (15)0.0072 (12)0.0170 (11)0.0010 (9)0.0031 (10)0.0016 (8)
O130.0120 (14)0.0062 (11)0.0164 (11)0.0011 (9)0.0047 (9)0.0019 (8)
O140.0146 (14)0.0089 (11)0.0323 (14)0.0016 (9)0.0049 (10)0.0058 (9)
O150.0231 (16)0.0076 (13)0.0169 (13)0.0073 (11)0.0031 (10)0.0043 (10)
O1W0.0215 (18)0.0158 (15)0.0288 (16)0.0023 (11)0.0084 (12)0.0012 (9)
O220.0270 (16)0.0077 (12)0.0141 (11)0.0037 (9)0.0041 (10)0.0003 (8)
O230.0142 (14)0.0062 (11)0.0195 (12)0.0031 (9)0.0070 (10)0.0022 (8)
O240.0188 (15)0.0076 (11)0.0309 (13)0.0019 (10)0.0039 (10)0.0052 (10)
O250.0210 (16)0.0102 (12)0.0138 (13)0.0068 (11)0.0003 (11)0.0020 (9)
O2210.0129 (14)0.0061 (11)0.0164 (11)0.0010 (9)0.0046 (9)0.0012 (8)
N110.0020 (16)0.0097 (13)0.0111 (14)0.0001 (11)0.0014 (11)0.0024 (11)
N210.0082 (18)0.0089 (14)0.0103 (14)0.0002 (11)0.0013 (12)0.0023 (10)
C120.0107 (19)0.0116 (16)0.0104 (15)0.0015 (13)0.0023 (13)0.0011 (12)
C130.0108 (19)0.0107 (15)0.0155 (15)0.0052 (13)0.0020 (13)0.0038 (12)
C140.011 (2)0.0233 (18)0.0154 (16)0.0001 (14)0.0020 (13)0.0030 (13)
C150.016 (2)0.0147 (17)0.0157 (16)0.0010 (14)0.0053 (14)0.0016 (13)
C160.012 (2)0.0105 (16)0.0104 (15)0.0042 (13)0.0022 (13)0.0016 (12)
C170.0147 (19)0.0079 (16)0.0106 (13)0.0013 (13)0.0023 (13)0.0018 (12)
C180.011 (2)0.0104 (16)0.0135 (15)0.0002 (13)0.0005 (13)0.0014 (12)
C220.010 (2)0.0086 (15)0.0114 (15)0.0008 (13)0.0015 (12)0.0025 (12)
C230.014 (2)0.0128 (16)0.0123 (16)0.0013 (13)0.0007 (13)0.0026 (12)
C240.010 (2)0.0244 (18)0.0128 (15)0.0009 (15)0.0055 (13)0.0027 (14)
C250.015 (2)0.0134 (16)0.0163 (16)0.0044 (14)0.0041 (14)0.0026 (13)
C260.0128 (19)0.0079 (15)0.0093 (14)0.0006 (13)0.0013 (13)0.0021 (12)
C270.015 (2)0.0106 (16)0.0078 (15)0.0011 (13)0.0004 (12)0.0014 (12)
C280.015 (2)0.0090 (16)0.0141 (15)0.0010 (13)0.0028 (14)0.0011 (12)
Geometric parameters (Å, º) top
Fe1—O11.948 (3)O25—H2510.77 (5)
Fe1—O21.964 (3)O25—H2520.71 (5)
Fe1—O152.007 (2)O221—C271.283 (4)
Fe1—O112.043 (2)N11—C121.330 (4)
Fe1—N112.070 (3)N11—C161.336 (4)
Fe1—O132.087 (2)N21—C221.328 (4)
Fe2—O11.956 (3)N21—C261.335 (4)
Fe2—O21.967 (3)C12—C131.375 (5)
Fe2—O251.997 (3)C12—C171.515 (4)
Fe2—O2212.047 (2)C13—C141.398 (5)
Fe2—N212.063 (3)C13—H130.9300
Fe2—O232.095 (2)C14—C151.400 (5)
O1—H10.70 (5)C14—H140.9300
O2—H20.72 (5)C15—C161.374 (5)
O11—C171.285 (4)C15—H150.9300
O12—C171.227 (4)C16—C181.517 (4)
O13—C181.280 (4)C22—C231.385 (5)
O14—C181.229 (4)C22—C271.513 (4)
O15—H1510.82 (5)C23—C241.390 (5)
O15—H1520.80 (5)C23—H230.9300
O1W—H1W10.87 (4)C24—C251.397 (5)
O1W—H1W20.87 (5)C24—H240.9300
O22—C271.232 (4)C25—C261.382 (5)
O23—C281.284 (4)C25—H250.9300
O24—C281.229 (4)C26—C281.514 (4)
O1—Fe1—O277.23 (13)C12—N11—Fe1119.2 (2)
O1—Fe1—O1588.89 (11)C16—N11—Fe1119.5 (2)
O2—Fe1—O15162.77 (11)C22—N21—C26121.2 (3)
O1—Fe1—O1194.99 (9)C22—N21—Fe2118.9 (2)
O2—Fe1—O1199.04 (9)C26—N21—Fe2119.8 (2)
O15—Fe1—O1192.22 (10)N11—C12—C13121.7 (3)
O1—Fe1—N11170.43 (11)N11—C12—C17111.0 (3)
O2—Fe1—N11103.34 (12)C13—C12—C17127.3 (3)
O15—Fe1—N1192.06 (11)C12—C13—C14118.0 (3)
O11—Fe1—N1175.46 (10)C12—C13—H13121.00
O1—Fe1—O13114.22 (9)C14—C13—H13121.00
O2—Fe1—O1389.93 (9)C13—C14—C15119.5 (3)
O15—Fe1—O1386.48 (9)C13—C14—H14120.30
O11—Fe1—O13150.70 (9)C15—C14—H14120.30
N11—Fe1—O1375.34 (10)C16—C15—C14118.6 (3)
O1—Fe2—O276.95 (14)C16—C15—H15120.70
O1—Fe2—O25165.85 (12)C14—C15—H15120.70
O2—Fe2—O2591.08 (12)N11—C16—C15120.9 (3)
O1—Fe2—O22198.57 (9)N11—C16—C18111.3 (3)
O2—Fe2—O22197.93 (9)C15—C16—C18127.8 (3)
O25—Fe2—O22190.46 (10)O12—C17—O11127.0 (3)
O1—Fe2—N21100.77 (12)O12—C17—C12118.9 (3)
O2—Fe2—N21173.12 (11)O11—C17—C12114.1 (3)
O25—Fe2—N2191.96 (11)O14—C18—O13126.8 (3)
O221—Fe2—N2175.88 (10)O14—C18—C16118.4 (3)
O1—Fe2—O2390.39 (10)O13—C18—C16114.8 (3)
O2—Fe2—O23111.18 (9)N21—C22—C23121.8 (3)
O25—Fe2—O2386.90 (10)N21—C22—C27111.2 (3)
O221—Fe2—O23150.80 (10)C23—C22—C27126.9 (3)
N21—Fe2—O2375.16 (10)C22—C23—C24117.5 (3)
Fe1—O1—Fe2103.38 (14)C22—C23—H23121.20
Fe1—O1—H1132 (4)C24—C23—H23121.20
Fe2—O1—H1118 (4)C23—C24—C25120.2 (3)
Fe1—O2—Fe2102.37 (13)C23—C24—H24119.90
Fe1—O2—H2116 (4)C25—C24—H24119.90
Fe2—O2—H2129 (4)C26—C25—C24118.3 (3)
C17—O11—Fe1120.21 (19)C26—C25—H25120.90
C18—O13—Fe1119.0 (2)C24—C25—H25120.90
Fe1—O15—H151117 (3)N21—C26—C25120.9 (3)
Fe1—O15—H152117 (3)N21—C26—C28111.4 (3)
H151—O15—H152123 (5)C25—C26—C28127.7 (3)
H1W1—O1W—H1W297 (5)O22—C27—O221127.4 (3)
C28—O23—Fe2118.9 (2)O22—C27—C22118.1 (3)
Fe2—O25—H251122 (3)O221—C27—C22114.5 (3)
Fe2—O25—H252118 (5)O24—C28—O23126.9 (3)
H251—O25—H252120 (6)O24—C28—C26118.6 (3)
C27—O221—Fe2119.46 (19)O23—C28—C26114.5 (3)
C12—N11—C16121.3 (3)
O2—Fe1—O1—Fe22.02 (11)O2—Fe2—N21—C26157.8 (8)
O15—Fe1—O1—Fe2167.69 (12)O25—Fe2—N21—C2686.0 (3)
O11—Fe1—O1—Fe2100.17 (11)O221—Fe2—N21—C26176.0 (3)
N11—Fe1—O1—Fe296.5 (6)O23—Fe2—N21—C260.3 (2)
O13—Fe1—O1—Fe282.06 (12)C16—N11—C12—C132.2 (5)
O2—Fe2—O1—Fe12.02 (11)Fe1—N11—C12—C13179.6 (2)
O25—Fe2—O1—Fe130.9 (5)C16—N11—C12—C17177.4 (3)
O221—Fe2—O1—Fe198.23 (11)Fe1—N11—C12—C170.1 (3)
N21—Fe2—O1—Fe1175.38 (10)N11—C12—C13—C140.9 (5)
O23—Fe2—O1—Fe1109.66 (10)C17—C12—C13—C14178.7 (3)
O1—Fe1—O2—Fe22.00 (11)C12—C13—C14—C150.6 (5)
O15—Fe1—O2—Fe235.1 (4)C13—C14—C15—C161.0 (5)
O11—Fe1—O2—Fe295.11 (10)C12—N11—C16—C151.9 (5)
N11—Fe1—O2—Fe2172.19 (10)Fe1—N11—C16—C15179.2 (2)
O13—Fe1—O2—Fe2112.90 (10)C12—N11—C16—C18177.1 (3)
O1—Fe2—O2—Fe11.99 (11)Fe1—N11—C16—C180.3 (3)
O25—Fe2—O2—Fe1170.38 (11)C14—C15—C16—N110.2 (5)
O221—Fe2—O2—Fe199.01 (10)C14—C15—C16—C18178.5 (3)
N21—Fe2—O2—Fe173.4 (9)Fe1—O11—C17—O12177.6 (2)
O23—Fe2—O2—Fe183.29 (12)Fe1—O11—C17—C121.9 (3)
O1—Fe1—O11—C17177.9 (2)N11—C12—C17—O12178.3 (3)
O2—Fe1—O11—C17100.1 (2)C13—C12—C17—O122.1 (5)
O15—Fe1—O11—C1793.0 (2)N11—C12—C17—O111.2 (4)
N11—Fe1—O11—C171.5 (2)C13—C12—C17—O11178.4 (3)
O13—Fe1—O11—C176.3 (3)Fe1—O13—C18—O14176.5 (3)
O1—Fe1—O13—C18178.2 (2)Fe1—O13—C18—C162.9 (3)
O2—Fe1—O13—C18105.9 (2)N11—C16—C18—O14177.4 (3)
O15—Fe1—O13—C1891.0 (2)C15—C16—C18—O141.4 (5)
O11—Fe1—O13—C182.7 (3)N11—C16—C18—O132.0 (4)
N11—Fe1—O13—C182.1 (2)C15—C16—C18—O13179.1 (3)
O1—Fe2—O23—C28103.7 (2)C26—N21—C22—C232.6 (5)
O2—Fe2—O23—C28179.9 (2)Fe2—N21—C22—C23179.2 (2)
O25—Fe2—O23—C2890.2 (2)C26—N21—C22—C27175.4 (3)
O221—Fe2—O23—C284.8 (3)Fe2—N21—C22—C272.7 (4)
N21—Fe2—O23—C282.7 (2)N21—C22—C23—C240.8 (5)
O1—Fe2—O221—C2797.8 (2)C27—C22—C23—C24176.9 (3)
O2—Fe2—O221—C27175.7 (2)C22—C23—C24—C251.2 (5)
O25—Fe2—O221—C2793.1 (2)C23—C24—C25—C261.5 (5)
N21—Fe2—O221—C271.2 (2)C22—N21—C26—C252.3 (5)
O23—Fe2—O221—C278.6 (3)Fe2—N21—C26—C25179.5 (2)
O1—Fe1—N11—C123.1 (8)C22—N21—C26—C28176.5 (3)
O2—Fe1—N11—C1295.4 (2)Fe2—N21—C26—C281.7 (4)
O15—Fe1—N11—C1292.4 (2)C24—C25—C26—N210.2 (5)
O11—Fe1—N11—C120.7 (2)C24—C25—C26—C28178.3 (3)
O13—Fe1—N11—C12178.2 (3)Fe2—O221—C27—O22179.1 (2)
O1—Fe1—N11—C16179.5 (6)Fe2—O221—C27—C220.1 (3)
O2—Fe1—N11—C1687.2 (2)N21—C22—C27—O22177.4 (3)
O15—Fe1—N11—C1685.0 (2)C23—C22—C27—O220.5 (5)
O11—Fe1—N11—C16176.8 (3)N21—C22—C27—O2211.7 (4)
O13—Fe1—N11—C160.8 (2)C23—C22—C27—O221179.6 (3)
O1—Fe2—N21—C2294.0 (2)Fe2—O23—C28—O24174.8 (3)
O2—Fe2—N21—C2224.0 (10)Fe2—O23—C28—C264.3 (3)
O25—Fe2—N21—C2292.2 (3)N21—C26—C28—O24175.3 (3)
O221—Fe2—N21—C222.2 (2)C25—C26—C28—O243.4 (5)
O23—Fe2—N21—C22178.5 (3)N21—C26—C28—O233.8 (4)
O1—Fe2—N21—C2687.8 (3)C25—C26—C28—O23177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.70 (5)2.34 (5)2.966 (3)151 (5)
O2—H2···O1Wi0.72 (5)2.28 (5)2.936 (3)151 (5)
O15—H151···O12ii0.83 (5)1.78 (5)2.611 (5)173 (5)
O15—H152···O14iii0.80 (4)1.79 (4)2.577 (4)171 (5)
O25—H251···O24iv0.78 (4)1.80 (4)2.577 (4)176 (5)
O25—H252···O22v0.71 (5)1.87 (5)2.576 (5)173 (6)
O1W—H1W1···O23iii0.87 (4)2.10 (4)2.962 (4)176 (4)
O1W—H1W2···O13iii0.87 (5)2.22 (4)3.072 (4)169 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Fe2(OH)2(C7H3NO4)2(H2O2)2]·H2O
Mr529.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.4786 (11), 21.7080 (16), 7.3291 (6)
β (°) 90.099 (7)
V3)1826.2 (3)
Z4
Radiation typeCu - Kα
µ (mm1)13.53
Crystal size (mm)0.20 × 0.20 × 0.14
Data collection
DiffractometerRigaku Rapid II
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.120, 0.150
No. of measured, independent and
observed [I > 2σ(I)] reflections
14275, 2831, 2695
Rint0.048
(sin θ/λ)max1)0.579
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.153, 1.07
No. of reflections2831
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.76

Computer programs: CrystalClear (Rigaku, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), charge flipping (Oszlányi & Sütő, 2004) implemented in PLATON (Spek, 2009), SHELX97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.70 (5)2.34 (5)2.966 (3)151 (5)
O2—H2···O1Wi0.72 (5)2.28 (5)2.936 (3)151 (5)
O15—H151···O12ii0.83 (5)1.78 (5)2.611 (5)173 (5)
O15—H152···O14iii0.80 (4)1.79 (4)2.577 (4)171 (5)
O25—H251···O24iv0.78 (4)1.80 (4)2.577 (4)176 (5)
O25—H252···O22v0.71 (5)1.87 (5)2.576 (5)173 (6)
O1W—H1W1···O23iii0.87 (4)2.10 (4)2.962 (4)176 (4)
O1W—H1W2···O13iii0.87 (5)2.22 (4)3.072 (4)169 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y, z+2.
 

Acknowledgements

Financial support as well as provision of X-ray facilities from the Ferdowsi University of Mashhad and Purdue University, W. Lafayette, are gratefully acknowledged by the authors.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThich, J. A., Ou, C. C., Powers, D., Vasiliou, B., Mastropaolo, D., Potenza, J. A. & Schugar, H. J. (1976). J. Am. Chem. Soc. 98, 1425–1433.   CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds