metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Hy­droxy-2-{[1-(2-oxido­phenyl)ethyl­­idene]amino-κ2O,N}propanoato-κO1)di­phenyltin(IV)

aDongchang College, Liaocheng University, Liaocheng, 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 27 September 2010; accepted 2 October 2010; online 9 October 2010)

In the title compound, [Sn(C6H5)2(C11H11NO4)], the tin(IV) atom is penta-coordinated in a distorted trigonal-bipyramidal SnC2NO2 geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. Weak C—H⋯O inter­actions further link the dimers into chains extending in [010].

Related literature

For applications and biological activity of organotin compounds, see: Chandrasekhar et al. (2008[Chandrasekhar, V., Sasikumar, P., Singh, P., Thirumoorthi, R. & Senapati, T. (2008). J. Chem. Sci. 120, 105-113.]); Collinson & Fenton (1996[Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.]). For related structures, see: Beltran et al. (2003[Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.]); Tian et al. (2004[Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C11H11NO4)]

  • Mr = 494.10

  • Monoclinic, P 21 /n

  • a = 11.234 (10) Å

  • b = 15.581 (14) Å

  • c = 12.321 (11) Å

  • β = 111.488 (12)°

  • V = 2007 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 K

  • 0.48 × 0.45 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.574, Tmax = 0.790

  • 10058 measured reflections

  • 3526 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.00

  • 3526 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.93 2.43 3.215 (8) 143
O3—H3⋯O4ii 0.82 2.00 2.760 (6) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin compounds are of current interest due to their industrial, agricultural and biological applications (Chandrasekhar et al., 2008). Meanwhile, the chemistry of organotin(IV) complexes of Schiff bases has stemmed from the reported biocidal and anti-tumor activities of organotin(IV) complexes and the behavior of Schiff bases as models for biological systems (Collinson et al., 1996). As a contribution to this field of science, we report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the similar compounds (Beltran et al., 2003; Tian et al., 2004). The Sn1 atom has distorted trigonal-bipyramidal environment, with atoms O1 and O4 in axial positions [O1—Sn1—O4 156.40 (15) °], and the C12 and C18 atoms of two phenyl groups and the imino N1 atom in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 359.7 (4) °, indicating approximate coplanarity for these atoms. The coordinate Sn—O bond lengths of 2.129 (4) and 2.126 (5) Å, respectively, are close to those observed in the reported organotin compounds (Beltran et al., 2003;Tian et al., 2004).

Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers in the crystal structure, and weak C—H···O interactions (Table 1) link further these dimers into chains extended in direction [010].

Related literature top

For applications and biological activity of organotin compounds, see: Chandrasekhar et al. (2008); Collinson et al. (1996). For related structures, see: Beltran et al. (2003); Tian et al. (2004).

Experimental top

Diphenyltin chloride (3 mmol), L-Serine (3 mmol) and 2-hydroxyacetophenone 3 mmol) in 20 ml of benzene were refluxed for 24 h. The resulting clear solution was evaporated under vacuum and the colorless crystalline material obtained was recrystallized from methanol. The product was then dissolved in dichloromethane-hexane, and colourless crystals were grown by slow evaporation.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H = 0.82 Å, C—H = 0.93 - 0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C, O) (C,O).

Structure description top

Organotin compounds are of current interest due to their industrial, agricultural and biological applications (Chandrasekhar et al., 2008). Meanwhile, the chemistry of organotin(IV) complexes of Schiff bases has stemmed from the reported biocidal and anti-tumor activities of organotin(IV) complexes and the behavior of Schiff bases as models for biological systems (Collinson et al., 1996). As a contribution to this field of science, we report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the similar compounds (Beltran et al., 2003; Tian et al., 2004). The Sn1 atom has distorted trigonal-bipyramidal environment, with atoms O1 and O4 in axial positions [O1—Sn1—O4 156.40 (15) °], and the C12 and C18 atoms of two phenyl groups and the imino N1 atom in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 359.7 (4) °, indicating approximate coplanarity for these atoms. The coordinate Sn—O bond lengths of 2.129 (4) and 2.126 (5) Å, respectively, are close to those observed in the reported organotin compounds (Beltran et al., 2003;Tian et al., 2004).

Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers in the crystal structure, and weak C—H···O interactions (Table 1) link further these dimers into chains extended in direction [010].

For applications and biological activity of organotin compounds, see: Chandrasekhar et al. (2008); Collinson et al. (1996). For related structures, see: Beltran et al. (2003); Tian et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids. H atoms omitted for clarity.
(3-Hydroxy-2-{[1-(2-oxidophenyl)ethylidene]amino- κ2O,N}propanoato-κO1)diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C11H11NO4)]F(000) = 992
Mr = 494.10Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3469 reflections
a = 11.234 (10) Åθ = 2.2–25.6°
b = 15.581 (14) ŵ = 1.30 mm1
c = 12.321 (11) ÅT = 298 K
β = 111.488 (12)°Block, colourless
V = 2007 (3) Å30.48 × 0.45 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3526 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.574, Tmax = 0.790k = 1818
10058 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Sn(C6H5)2(C11H11NO4)]V = 2007 (3) Å3
Mr = 494.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.234 (10) ŵ = 1.30 mm1
b = 15.581 (14) ÅT = 298 K
c = 12.321 (11) Å0.48 × 0.45 × 0.19 mm
β = 111.488 (12)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2572 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.790Rint = 0.065
10058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 1.48 e Å3
3526 reflectionsΔρmin = 0.80 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.24581 (4)0.04875 (2)0.16787 (3)0.03717 (17)
N10.2654 (4)0.0895 (3)0.0054 (4)0.0386 (10)
O10.3025 (4)0.1798 (2)0.1969 (4)0.0509 (10)
O20.3143 (4)0.3031 (2)0.1110 (4)0.0736 (14)
O30.0413 (4)0.1585 (3)0.0006 (4)0.0699 (13)
H30.01850.12830.04080.105*
O40.1812 (3)0.0632 (2)0.0708 (3)0.0399 (9)
C10.2928 (5)0.2269 (3)0.1086 (6)0.0500 (15)
C20.2441 (5)0.1820 (3)0.0101 (5)0.0437 (13)
H20.28980.20440.05820.052*
C30.1007 (6)0.1969 (4)0.0723 (6)0.0582 (17)
H3A0.08200.25790.08120.070*
H3B0.07070.17060.14890.070*
C40.3215 (6)0.0810 (4)0.1666 (5)0.0556 (16)
H4A0.25820.12450.20090.083*
H4B0.31580.03760.22360.083*
H4C0.40510.10650.14020.083*
C50.2986 (5)0.0412 (3)0.0648 (5)0.0394 (13)
C60.3123 (5)0.0518 (3)0.0481 (5)0.0381 (13)
C70.2531 (5)0.0993 (3)0.0162 (5)0.0364 (12)
C80.2663 (5)0.1884 (3)0.0221 (5)0.0449 (14)
H80.22680.21990.06360.054*
C90.3374 (6)0.2310 (4)0.0330 (6)0.0559 (16)
H90.34510.29040.02790.067*
C100.3962 (6)0.1856 (4)0.0949 (6)0.0570 (17)
H100.44380.21420.13160.068*
C110.3844 (6)0.0978 (4)0.1022 (5)0.0509 (15)
H110.42490.06760.14390.061*
C120.4214 (5)0.0027 (3)0.2843 (4)0.0358 (12)
C130.4355 (6)0.0908 (3)0.3081 (5)0.0458 (14)
H130.37060.12850.26640.055*
C140.5452 (6)0.1222 (4)0.3931 (5)0.0522 (16)
H140.55350.18080.40820.063*
C150.6420 (6)0.0677 (4)0.4556 (5)0.0552 (16)
H150.71610.08960.51160.066*
C160.6298 (6)0.0187 (4)0.4356 (5)0.0523 (16)
H160.69480.05560.47900.063*
C170.5208 (6)0.0511 (3)0.3509 (5)0.0424 (14)
H170.51350.11000.33780.051*
C180.0980 (5)0.0592 (3)0.2353 (5)0.0360 (12)
C190.0678 (6)0.0131 (4)0.2858 (5)0.0513 (15)
H190.10580.06540.28140.062*
C200.0187 (7)0.0087 (6)0.3429 (6)0.074 (2)
H200.03860.05750.37630.089*
C210.0740 (7)0.0690 (7)0.3492 (7)0.083 (3)
H210.13100.07280.38780.099*
C220.0456 (6)0.1416 (5)0.2987 (6)0.070 (2)
H220.08470.19360.30200.083*
C230.0414 (6)0.1364 (4)0.2432 (5)0.0503 (15)
H230.06200.18550.21080.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0371 (3)0.0369 (2)0.0355 (3)0.00405 (16)0.01101 (19)0.00707 (15)
N10.036 (3)0.037 (2)0.040 (3)0.002 (2)0.011 (2)0.001 (2)
O10.053 (3)0.042 (2)0.053 (3)0.0069 (19)0.014 (2)0.0080 (18)
O20.079 (3)0.034 (2)0.101 (4)0.008 (2)0.025 (3)0.010 (2)
O30.043 (3)0.104 (4)0.057 (3)0.017 (2)0.013 (2)0.015 (3)
O40.035 (2)0.0420 (19)0.041 (2)0.0073 (16)0.0123 (19)0.0076 (16)
C10.033 (3)0.042 (3)0.073 (5)0.005 (3)0.016 (3)0.012 (3)
C20.038 (3)0.040 (3)0.048 (4)0.002 (2)0.010 (3)0.008 (3)
C30.058 (4)0.045 (3)0.064 (5)0.004 (3)0.014 (4)0.012 (3)
C40.058 (4)0.068 (4)0.043 (4)0.005 (3)0.020 (3)0.001 (3)
C50.028 (3)0.052 (3)0.032 (3)0.007 (2)0.004 (2)0.001 (2)
C60.034 (3)0.045 (3)0.029 (3)0.004 (2)0.006 (3)0.010 (2)
C70.027 (3)0.039 (3)0.038 (3)0.002 (2)0.006 (2)0.009 (2)
C80.041 (4)0.045 (3)0.043 (4)0.003 (3)0.008 (3)0.004 (2)
C90.044 (4)0.047 (3)0.071 (5)0.003 (3)0.015 (3)0.019 (3)
C100.042 (4)0.064 (4)0.064 (5)0.005 (3)0.018 (3)0.024 (3)
C110.042 (4)0.066 (4)0.042 (4)0.007 (3)0.013 (3)0.009 (3)
C120.027 (3)0.048 (3)0.029 (3)0.001 (2)0.006 (2)0.009 (2)
C130.051 (4)0.044 (3)0.033 (3)0.009 (3)0.006 (3)0.011 (2)
C140.054 (4)0.056 (3)0.033 (3)0.012 (3)0.000 (3)0.000 (3)
C150.045 (4)0.084 (5)0.030 (3)0.017 (3)0.005 (3)0.004 (3)
C160.042 (4)0.082 (4)0.030 (3)0.012 (3)0.010 (3)0.020 (3)
C170.044 (4)0.047 (3)0.039 (3)0.006 (3)0.018 (3)0.010 (2)
C180.029 (3)0.046 (3)0.029 (3)0.000 (2)0.006 (2)0.002 (2)
C190.043 (4)0.066 (4)0.037 (4)0.004 (3)0.005 (3)0.002 (3)
C200.063 (5)0.113 (6)0.047 (4)0.025 (5)0.021 (4)0.005 (4)
C210.046 (5)0.156 (8)0.053 (5)0.006 (5)0.026 (4)0.025 (5)
C220.049 (4)0.094 (5)0.061 (5)0.016 (4)0.014 (4)0.023 (4)
C230.048 (4)0.058 (3)0.041 (4)0.007 (3)0.011 (3)0.009 (3)
Geometric parameters (Å, º) top
Sn1—O42.089 (3)C9—C101.374 (8)
Sn1—C182.118 (5)C9—H90.9300
Sn1—C122.126 (5)C10—C111.375 (8)
Sn1—O12.129 (4)C10—H100.9300
Sn1—N12.187 (5)C11—H110.9300
N1—C51.299 (6)C12—C131.401 (8)
N1—C21.463 (6)C12—C171.398 (7)
O1—C11.283 (7)C13—C141.381 (8)
O2—C11.210 (6)C13—H130.9300
O3—C31.420 (7)C14—C151.372 (8)
O3—H30.8200C14—H140.9300
O4—C71.349 (6)C15—C161.366 (8)
C1—C21.530 (8)C15—H150.9300
C2—C31.527 (8)C16—C171.381 (9)
C2—H20.9800C16—H160.9300
C3—H3A0.9700C17—H170.9300
C3—H3B0.9700C18—C231.381 (7)
C4—C51.504 (8)C18—C191.387 (7)
C4—H4A0.9600C19—C201.395 (9)
C4—H4B0.9600C19—H190.9300
C4—H4C0.9600C20—C211.375 (11)
C5—C61.464 (7)C20—H200.9300
C6—C71.415 (7)C21—C221.382 (10)
C6—C111.418 (7)C21—H210.9300
C7—C81.395 (7)C22—C231.386 (8)
C8—C91.391 (7)C22—H220.9300
C8—H80.9300C23—H230.9300
O4—Sn1—C1897.52 (17)C9—C8—H8119.4
O4—Sn1—C1296.51 (17)C7—C8—H8119.4
C18—Sn1—C12115.5 (2)C10—C9—C8120.3 (5)
O4—Sn1—O1156.40 (15)C10—C9—H9119.8
C18—Sn1—O195.16 (17)C8—C9—H9119.8
C12—Sn1—O195.85 (18)C9—C10—C11119.5 (5)
O4—Sn1—N181.29 (15)C9—C10—H10120.2
C18—Sn1—N1133.90 (18)C11—C10—H10120.2
C12—Sn1—N1110.33 (18)C10—C11—C6122.1 (6)
O1—Sn1—N175.58 (15)C10—C11—H11119.0
C5—N1—C2123.9 (5)C6—C11—H11119.0
C5—N1—Sn1126.2 (3)C13—C12—C17117.4 (5)
C2—N1—Sn1109.8 (3)C13—C12—Sn1121.1 (4)
C1—O1—Sn1118.6 (4)C17—C12—Sn1121.0 (4)
C3—O3—H3109.5C14—C13—C12120.4 (5)
C7—O4—Sn1119.2 (3)C14—C13—H13119.8
O2—C1—O1125.9 (6)C12—C13—H13119.8
O2—C1—C2118.0 (6)C15—C14—C13120.6 (5)
O1—C1—C2116.0 (5)C15—C14—H14119.7
N1—C2—C1110.0 (5)C13—C14—H14119.7
N1—C2—C3107.9 (4)C16—C15—C14120.1 (6)
C1—C2—C3110.6 (5)C16—C15—H15119.9
N1—C2—H2109.4C14—C15—H15119.9
C1—C2—H2109.4C15—C16—C17120.0 (6)
C3—C2—H2109.4C15—C16—H16120.0
O3—C3—C2105.9 (5)C17—C16—H16120.0
O3—C3—H3A110.6C16—C17—C12121.3 (5)
C2—C3—H3A110.6C16—C17—H17119.3
O3—C3—H3B110.6C12—C17—H17119.3
C2—C3—H3B110.6C23—C18—C19118.8 (5)
H3A—C3—H3B108.7C23—C18—Sn1122.8 (4)
C5—C4—H4A109.5C19—C18—Sn1118.0 (4)
C5—C4—H4B109.5C18—C19—C20121.1 (6)
H4A—C4—H4B109.5C18—C19—H19119.5
C5—C4—H4C109.5C20—C19—H19119.5
H4A—C4—H4C109.5C21—C20—C19119.0 (7)
H4B—C4—H4C109.5C21—C20—H20120.5
N1—C5—C6121.3 (5)C19—C20—H20120.5
N1—C5—C4119.7 (5)C20—C21—C22120.7 (7)
C6—C5—C4119.0 (5)C20—C21—H21119.6
C7—C6—C11117.7 (5)C22—C21—H21119.6
C7—C6—C5123.4 (5)C21—C22—C23119.7 (6)
C11—C6—C5118.8 (5)C21—C22—H22120.1
O4—C7—C8117.4 (5)C23—C22—H22120.1
O4—C7—C6123.4 (4)C18—C23—C22120.7 (6)
C8—C7—C6119.2 (5)C18—C23—H23119.6
C9—C8—C7121.2 (5)C22—C23—H23119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.433.215 (8)143
O3—H3···O4ii0.822.002.760 (6)153
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C11H11NO4)]
Mr494.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.234 (10), 15.581 (14), 12.321 (11)
β (°) 111.488 (12)
V3)2007 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.48 × 0.45 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.574, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
10058, 3526, 2572
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.00
No. of reflections3526
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 0.80

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.433.215 (8)142.5
O3—H3···O4ii0.822.002.760 (6)153.0
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. X09LG002).

References

First citationBeltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, V., Sasikumar, P., Singh, P., Thirumoorthi, R. & Senapati, T. (2008). J. Chem. Sci. 120, 105–113.  Web of Science CrossRef CAS Google Scholar
First citationCollinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483–484.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds