organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(1-phenyl­ethyl­­idene)carbonohydrazide

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 12 October 2010; accepted 17 October 2010; online 23 October 2010)

In the title mol­ecule, C17H18N4O, the two phenyl rings form a dihedral angle of 18.15 (17)°. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. Weak inter­molecular C—H⋯O inter­actions further link the dimers into chains running along [010].

Related literature

For related structures, see: Qiao et al. (2010[Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o2691.]); Kolb et al. (1994[Kolb, V. M., Robinson, P. D. & Meyers, C. Y. (1994). Acta Cryst. C50, 417-419.]4); Meyers et al. (1995[Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775-777.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O

  • Mr = 294.35

  • Monoclinic, P 2/n

  • a = 12.9393 (12) Å

  • b = 5.4858 (5) Å

  • c = 22.703 (2) Å

  • β = 104.681 (1)°

  • V = 1558.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.31 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.980

  • 7406 measured reflections

  • 2757 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 0.90

  • 2757 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯O5i 0.96 2.53 3.405 (3) 151
N2—H2⋯O5ii 0.86 2.11 2.955 (3) 166
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our study of Schiff bases and carbonohydrazides (Qiao et al., 2010), we obtained the title compound, (I), and present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in bis(4-methoxyphenylmethine)carbonohydrazide (Kolb et al., 1994) and bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). The C=N bond lengths are 1.282 (3) ° and 1.286 (3)° (C10=N1 and C2=N4, respectively) showing their double-bond character. Two phenyl rings - C4-C9 and C12—C17, respectively - form a dihedral angle of 18.15 (17)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers, and weak intermolecular C—H···O interactions (Table 1) link further these dimers into chains running in direction [010].

Related literature top

For related structures, see: Qiao et al. (2010); Kolb et al. (19944); Meyers et al. (1995).

Experimental top

Acetophenone (10.0 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash under sovlent-free condtions. After stirring for 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H = 0.86 and C—H = 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N).

Structure description top

In continuation of our study of Schiff bases and carbonohydrazides (Qiao et al., 2010), we obtained the title compound, (I), and present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in bis(4-methoxyphenylmethine)carbonohydrazide (Kolb et al., 1994) and bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). The C=N bond lengths are 1.282 (3) ° and 1.286 (3)° (C10=N1 and C2=N4, respectively) showing their double-bond character. Two phenyl rings - C4-C9 and C12—C17, respectively - form a dihedral angle of 18.15 (17)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers, and weak intermolecular C—H···O interactions (Table 1) link further these dimers into chains running in direction [010].

For related structures, see: Qiao et al. (2010); Kolb et al. (19944); Meyers et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1,5-Bis(1-phenylethylidene)carbonohydrazide top
Crystal data top
C17H18N4OF(000) = 624
Mr = 294.35Dx = 1.254 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 12.9393 (12) ÅCell parameters from 1233 reflections
b = 5.4858 (5) Åθ = 2.9–21.2°
c = 22.703 (2) ŵ = 0.08 mm1
β = 104.681 (1)°T = 298 K
V = 1558.9 (2) Å3Block, colourless
Z = 40.50 × 0.31 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2757 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.960, Tmax = 0.980k = 66
7406 measured reflectionsl = 2616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
2757 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C17H18N4OV = 1558.9 (2) Å3
Mr = 294.35Z = 4
Monoclinic, P2/nMo Kα radiation
a = 12.9393 (12) ŵ = 0.08 mm1
b = 5.4858 (5) ÅT = 298 K
c = 22.703 (2) Å0.50 × 0.31 × 0.25 mm
β = 104.681 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1389 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.980Rint = 0.048
7406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.148H-atom parameters constrained
S = 0.90Δρmax = 0.18 e Å3
2757 reflectionsΔρmin = 0.13 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.86754 (12)0.0739 (3)0.46156 (9)0.0764 (6)
N10.96224 (16)0.4666 (4)0.58368 (10)0.0631 (6)
N20.96359 (15)0.2825 (4)0.54321 (10)0.0679 (6)
H21.01960.19380.54660.082*
N30.79610 (14)0.4095 (4)0.49611 (9)0.0668 (6)
H30.80870.52990.52120.080*
N40.69764 (15)0.3902 (4)0.45574 (9)0.0596 (6)
C10.87369 (18)0.2428 (5)0.49730 (13)0.0614 (7)
C20.63193 (18)0.5649 (4)0.45685 (10)0.0542 (6)
C30.65842 (18)0.7846 (5)0.49701 (13)0.0795 (8)
H3A0.65030.74610.53680.119*
H3B0.61110.91570.48000.119*
H3C0.73090.83290.50000.119*
C40.52443 (18)0.5423 (5)0.41536 (11)0.0551 (6)
C50.4445 (2)0.7041 (6)0.41690 (14)0.0928 (10)
H50.45920.83370.44420.111*
C60.3434 (2)0.6811 (7)0.37943 (17)0.1109 (12)
H60.29090.79360.38180.133*
C70.3200 (2)0.4948 (7)0.33899 (14)0.0934 (10)
H70.25180.47920.31330.112*
C80.3977 (2)0.3314 (6)0.33648 (14)0.1002 (11)
H80.38280.20280.30890.120*
C90.4984 (2)0.3561 (6)0.37467 (13)0.0836 (9)
H90.55030.24160.37260.100*
C101.04459 (19)0.5073 (5)0.62766 (12)0.0618 (7)
C111.14821 (18)0.3686 (5)0.63824 (12)0.0783 (8)
H11A1.14470.22600.66220.117*
H11B1.20600.47060.65950.117*
H11C1.16000.32070.59980.117*
C121.03396 (18)0.7066 (5)0.66970 (11)0.0613 (7)
C130.9504 (2)0.8704 (6)0.65627 (13)0.0774 (8)
H130.89860.85510.61970.093*
C140.9416 (2)1.0546 (6)0.69527 (16)0.0880 (9)
H140.88351.16010.68530.106*
C151.0179 (3)1.0851 (6)0.74911 (15)0.0845 (9)
H151.01311.21260.77530.101*
C161.1002 (2)0.9256 (7)0.76324 (14)0.0906 (10)
H161.15210.94260.79980.109*
C171.1083 (2)0.7385 (6)0.72431 (14)0.0815 (9)
H171.16550.63090.73520.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0605 (11)0.0704 (14)0.0975 (14)0.0118 (9)0.0187 (10)0.0167 (11)
N10.0542 (12)0.0619 (15)0.0726 (14)0.0052 (11)0.0148 (11)0.0028 (12)
N20.0497 (12)0.0686 (16)0.0815 (15)0.0129 (11)0.0094 (12)0.0009 (13)
N30.0482 (12)0.0621 (15)0.0854 (15)0.0119 (11)0.0083 (11)0.0128 (12)
N40.0495 (11)0.0583 (14)0.0715 (13)0.0102 (10)0.0163 (10)0.0017 (11)
C10.0501 (15)0.0579 (19)0.0787 (18)0.0091 (14)0.0209 (14)0.0069 (15)
C20.0537 (14)0.0501 (17)0.0622 (15)0.0050 (12)0.0208 (13)0.0021 (13)
C30.0647 (16)0.064 (2)0.105 (2)0.0061 (14)0.0140 (15)0.0156 (17)
C40.0546 (14)0.0531 (17)0.0595 (15)0.0097 (12)0.0178 (12)0.0005 (13)
C50.0669 (18)0.080 (2)0.120 (2)0.0188 (16)0.0031 (18)0.0300 (19)
C60.069 (2)0.109 (3)0.139 (3)0.0329 (19)0.003 (2)0.027 (3)
C70.0665 (18)0.113 (3)0.089 (2)0.014 (2)0.0036 (16)0.011 (2)
C80.086 (2)0.109 (3)0.093 (2)0.022 (2)0.0016 (19)0.032 (2)
C90.0678 (18)0.093 (2)0.0825 (19)0.0223 (16)0.0058 (16)0.0227 (19)
C100.0493 (14)0.0676 (19)0.0676 (17)0.0015 (13)0.0133 (14)0.0164 (15)
C110.0550 (14)0.091 (2)0.0872 (19)0.0137 (15)0.0146 (14)0.0071 (17)
C120.0480 (14)0.0679 (19)0.0677 (17)0.0023 (13)0.0139 (13)0.0092 (15)
C130.0674 (17)0.076 (2)0.083 (2)0.0100 (16)0.0071 (15)0.0017 (18)
C140.079 (2)0.081 (2)0.104 (2)0.0140 (17)0.023 (2)0.001 (2)
C150.083 (2)0.082 (2)0.094 (2)0.0121 (18)0.0339 (19)0.0083 (19)
C160.0691 (19)0.116 (3)0.083 (2)0.004 (2)0.0131 (17)0.006 (2)
C170.0582 (16)0.095 (2)0.087 (2)0.0092 (16)0.0111 (16)0.0002 (19)
Geometric parameters (Å, º) top
O5—C11.221 (3)C7—H70.9300
N1—C101.282 (3)C8—C91.377 (3)
N1—N21.368 (3)C8—H80.9300
N2—C11.368 (3)C9—H90.9300
N2—H20.8600C10—C121.480 (4)
N3—C11.353 (3)C10—C111.507 (3)
N3—N41.372 (2)C11—H11A0.9600
N3—H30.8600C11—H11B0.9600
N4—C21.286 (3)C11—H11C0.9600
C2—C41.474 (3)C12—C171.374 (3)
C2—C31.498 (3)C12—C131.379 (3)
C3—H3A0.9600C13—C141.367 (4)
C3—H3B0.9600C13—H130.9300
C3—H3C0.9600C14—C151.373 (4)
C4—C91.361 (3)C14—H140.9300
C4—C51.370 (3)C15—C161.353 (4)
C5—C61.374 (4)C15—H150.9300
C5—H50.9300C16—C171.376 (4)
C6—C71.356 (4)C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.358 (4)
C10—N1—N2120.1 (2)C7—C8—H8120.0
C1—N2—N1118.4 (2)C9—C8—H8120.0
C1—N2—H2120.8C4—C9—C8122.2 (3)
N1—N2—H2120.8C4—C9—H9118.9
C1—N3—N4121.3 (2)C8—C9—H9118.9
C1—N3—H3119.3N1—C10—C12115.9 (2)
N4—N3—H3119.3N1—C10—C11124.5 (3)
C2—N4—N3115.9 (2)C12—C10—C11119.6 (2)
O5—C1—N3125.2 (2)C10—C11—H11A109.5
O5—C1—N2121.8 (2)C10—C11—H11B109.5
N3—C1—N2113.0 (3)H11A—C11—H11B109.5
N4—C2—C4116.5 (2)C10—C11—H11C109.5
N4—C2—C3124.2 (2)H11A—C11—H11C109.5
C4—C2—C3119.3 (2)H11B—C11—H11C109.5
C2—C3—H3A109.5C17—C12—C13116.5 (3)
C2—C3—H3B109.5C17—C12—C10121.2 (2)
H3A—C3—H3B109.5C13—C12—C10122.3 (2)
C2—C3—H3C109.5C14—C13—C12121.8 (3)
H3A—C3—H3C109.5C14—C13—H13119.1
H3B—C3—H3C109.5C12—C13—H13119.1
C9—C4—C5116.4 (2)C13—C14—C15120.5 (3)
C9—C4—C2121.9 (2)C13—C14—H14119.7
C5—C4—C2121.7 (2)C15—C14—H14119.7
C4—C5—C6122.1 (3)C16—C15—C14118.5 (3)
C4—C5—H5119.0C16—C15—H15120.7
C6—C5—H5119.0C14—C15—H15120.7
C7—C6—C5120.2 (3)C15—C16—C17120.9 (3)
C7—C6—H6119.9C15—C16—H16119.5
C5—C6—H6119.9C17—C16—H16119.5
C6—C7—C8119.0 (3)C12—C17—C16121.7 (3)
C6—C7—H7120.5C12—C17—H17119.2
C8—C7—H7120.5C16—C17—H17119.2
C7—C8—C9120.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O5i0.962.533.405 (3)151
N2—H2···O5ii0.862.112.955 (3)166
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N4O
Mr294.35
Crystal system, space groupMonoclinic, P2/n
Temperature (K)298
a, b, c (Å)12.9393 (12), 5.4858 (5), 22.703 (2)
β (°) 104.681 (1)
V3)1558.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7406, 2757, 1389
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 0.90
No. of reflections2757
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O5i0.962.533.405 (3)151.0
N2—H2···O5ii0.862.112.955 (3)166.3
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKolb, V. M., Robinson, P. D. & Meyers, C. Y. (1994). Acta Cryst. C50, 417–419.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o2691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds