organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′,5′′-Tri­phenyl-2,2′,2′′-[2,4,6-tri­methyl­benzene-1,3,5-triyltris(methyl­­idene­sulfanedi­yl)]tris­­(1,3,4-oxa­diazole)

aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and cLiaoyang Supervision and Examination Station of Product Quality, Liaoning Liaoyang 111000, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 3 October 2010; accepted 11 October 2010; online 20 October 2010)

In the title compound, C36H30N6O3S3, the phenyl rings are twisted from the attached oxadiazole rings in the three arms by 1.5(2), 2.4 (2) and 25.7 (2)°. The crystal packing exhibits weak inter­molecular C—H⋯N inter­actions.

Related literature

For general background to 1,3,4-oxadiazole derivatives, see Al-Talib et al. (1990[Al-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811-1817.]); Wang et al. (2005[Wang, Y. T., Tong, M. L., Fan, H. H., Wang, H. Z. & Chen, X. M. (2005). Dalton Trans. pp. 424-426.]) and to thio-based ligands with a multi-armed tripodal geometry, see: PrakashaReddy & Pedireddi (2007[PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150-1158.]). For the crystal structure of an Ag complex with a related oxadiazole derivative, see: Zhang et al. (2007[Zhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30N6O3S3

  • Mr = 690.84

  • Monoclinic, P 21 /c

  • a = 19.870 (4) Å

  • b = 9.1305 (18) Å

  • c = 18.557 (4) Å

  • β = 107.00 (3)°

  • V = 3219.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 1999[Rigaku/MSC (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.941, Tmax = 0.973

  • 23119 measured reflections

  • 5664 independent reflections

  • 4490 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.149

  • S = 1.10

  • 5664 reflections

  • 437 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31⋯N5i 0.95 2.55 3.338 (3) 141
C24—H24⋯N2ii 0.95 2.57 3.394 (4) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 1999[Rigaku/MSC (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Oxadiazole derivatives have wide applications in medicine, industry and coordination chemistry, so they are under intensive studies (Al-Talib et al., 1990; Wang et al., 2005; Zhang et al., 2007). Recently, novel thio-based ligands with multi-armed tripodal geometry were synthesized, and these ligands demonstrated their significance in the supramolecular studies (PrakashaReddy & Pedireddi, 2007 and references therein). Herewith we present the title compound (I), where the 2,4,6-trimethylbenzene center contains three 5-phenyl-1,3,4-oxadiazol-2-ylsulfanylmethyl arms.

In (I) (Fig.1), two phenyloxadiazole fragments - C10—C15/C8/C9/N1/N2/O1 (A) and C20—C25/C18/C19/N3/N4/O2 (B), respectively - are situated on the one side of the central benzene ring (C1—C6), while the third phenyloxadiazole fragment - C30—C35/C28/C29/N5/N6/O3 (C) - is situated on the other side of the central benzene ring. In A and B, the oxadiazole rings are almost coplanar with the attached phenyl rings forming dihedral angles of 1.5 (2) and 2.4 (2)°, respectively. The terminal phenyl rings are roughly orthogonal to the plane of the central benzene ring with dihedral angles of 82.0 (2), 89.2 (2) and 72.4 (2)°, respectively. The crystal packing exhibits weak intermolecular C—H···N interactions (Table 1).

Related literature top

For general background to 1,3,4-oxadiazole derivatives, see Al-Talib et al. (1990); Wang et al. (2005) and to thio-based ligands with a multi-armed tripodal geometry, see: PrakashaReddy & Pedireddi (2007). For the crystal structure of an Ag complex with a related oxadiazole derivative, see: Zhang et al. (2007).

Experimental top

A suspension of 5-phenyl-1,3,4-oxadiazole-2-thiol (3.0 mmol) and 2,4,6-trimethyl-1,3,5-tribromomethyl benzene (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as white solid in 80% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2-1.5Ueq of the parent atom.

Structure description top

1,3,4-Oxadiazole derivatives have wide applications in medicine, industry and coordination chemistry, so they are under intensive studies (Al-Talib et al., 1990; Wang et al., 2005; Zhang et al., 2007). Recently, novel thio-based ligands with multi-armed tripodal geometry were synthesized, and these ligands demonstrated their significance in the supramolecular studies (PrakashaReddy & Pedireddi, 2007 and references therein). Herewith we present the title compound (I), where the 2,4,6-trimethylbenzene center contains three 5-phenyl-1,3,4-oxadiazol-2-ylsulfanylmethyl arms.

In (I) (Fig.1), two phenyloxadiazole fragments - C10—C15/C8/C9/N1/N2/O1 (A) and C20—C25/C18/C19/N3/N4/O2 (B), respectively - are situated on the one side of the central benzene ring (C1—C6), while the third phenyloxadiazole fragment - C30—C35/C28/C29/N5/N6/O3 (C) - is situated on the other side of the central benzene ring. In A and B, the oxadiazole rings are almost coplanar with the attached phenyl rings forming dihedral angles of 1.5 (2) and 2.4 (2)°, respectively. The terminal phenyl rings are roughly orthogonal to the plane of the central benzene ring with dihedral angles of 82.0 (2), 89.2 (2) and 72.4 (2)°, respectively. The crystal packing exhibits weak intermolecular C—H···N interactions (Table 1).

For general background to 1,3,4-oxadiazole derivatives, see Al-Talib et al. (1990); Wang et al. (2005) and to thio-based ligands with a multi-armed tripodal geometry, see: PrakashaReddy & Pedireddi (2007). For the crystal structure of an Ag complex with a related oxadiazole derivative, see: Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 1999); cell refinement: CrystalClear (Rigaku/MSC, 1999); data reduction: CrystalClear (Rigaku/MSC, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
5,5',5''-Triphenyl-2,2',2''-[2,4,6-trimethylbenzene-1,3,5- triyltris(methylidenesulfanediyl)]tris(1,3,4-oxadiazole) top
Crystal data top
C36H30N6O3S3F(000) = 1440
Mr = 690.84Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7164 reflections
a = 19.870 (4) Åθ = 2.1–27.9°
b = 9.1305 (18) ŵ = 0.28 mm1
c = 18.557 (4) ÅT = 113 K
β = 107.00 (3)°Prism, colourless
V = 3219.6 (11) Å30.22 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5664 independent reflections
Radiation source: rotating anode4490 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.051
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 2319
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 1999)
k = 1010
Tmin = 0.941, Tmax = 0.973l = 1922
23119 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.7757P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5664 reflectionsΔρmax = 0.35 e Å3
437 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (11)
Crystal data top
C36H30N6O3S3V = 3219.6 (11) Å3
Mr = 690.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.870 (4) ŵ = 0.28 mm1
b = 9.1305 (18) ÅT = 113 K
c = 18.557 (4) Å0.22 × 0.20 × 0.10 mm
β = 107.00 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5664 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 1999)
4490 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.973Rint = 0.051
23119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.10Δρmax = 0.35 e Å3
5664 reflectionsΔρmin = 0.37 e Å3
437 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18609 (4)0.29928 (8)0.04709 (4)0.0293 (2)
S20.17834 (4)0.61632 (8)0.36748 (4)0.0305 (2)
S30.30065 (4)0.98854 (9)0.09276 (5)0.0366 (3)
O10.24745 (9)0.2057 (2)0.05257 (11)0.0242 (5)
O20.12205 (9)0.6002 (2)0.47942 (11)0.0260 (5)
O30.37150 (9)1.2260 (2)0.08047 (11)0.0274 (5)
N10.16166 (13)0.3621 (3)0.10346 (15)0.0361 (6)
N20.19355 (13)0.3179 (3)0.15899 (14)0.0337 (6)
N30.06871 (12)0.7678 (3)0.39516 (14)0.0282 (6)
N40.03554 (12)0.7624 (3)0.45304 (14)0.0278 (6)
N50.43389 (12)1.0801 (3)0.17101 (15)0.0350 (6)
N60.47315 (13)1.2090 (3)0.16849 (16)0.0370 (7)
C10.17176 (14)0.5716 (3)0.10460 (16)0.0237 (6)
C20.14838 (14)0.5860 (3)0.16842 (16)0.0255 (6)
C30.17930 (14)0.6912 (3)0.22331 (16)0.0249 (6)
C40.23874 (15)0.7703 (3)0.21951 (17)0.0276 (7)
C50.26506 (14)0.7483 (3)0.15825 (17)0.0255 (6)
C60.23050 (14)0.6535 (3)0.09961 (16)0.0255 (6)
C70.13485 (14)0.4691 (3)0.04168 (17)0.0279 (7)
H7A0.12920.51730.00750.033*
H7B0.08740.44550.04560.033*
C80.19554 (14)0.2940 (3)0.04264 (17)0.0263 (7)
C90.24297 (14)0.2274 (3)0.12660 (16)0.0256 (6)
C100.29139 (14)0.1506 (3)0.15903 (16)0.0250 (6)
C110.28586 (15)0.1687 (3)0.23545 (17)0.0288 (7)
H110.25130.23280.26560.035*
C120.33012 (15)0.0942 (3)0.26695 (18)0.0314 (7)
H120.32590.10610.31900.038*
C130.38190 (15)0.0000 (3)0.22227 (19)0.0320 (7)
H130.41300.05090.24390.038*
C140.38718 (15)0.0176 (3)0.14763 (19)0.0324 (7)
H140.42210.08120.11760.039*
C150.34215 (14)0.0562 (3)0.11523 (17)0.0300 (7)
H150.34600.04240.06340.036*
C160.08921 (16)0.4894 (4)0.17749 (18)0.0348 (7)
H16A0.04380.53550.15250.052*
H16B0.09400.47680.23120.052*
H16C0.09160.39360.15460.052*
C170.14338 (15)0.7269 (3)0.28308 (16)0.0281 (7)
H17A0.09220.70890.26250.034*
H17B0.15030.83190.29650.034*
C180.11798 (14)0.6706 (3)0.41349 (16)0.0254 (6)
C190.06834 (13)0.6633 (3)0.50062 (16)0.0245 (6)
C200.05478 (14)0.6132 (3)0.56941 (17)0.0254 (6)
C210.00131 (14)0.6715 (3)0.59100 (17)0.0298 (7)
H210.03130.74310.56060.036*
C220.01283 (15)0.6236 (4)0.65760 (18)0.0346 (8)
H220.05060.66330.67300.042*
C230.03049 (15)0.5184 (4)0.70162 (18)0.0341 (8)
H230.02230.48600.74700.041*
C240.08569 (16)0.4605 (3)0.67948 (17)0.0327 (7)
H240.11500.38750.70940.039*
C250.09819 (15)0.5085 (3)0.61421 (17)0.0303 (7)
H250.13670.46990.59980.036*
C260.27447 (18)0.8753 (4)0.2815 (2)0.0409 (8)
H26A0.32510.85530.29820.061*
H26B0.25510.86310.32400.061*
H26C0.26640.97600.26270.061*
C270.33018 (15)0.8295 (3)0.15422 (19)0.0318 (7)
H27A0.36000.76510.13340.038*
H27B0.35800.86170.20510.038*
C280.37511 (15)1.0980 (3)0.11886 (17)0.0287 (7)
C290.43512 (13)1.2908 (3)0.11594 (16)0.0257 (7)
C300.44873 (14)1.4375 (3)0.09273 (17)0.0274 (7)
C310.49555 (15)1.5280 (4)0.14417 (18)0.0338 (7)
H310.51911.49290.19320.041*
C320.50769 (17)1.6693 (4)0.1237 (2)0.0403 (8)
H320.53951.73100.15890.048*
C330.47366 (17)1.7209 (4)0.0524 (2)0.0418 (8)
H330.48161.81830.03890.050*
C340.42781 (16)1.6304 (4)0.0003 (2)0.0369 (8)
H340.40511.66520.04910.044*
C350.41525 (15)1.4894 (3)0.02058 (18)0.0315 (7)
H350.38371.42770.01490.038*
C360.25732 (16)0.6325 (3)0.03167 (18)0.0334 (7)
H36A0.28100.72210.02300.050*
H36B0.21760.61140.01280.050*
H36C0.29060.55060.04090.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0405 (4)0.0254 (4)0.0238 (4)0.0061 (3)0.0123 (3)0.0017 (3)
S20.0366 (4)0.0302 (5)0.0267 (4)0.0085 (3)0.0127 (3)0.0024 (3)
S30.0302 (4)0.0306 (5)0.0435 (5)0.0040 (3)0.0020 (3)0.0140 (4)
O10.0283 (10)0.0238 (11)0.0189 (11)0.0006 (8)0.0043 (8)0.0021 (8)
O20.0278 (10)0.0296 (12)0.0215 (11)0.0002 (8)0.0084 (8)0.0016 (9)
O30.0252 (10)0.0298 (12)0.0241 (11)0.0036 (8)0.0022 (8)0.0055 (9)
N10.0448 (15)0.0405 (16)0.0248 (15)0.0129 (12)0.0130 (12)0.0037 (12)
N20.0395 (14)0.0385 (16)0.0229 (15)0.0066 (12)0.0090 (11)0.0008 (12)
N30.0298 (13)0.0302 (14)0.0271 (14)0.0007 (11)0.0119 (11)0.0008 (11)
N40.0277 (12)0.0319 (14)0.0260 (14)0.0018 (10)0.0115 (11)0.0036 (11)
N50.0285 (13)0.0358 (15)0.0357 (16)0.0010 (11)0.0016 (11)0.0076 (12)
N60.0297 (13)0.0354 (16)0.0393 (17)0.0042 (11)0.0002 (12)0.0057 (13)
C10.0279 (14)0.0201 (15)0.0227 (16)0.0079 (11)0.0067 (12)0.0022 (12)
C20.0277 (14)0.0237 (15)0.0257 (16)0.0065 (12)0.0086 (12)0.0074 (13)
C30.0317 (15)0.0202 (15)0.0232 (16)0.0068 (12)0.0088 (12)0.0009 (12)
C40.0338 (16)0.0207 (15)0.0291 (17)0.0035 (12)0.0105 (13)0.0036 (12)
C50.0276 (15)0.0192 (15)0.0304 (17)0.0051 (11)0.0092 (12)0.0086 (12)
C60.0324 (15)0.0224 (15)0.0230 (16)0.0095 (12)0.0099 (12)0.0084 (12)
C70.0286 (15)0.0305 (17)0.0233 (16)0.0060 (12)0.0057 (12)0.0004 (13)
C80.0304 (15)0.0214 (15)0.0270 (17)0.0016 (12)0.0081 (12)0.0017 (12)
C90.0300 (15)0.0259 (16)0.0184 (16)0.0019 (12)0.0035 (12)0.0032 (12)
C100.0285 (15)0.0249 (16)0.0241 (16)0.0069 (12)0.0114 (12)0.0028 (12)
C110.0299 (15)0.0286 (16)0.0252 (17)0.0032 (12)0.0037 (12)0.0016 (13)
C120.0375 (16)0.0338 (18)0.0261 (17)0.0087 (13)0.0143 (13)0.0032 (13)
C130.0282 (15)0.0321 (18)0.042 (2)0.0063 (13)0.0195 (14)0.0083 (14)
C140.0343 (16)0.0253 (17)0.0368 (19)0.0026 (12)0.0093 (14)0.0030 (14)
C150.0319 (15)0.0325 (17)0.0249 (17)0.0028 (13)0.0074 (12)0.0021 (13)
C160.0392 (17)0.0366 (19)0.0297 (18)0.0024 (14)0.0119 (14)0.0007 (14)
C170.0323 (15)0.0288 (16)0.0230 (16)0.0051 (12)0.0078 (12)0.0040 (13)
C180.0275 (14)0.0264 (16)0.0219 (16)0.0023 (12)0.0066 (12)0.0007 (12)
C190.0217 (14)0.0261 (16)0.0252 (16)0.0056 (11)0.0063 (12)0.0053 (12)
C200.0246 (14)0.0247 (16)0.0278 (17)0.0064 (11)0.0092 (12)0.0040 (12)
C210.0225 (14)0.0382 (18)0.0264 (17)0.0013 (12)0.0037 (12)0.0014 (14)
C220.0252 (15)0.048 (2)0.0335 (19)0.0034 (14)0.0135 (13)0.0036 (15)
C230.0367 (17)0.042 (2)0.0220 (17)0.0119 (14)0.0065 (13)0.0025 (14)
C240.0372 (17)0.0315 (17)0.0264 (18)0.0010 (13)0.0045 (13)0.0038 (14)
C250.0358 (16)0.0246 (16)0.0304 (18)0.0012 (12)0.0095 (13)0.0024 (13)
C260.051 (2)0.0265 (18)0.044 (2)0.0055 (14)0.0128 (16)0.0038 (15)
C270.0309 (15)0.0277 (17)0.0378 (19)0.0045 (13)0.0114 (13)0.0111 (14)
C280.0322 (16)0.0238 (16)0.0308 (17)0.0017 (12)0.0104 (13)0.0044 (13)
C290.0188 (13)0.0333 (17)0.0233 (16)0.0011 (11)0.0037 (11)0.0025 (13)
C300.0241 (14)0.0329 (17)0.0266 (17)0.0024 (12)0.0096 (12)0.0024 (13)
C310.0313 (16)0.0394 (19)0.0308 (18)0.0061 (13)0.0090 (13)0.0066 (14)
C320.0437 (18)0.039 (2)0.040 (2)0.0163 (15)0.0159 (16)0.0134 (16)
C330.0451 (19)0.0347 (19)0.051 (2)0.0057 (15)0.0221 (17)0.0033 (16)
C340.0353 (17)0.040 (2)0.038 (2)0.0031 (14)0.0156 (14)0.0073 (15)
C350.0251 (15)0.0378 (18)0.0311 (18)0.0026 (13)0.0077 (13)0.0009 (14)
C360.0419 (17)0.0302 (17)0.0327 (19)0.0070 (13)0.0182 (14)0.0055 (14)
Geometric parameters (Å, º) top
S1—C81.730 (3)C13—C141.368 (4)
S1—C71.842 (3)C13—H130.9500
S2—C181.736 (3)C14—C151.390 (4)
S2—C171.822 (3)C14—H140.9500
S3—C281.733 (3)C15—H150.9500
S3—C271.833 (3)C16—H16A0.9800
O1—C81.364 (3)C16—H16B0.9800
O1—C91.365 (3)C16—H16C0.9800
O2—C181.364 (3)C17—H17A0.9900
O2—C191.368 (3)C17—H17B0.9900
O3—C281.360 (3)C19—C201.453 (4)
O3—C291.376 (3)C20—C251.389 (4)
N1—C81.292 (4)C20—C211.395 (4)
N1—N21.417 (4)C21—C221.392 (4)
N2—C91.290 (4)C21—H210.9500
N3—C181.291 (4)C22—C231.386 (4)
N3—N41.416 (3)C22—H220.9500
N4—C191.298 (4)C23—C241.384 (4)
N5—C281.291 (4)C23—H230.9500
N5—N61.421 (4)C24—C251.377 (4)
N6—C291.284 (4)C24—H240.9500
C1—C21.399 (4)C25—H250.9500
C1—C61.412 (4)C26—H26A0.9800
C1—C71.509 (4)C26—H26B0.9800
C2—C31.404 (4)C26—H26C0.9800
C2—C161.518 (4)C27—H27A0.9900
C3—C41.403 (4)C27—H27B0.9900
C3—C171.520 (4)C29—C301.457 (4)
C4—C51.398 (4)C30—C351.392 (4)
C4—C261.507 (4)C30—C311.393 (4)
C5—C61.403 (4)C31—C321.385 (5)
C5—C271.512 (4)C31—H310.9500
C6—C361.518 (4)C32—C331.382 (5)
C7—H7A0.9900C32—H320.9500
C7—H7B0.9900C33—C341.390 (5)
C9—C101.455 (4)C33—H330.9500
C10—C151.393 (4)C34—C351.384 (4)
C10—C111.400 (4)C34—H340.9500
C11—C121.371 (4)C35—H350.9500
C11—H110.9500C36—H36A0.9800
C12—C131.409 (4)C36—H36B0.9800
C12—H120.9500C36—H36C0.9800
C8—S1—C7100.65 (14)C3—C17—H17B109.3
C18—S2—C1796.89 (14)S2—C17—H17B109.3
C28—S3—C27101.01 (14)H17A—C17—H17B108.0
C8—O1—C9102.7 (2)N3—C18—O2113.7 (2)
C18—O2—C19102.3 (2)N3—C18—S2130.3 (2)
C28—O3—C29102.6 (2)O2—C18—S2116.0 (2)
C8—N1—N2105.6 (2)N4—C19—O2112.1 (2)
C9—N2—N1106.5 (2)N4—C19—C20129.1 (3)
C18—N3—N4105.1 (2)O2—C19—C20118.7 (2)
C19—N4—N3106.7 (2)C25—C20—C21119.9 (3)
C28—N5—N6104.8 (2)C25—C20—C19120.0 (3)
C29—N6—N5107.5 (2)C21—C20—C19120.1 (3)
C2—C1—C6119.4 (3)C22—C21—C20119.2 (3)
C2—C1—C7120.4 (3)C22—C21—H21120.4
C6—C1—C7120.1 (3)C20—C21—H21120.4
C1—C2—C3119.7 (3)C23—C22—C21120.4 (3)
C1—C2—C16119.9 (3)C23—C22—H22119.8
C3—C2—C16120.4 (3)C21—C22—H22119.8
C4—C3—C2120.8 (3)C24—C23—C22120.0 (3)
C4—C3—C17120.5 (3)C24—C23—H23120.0
C2—C3—C17118.5 (3)C22—C23—H23120.0
C5—C4—C3119.2 (3)C25—C24—C23120.1 (3)
C5—C4—C26120.5 (3)C25—C24—H24119.9
C3—C4—C26120.3 (3)C23—C24—H24119.9
C4—C5—C6120.3 (3)C24—C25—C20120.3 (3)
C4—C5—C27119.9 (3)C24—C25—H25119.8
C6—C5—C27119.8 (3)C20—C25—H25119.8
C5—C6—C1120.2 (3)C4—C26—H26A109.5
C5—C6—C36120.7 (3)C4—C26—H26B109.5
C1—C6—C36119.1 (3)H26A—C26—H26B109.5
C1—C7—S1110.14 (19)C4—C26—H26C109.5
C1—C7—H7A109.6H26A—C26—H26C109.5
S1—C7—H7A109.6H26B—C26—H26C109.5
C1—C7—H7B109.6C5—C27—S3107.24 (19)
S1—C7—H7B109.6C5—C27—H27A110.3
H7A—C7—H7B108.1S3—C27—H27A110.3
N1—C8—O1112.8 (3)C5—C27—H27B110.3
N1—C8—S1130.7 (2)S3—C27—H27B110.3
O1—C8—S1116.5 (2)H27A—C27—H27B108.5
N2—C9—O1112.3 (3)N5—C28—O3113.5 (2)
N2—C9—C10128.4 (3)N5—C28—S3130.4 (2)
O1—C9—C10119.3 (2)O3—C28—S3116.1 (2)
C15—C10—C11119.5 (3)N6—C29—O3111.6 (3)
C15—C10—C9120.7 (3)N6—C29—C30129.8 (3)
C11—C10—C9119.8 (3)O3—C29—C30118.5 (2)
C12—C11—C10120.2 (3)C35—C30—C31119.5 (3)
C12—C11—H11119.9C35—C30—C29121.3 (3)
C10—C11—H11119.9C31—C30—C29119.2 (3)
C11—C12—C13120.1 (3)C32—C31—C30120.0 (3)
C11—C12—H12120.0C32—C31—H31120.0
C13—C12—H12120.0C30—C31—H31120.0
C14—C13—C12119.6 (3)C33—C32—C31120.3 (3)
C14—C13—H13120.2C33—C32—H32119.9
C12—C13—H13120.2C31—C32—H32119.9
C13—C14—C15120.8 (3)C32—C33—C34120.1 (3)
C13—C14—H14119.6C32—C33—H33120.0
C15—C14—H14119.6C34—C33—H33120.0
C14—C15—C10119.7 (3)C35—C34—C33119.8 (3)
C14—C15—H15120.1C35—C34—H34120.1
C10—C15—H15120.1C33—C34—H34120.1
C2—C16—H16A109.5C34—C35—C30120.3 (3)
C2—C16—H16B109.5C34—C35—H35119.9
H16A—C16—H16B109.5C30—C35—H35119.9
C2—C16—H16C109.5C6—C36—H36A109.5
H16A—C16—H16C109.5C6—C36—H36B109.5
H16B—C16—H16C109.5H36A—C36—H36B109.5
C3—C17—S2111.49 (19)C6—C36—H36C109.5
C3—C17—H17A109.3H36A—C36—H36C109.5
S2—C17—H17A109.3H36B—C36—H36C109.5
C8—N1—N2—C90.4 (3)C9—C10—C15—C14179.0 (3)
C18—N3—N4—C190.4 (3)C4—C3—C17—S291.9 (3)
C28—N5—N6—C290.1 (3)C2—C3—C17—S293.2 (3)
C6—C1—C2—C35.9 (4)C18—S2—C17—C3172.6 (2)
C7—C1—C2—C3174.4 (2)N4—N3—C18—O20.8 (3)
C6—C1—C2—C16174.9 (2)N4—N3—C18—S2178.8 (2)
C7—C1—C2—C164.8 (4)C19—O2—C18—N30.8 (3)
C1—C2—C3—C47.5 (4)C19—O2—C18—S2178.82 (18)
C16—C2—C3—C4173.3 (3)C17—S2—C18—N35.2 (3)
C1—C2—C3—C17167.3 (2)C17—S2—C18—O2174.3 (2)
C16—C2—C3—C1711.9 (4)N3—N4—C19—O20.1 (3)
C2—C3—C4—C53.0 (4)N3—N4—C19—C20179.1 (3)
C17—C3—C4—C5171.7 (3)C18—O2—C19—N40.5 (3)
C2—C3—C4—C26175.8 (3)C18—O2—C19—C20178.8 (2)
C17—C3—C4—C269.5 (4)N4—C19—C20—C25177.6 (3)
C3—C4—C5—C63.0 (4)O2—C19—C20—C253.2 (4)
C26—C4—C5—C6178.2 (3)N4—C19—C20—C211.6 (5)
C3—C4—C5—C27178.4 (2)O2—C19—C20—C21177.6 (2)
C26—C4—C5—C270.4 (4)C25—C20—C21—C220.1 (4)
C4—C5—C6—C14.5 (4)C19—C20—C21—C22179.1 (3)
C27—C5—C6—C1176.8 (2)C20—C21—C22—C230.5 (4)
C4—C5—C6—C36178.0 (3)C21—C22—C23—C240.1 (5)
C27—C5—C6—C360.6 (4)C22—C23—C24—C250.8 (5)
C2—C1—C6—C50.1 (4)C23—C24—C25—C201.2 (5)
C7—C1—C6—C5179.7 (2)C21—C20—C25—C240.8 (4)
C2—C1—C6—C36177.5 (2)C19—C20—C25—C24180.0 (3)
C7—C1—C6—C362.2 (4)C4—C5—C27—S398.1 (3)
C2—C1—C7—S1102.4 (3)C6—C5—C27—S380.5 (3)
C6—C1—C7—S177.3 (3)C28—S3—C27—C5160.8 (2)
C8—S1—C7—C1125.3 (2)N6—N5—C28—O31.1 (3)
N2—N1—C8—O10.7 (3)N6—N5—C28—S3176.8 (3)
N2—N1—C8—S1178.4 (2)C29—O3—C28—N51.5 (3)
C9—O1—C8—N10.8 (3)C29—O3—C28—S3176.7 (2)
C9—O1—C8—S1178.54 (19)C27—S3—C28—N54.7 (3)
C7—S1—C8—N117.2 (3)C27—S3—C28—O3177.5 (2)
C7—S1—C8—O1161.9 (2)N5—N6—C29—O30.8 (3)
N1—N2—C9—O10.1 (3)N5—N6—C29—C30176.3 (3)
N1—N2—C9—C10180.0 (3)C28—O3—C29—N61.4 (3)
C8—O1—C9—N20.5 (3)C28—O3—C29—C30176.1 (3)
C8—O1—C9—C10179.6 (2)N6—C29—C30—C35157.2 (3)
N2—C9—C10—C15179.8 (3)O3—C29—C30—C3525.9 (4)
O1—C9—C10—C150.3 (4)N6—C29—C30—C3123.5 (5)
N2—C9—C10—C111.8 (5)O3—C29—C30—C31153.4 (3)
O1—C9—C10—C11178.1 (2)C35—C30—C31—C321.0 (5)
C15—C10—C11—C120.1 (4)C29—C30—C31—C32178.3 (3)
C9—C10—C11—C12178.4 (3)C30—C31—C32—C330.2 (5)
C10—C11—C12—C130.6 (4)C31—C32—C33—C341.0 (5)
C11—C12—C13—C140.7 (4)C32—C33—C34—C351.3 (5)
C12—C13—C14—C150.1 (4)C33—C34—C35—C300.4 (5)
C13—C14—C15—C100.6 (4)C31—C30—C35—C340.7 (4)
C11—C10—C15—C140.7 (4)C29—C30—C35—C34178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···N5i0.952.553.338 (3)141
C24—H24···N2ii0.952.573.394 (4)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC36H30N6O3S3
Mr690.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)19.870 (4), 9.1305 (18), 18.557 (4)
β (°) 107.00 (3)
V3)3219.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 1999)
Tmin, Tmax0.941, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
23119, 5664, 4490
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.10
No. of reflections5664
No. of parameters437
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···N5i0.952.5453.338 (3)141.1
C24—H24···N2ii0.952.5653.394 (4)145.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

Financial support from the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and from the doctoral starting Foundation of Liaoning Province (grant No. 20071103) is gratefully acknowledged.

References

First citationAl-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1817.  CrossRef CAS Web of Science Google Scholar
First citationPrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150–1158.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. T., Tong, M. L., Fan, H. H., Wang, H. Z. & Chen, X. M. (2005). Dalton Trans. pp. 424–426.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds