metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis(di­phenyl­phosphan­yl)di­methyl­silane-κ2P,P′]tetra­carbonyl­chromium(0)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: normen.peulecke@catalysis.de

(Received 21 October 2010; accepted 26 October 2010; online 31 October 2010)

The title compound, [Cr(C26H26P2Si)(CO)4], was obtained by the reaction of Ph2PSiMe2PPh2 with Cr(CO)6 in refluxing toluene by ligand exchange. The CrC4P2 coordination geometry at the Cr atom is distorted octa­hedral, with a P—Cr—P bite angle of 80.27 (1)°.

Related literature

For the synthesis of Ph2PSiMe2PPh2, see: Hassler & Seidl (1988[Hassler, K. & Seidl, S. (1988). Monatsh. Chem. 119, 1241-1244.]). The mol­ecular and crystal structures of the tetra­carbonyl tungsten complex of [(iPr2N)2BP(H)]2SiMe2 and the tetra­carbonyl molybdenum complex of (PhPHSiMe2)2 were presented by Chen et al. (1999[Chen, T., Jackson, J., Jasper, S. A., Duesler, E. N., Nöth, H. & Paine, R. T. (1999). J. Organomet. Chem. 582, 25-31.]) and Sheldrick & Borkenstein (1977[Sheldrick, W. S. & Borkenstein, A. (1977). Acta Cryst. B33, 2916-2918.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Cr(C26H26P2Si)(CO)4]

  • Mr = 592.54

  • Monoclinic, P 21 /c

  • a = 13.7832 (4) Å

  • b = 11.9204 (2) Å

  • c = 18.1329 (5) Å

  • β = 102.073 (2)°

  • V = 2913.36 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 200 K

  • 0.45 × 0.40 × 0.38 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.773, Tmax = 0.867

  • 47168 measured reflections

  • 6688 independent reflections

  • 5370 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 0.93

  • 6688 reflections

  • 345 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Disphosphines are widely used as chelate ligands for complex formation. Among them the silicon-bridged species are not common. There are only few examples of structurally characterized complexes with a SiMe2 bridge (Chen et al., 1999) or SiMe2SiMe2 bridge (Sheldrick & Borkenstein, 1977). In the present publication, we report on the formation and molecular structure of the title compound, which was observed to be the single product of a complex formation of Ph2PSiMe2PPh2 with Cr(CO)6. The synthesis of the starting ligand was already reported by Hassler & Seidl (1988).

In the molecular structure of the title complex the chelating disphosphine and four carbonyl ligands are coordinated to the Cr atom (Fig. 1). The coordination geometry at the metal center is best described as distorted octahedral. The observed bite angle P—Cr—P is 80.27 (1)° and the P—Si—P angle of the complexed ligand is 85.31 (2)°.

Related literature top

For the synthesis of Ph2PSiMe2PPh2, see: Hassler & Seidl (1988). The molecular and crystal structures of the tetracarbonyl tungsten complex of [(iPr2N)2BP(H)]2SiMe2 and the tetracarbonyl molybdenum complex of (PhPHSiMe2)2 were presented by Chen et al. (1999) and Sheldrick & Borkenstein (1977), respectively.

Experimental top

Cr(CO)6 (175 mg, 0.8 mmol) was added to a solution of Ph2PSiMe2PPh2 (321 mg, 0.75 mmol) in 20 ml of toluene and the resulting solution was stirred at reflux temperature for 72 h. Subsequently, the formed yellow solution was cooled down to 0°C and filtered. Toluene was removed in vacuum and the product was extracted with dichloromethane. The major part of dichloromethane was removed and the remaining solution was over-layered with n-hexane to get single crystals of the title compound. The yellow compound was fully characterized by standard analytical methods e.g. 31P NMR: (CD2Cl2): 5.9 p.p.m.

Refinement top

All H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Structure description top

Disphosphines are widely used as chelate ligands for complex formation. Among them the silicon-bridged species are not common. There are only few examples of structurally characterized complexes with a SiMe2 bridge (Chen et al., 1999) or SiMe2SiMe2 bridge (Sheldrick & Borkenstein, 1977). In the present publication, we report on the formation and molecular structure of the title compound, which was observed to be the single product of a complex formation of Ph2PSiMe2PPh2 with Cr(CO)6. The synthesis of the starting ligand was already reported by Hassler & Seidl (1988).

In the molecular structure of the title complex the chelating disphosphine and four carbonyl ligands are coordinated to the Cr atom (Fig. 1). The coordination geometry at the metal center is best described as distorted octahedral. The observed bite angle P—Cr—P is 80.27 (1)° and the P—Si—P angle of the complexed ligand is 85.31 (2)°.

For the synthesis of Ph2PSiMe2PPh2, see: Hassler & Seidl (1988). The molecular and crystal structures of the tetracarbonyl tungsten complex of [(iPr2N)2BP(H)]2SiMe2 and the tetracarbonyl molybdenum complex of (PhPHSiMe2)2 were presented by Chen et al. (1999) and Sheldrick & Borkenstein (1977), respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Bis(diphenylphosphanyl)dimethylsilane- κ2P,P']tetracarbonylchromium top
Crystal data top
[Cr(C26H26P2Si)(CO)4]F(000) = 1224
Mr = 592.54Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13232 reflections
a = 13.7832 (4) Åθ = 2.0–29.6°
b = 11.9204 (2) ŵ = 0.58 mm1
c = 18.1329 (5) ÅT = 200 K
β = 102.073 (2)°Prism, yellow
V = 2913.36 (13) Å30.45 × 0.40 × 0.38 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
6688 independent reflections
Radiation source: fine-focus sealed tube5370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1717
Tmin = 0.773, Tmax = 0.867k = 1515
47168 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
6688 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cr(C26H26P2Si)(CO)4]V = 2913.36 (13) Å3
Mr = 592.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7832 (4) ŵ = 0.58 mm1
b = 11.9204 (2) ÅT = 200 K
c = 18.1329 (5) Å0.45 × 0.40 × 0.38 mm
β = 102.073 (2)°
Data collection top
Stoe IPDS II
diffractometer
6688 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
5370 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.867Rint = 0.032
47168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.93Δρmax = 0.32 e Å3
6688 reflectionsΔρmin = 0.33 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25499 (13)0.34671 (15)0.23882 (9)0.0452 (4)
H1A0.29640.31050.20790.068*
H1B0.29410.40350.27110.068*
H1C0.19790.38260.20600.068*
C20.13677 (12)0.12988 (15)0.23902 (10)0.0445 (4)
H2A0.07950.16470.20570.067*
H2B0.11360.07460.27140.067*
H2C0.17820.09260.20860.067*
C30.37225 (9)0.03094 (13)0.35878 (8)0.0312 (3)
C40.38402 (12)0.06394 (13)0.40336 (10)0.0411 (4)
H40.36470.06190.45070.049*
C50.42314 (14)0.16177 (14)0.38092 (10)0.0525 (4)
H50.43090.22590.41270.063*
C60.45082 (13)0.16610 (15)0.31233 (9)0.0535 (5)
H60.47760.23320.29650.064*
C70.43945 (13)0.07262 (14)0.26685 (10)0.0553 (5)
H70.45880.07530.21960.066*
C80.40018 (12)0.02518 (15)0.28928 (9)0.0442 (4)
H80.39220.08890.25710.053*
C90.43399 (9)0.25333 (12)0.40684 (7)0.0277 (3)
C100.52916 (10)0.20972 (14)0.41518 (9)0.0378 (3)
H100.53840.13110.41130.045*
C110.61087 (11)0.28078 (16)0.42918 (10)0.0455 (4)
H110.67580.25030.43580.055*
C120.59842 (12)0.39468 (16)0.43350 (9)0.0438 (4)
H120.65460.44280.44320.053*
C130.50415 (12)0.43899 (14)0.42375 (9)0.0386 (3)
H130.49520.51790.42510.046*
C140.42244 (10)0.36853 (13)0.41193 (8)0.0330 (3)
H140.35790.39940.40730.040*
C150.13366 (9)0.43218 (12)0.41500 (8)0.0302 (3)
C160.14302 (13)0.51650 (14)0.36418 (10)0.0456 (4)
H160.14940.49760.31450.055*
C170.14317 (15)0.62837 (15)0.38556 (12)0.0561 (5)
H170.14960.68540.35030.067*
C180.13416 (12)0.65736 (14)0.45713 (12)0.0493 (4)
H180.13440.73410.47140.059*
C190.12477 (12)0.57488 (15)0.50772 (10)0.0446 (4)
H190.11830.59460.55720.053*
C200.12470 (10)0.46281 (13)0.48722 (9)0.0355 (3)
H200.11850.40640.52290.043*
C210.00463 (9)0.25993 (12)0.35370 (8)0.0291 (3)
C220.06017 (11)0.33304 (14)0.30152 (9)0.0394 (3)
H220.02890.39550.28370.047*
C230.16100 (12)0.31502 (16)0.27540 (10)0.0466 (4)
H230.19850.36560.24010.056*
C240.20685 (11)0.22462 (16)0.30030 (10)0.0466 (4)
H240.27600.21300.28250.056*
C250.15301 (11)0.15113 (16)0.35085 (11)0.0479 (4)
H250.18470.08800.36750.058*
C260.05175 (11)0.16869 (14)0.37797 (9)0.0392 (3)
H260.01490.11770.41330.047*
C270.29769 (10)0.06277 (12)0.55229 (8)0.0303 (3)
C280.16332 (10)0.02616 (13)0.43194 (9)0.0353 (3)
C290.12597 (10)0.16240 (13)0.54054 (8)0.0340 (3)
C300.29387 (10)0.27186 (13)0.53968 (8)0.0318 (3)
Cr10.221253 (14)0.156127 (18)0.482132 (12)0.02433 (6)
O10.34093 (8)0.00645 (10)0.59947 (6)0.0440 (3)
O20.13246 (10)0.05665 (11)0.40470 (8)0.0575 (3)
O30.06848 (9)0.16388 (12)0.57808 (7)0.0554 (3)
O40.34046 (9)0.33533 (10)0.57916 (7)0.0500 (3)
P10.32570 (2)0.16071 (3)0.392418 (19)0.02575 (8)
P20.12811 (2)0.28288 (3)0.39145 (2)0.02589 (8)
Si10.21062 (3)0.23959 (3)0.29856 (2)0.02921 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0530 (9)0.0510 (10)0.0323 (8)0.0054 (8)0.0102 (7)0.0108 (7)
C20.0419 (8)0.0442 (10)0.0423 (9)0.0046 (7)0.0029 (7)0.0077 (7)
C30.0247 (6)0.0372 (8)0.0317 (7)0.0008 (5)0.0059 (5)0.0067 (6)
C40.0453 (8)0.0373 (9)0.0439 (9)0.0068 (7)0.0163 (7)0.0026 (7)
C50.0559 (10)0.0401 (10)0.0636 (12)0.0125 (8)0.0175 (9)0.0059 (9)
C60.0445 (9)0.0551 (12)0.0605 (11)0.0092 (8)0.0098 (8)0.0249 (9)
C70.0479 (9)0.0807 (14)0.0400 (9)0.0054 (9)0.0151 (7)0.0227 (10)
C80.0421 (8)0.0581 (11)0.0341 (8)0.0032 (7)0.0118 (6)0.0048 (8)
C90.0248 (6)0.0349 (8)0.0238 (6)0.0035 (5)0.0063 (5)0.0002 (5)
C100.0285 (7)0.0390 (9)0.0449 (9)0.0006 (6)0.0058 (6)0.0002 (7)
C110.0256 (7)0.0560 (11)0.0543 (10)0.0031 (7)0.0069 (7)0.0009 (8)
C120.0358 (8)0.0536 (11)0.0423 (9)0.0163 (7)0.0091 (6)0.0058 (8)
C130.0454 (8)0.0366 (9)0.0355 (8)0.0089 (6)0.0121 (6)0.0067 (6)
C140.0309 (7)0.0380 (8)0.0313 (7)0.0009 (6)0.0089 (5)0.0038 (6)
C150.0233 (6)0.0259 (7)0.0396 (8)0.0006 (5)0.0024 (5)0.0016 (6)
C160.0587 (10)0.0330 (9)0.0449 (9)0.0010 (7)0.0102 (8)0.0067 (7)
C170.0694 (12)0.0301 (9)0.0673 (13)0.0016 (8)0.0110 (10)0.0113 (8)
C180.0420 (9)0.0285 (8)0.0741 (13)0.0022 (7)0.0047 (8)0.0062 (8)
C190.0377 (8)0.0407 (9)0.0547 (10)0.0033 (7)0.0084 (7)0.0117 (8)
C200.0326 (7)0.0326 (8)0.0420 (8)0.0011 (6)0.0090 (6)0.0003 (6)
C210.0233 (6)0.0309 (7)0.0327 (7)0.0015 (5)0.0050 (5)0.0012 (6)
C220.0331 (7)0.0380 (9)0.0441 (9)0.0013 (6)0.0012 (6)0.0060 (7)
C230.0339 (8)0.0514 (11)0.0486 (10)0.0068 (7)0.0049 (7)0.0029 (8)
C240.0256 (7)0.0601 (11)0.0510 (9)0.0017 (7)0.0015 (6)0.0074 (8)
C250.0309 (7)0.0517 (11)0.0605 (11)0.0099 (7)0.0080 (7)0.0045 (9)
C260.0295 (7)0.0384 (9)0.0481 (9)0.0022 (6)0.0044 (6)0.0072 (7)
C270.0280 (6)0.0306 (7)0.0345 (7)0.0031 (5)0.0119 (5)0.0025 (6)
C280.0300 (7)0.0318 (8)0.0452 (8)0.0014 (6)0.0104 (6)0.0039 (7)
C290.0270 (6)0.0393 (8)0.0356 (7)0.0043 (6)0.0064 (6)0.0072 (6)
C300.0320 (7)0.0318 (8)0.0325 (7)0.0022 (6)0.0085 (6)0.0040 (6)
Cr10.02209 (10)0.02451 (11)0.02716 (11)0.00111 (8)0.00691 (7)0.00371 (9)
O10.0445 (6)0.0457 (7)0.0418 (6)0.0156 (5)0.0093 (5)0.0138 (5)
O20.0552 (7)0.0373 (7)0.0805 (9)0.0142 (6)0.0154 (7)0.0111 (6)
O30.0383 (6)0.0841 (10)0.0499 (7)0.0068 (6)0.0230 (5)0.0083 (7)
O40.0540 (7)0.0442 (7)0.0476 (7)0.0103 (6)0.0007 (5)0.0063 (6)
P10.02266 (15)0.02917 (18)0.02576 (16)0.00015 (13)0.00579 (12)0.00080 (14)
P20.02295 (15)0.02462 (18)0.02950 (17)0.00002 (12)0.00413 (12)0.00330 (14)
Si10.02813 (18)0.0322 (2)0.02609 (18)0.00233 (15)0.00286 (14)0.00240 (15)
Geometric parameters (Å, º) top
C1—Si11.8588 (16)C15—P21.8281 (15)
C1—H1A0.9800C16—C171.389 (3)
C1—H1B0.9800C16—H160.9500
C1—H1C0.9800C17—C181.373 (3)
C2—Si11.8580 (16)C17—H170.9500
C2—H2A0.9800C18—C191.369 (3)
C2—H2B0.9800C18—H180.9500
C2—H2C0.9800C19—C201.387 (2)
C3—C41.380 (2)C19—H190.9500
C3—C81.394 (2)C20—H200.9500
C3—P11.8277 (15)C21—C261.385 (2)
C4—C51.3813 (14)C21—C221.392 (2)
C4—H40.9500C21—P21.8350 (13)
C5—C61.3760 (15)C22—C231.388 (2)
C5—H50.9500C22—H220.9500
C6—C71.3756 (15)C23—C241.373 (3)
C6—H60.9500C23—H230.9500
C7—C81.3818 (15)C24—C251.369 (3)
C7—H70.9500C24—H240.9500
C8—H80.9500C25—C261.395 (2)
C9—C141.388 (2)C25—H250.9500
C9—C101.3896 (19)C26—H260.9500
C9—P11.8308 (13)C27—O11.1509 (17)
C10—C111.389 (2)C27—Cr11.8455 (14)
C10—H100.9500C28—O21.1452 (19)
C11—C121.373 (3)C28—Cr11.8874 (16)
C11—H110.9500C29—O31.1477 (18)
C12—C131.379 (2)C29—Cr11.8530 (14)
C12—H120.9500C30—O41.1424 (18)
C13—C141.385 (2)C30—Cr11.8860 (15)
C13—H130.9500Cr1—P12.3877 (4)
C14—H140.9500Cr1—P22.3983 (4)
C15—C161.388 (2)P1—Si12.2731 (5)
C15—C201.390 (2)P2—Si12.2798 (5)
Si1—C1—H1A109.5C18—C19—H19119.8
Si1—C1—H1B109.5C20—C19—H19119.8
H1A—C1—H1B109.5C19—C20—C15120.70 (15)
Si1—C1—H1C109.5C19—C20—H20119.7
H1A—C1—H1C109.5C15—C20—H20119.7
H1B—C1—H1C109.5C26—C21—C22118.69 (13)
Si1—C2—H2A109.5C26—C21—P2119.72 (11)
Si1—C2—H2B109.5C22—C21—P2121.59 (11)
H2A—C2—H2B109.5C23—C22—C21120.26 (15)
Si1—C2—H2C109.5C23—C22—H22119.9
H2A—C2—H2C109.5C21—C22—H22119.9
H2B—C2—H2C109.5C24—C23—C22120.42 (15)
C4—C3—C8117.93 (14)C24—C23—H23119.8
C4—C3—P1120.31 (11)C22—C23—H23119.8
C8—C3—P1121.72 (12)C25—C24—C23120.02 (14)
C3—C4—C5121.64 (15)C25—C24—H24120.0
C3—C4—H4119.2C23—C24—H24120.0
C5—C4—H4119.2C24—C25—C26120.15 (16)
C6—C5—C4119.81 (17)C24—C25—H25119.9
C6—C5—H5120.1C26—C25—H25119.9
C4—C5—H5120.1C21—C26—C25120.45 (15)
C7—C6—C5119.55 (16)C21—C26—H26119.8
C7—C6—H6120.2C25—C26—H26119.8
C5—C6—H6120.2O1—C27—Cr1175.10 (12)
C6—C7—C8120.63 (16)O2—C28—Cr1175.62 (14)
C6—C7—H7119.7O3—C29—Cr1177.97 (14)
C8—C7—H7119.7O4—C30—Cr1174.21 (13)
C7—C8—C3120.44 (16)C27—Cr1—C2990.06 (6)
C7—C8—H8119.8C27—Cr1—C3084.22 (6)
C3—C8—H8119.8C29—Cr1—C3090.67 (6)
C14—C9—C10118.80 (13)C27—Cr1—C2887.73 (7)
C14—C9—P1120.32 (10)C29—Cr1—C2891.71 (7)
C10—C9—P1120.85 (11)C30—Cr1—C28171.61 (6)
C11—C10—C9120.16 (15)C27—Cr1—P198.33 (4)
C11—C10—H10119.9C29—Cr1—P1171.42 (4)
C9—C10—H10119.9C30—Cr1—P191.97 (4)
C12—C11—C10120.47 (15)C28—Cr1—P186.83 (5)
C12—C11—H11119.8C27—Cr1—P2177.47 (5)
C10—C11—H11119.8C29—Cr1—P291.42 (4)
C11—C12—C13119.81 (14)C30—Cr1—P293.70 (4)
C11—C12—H12120.1C28—Cr1—P294.28 (5)
C13—C12—H12120.1P1—Cr1—P280.270 (13)
C12—C13—C14120.08 (15)C3—P1—C9103.03 (6)
C12—C13—H13120.0C3—P1—Si1109.81 (5)
C14—C13—H13120.0C9—P1—Si1106.13 (5)
C13—C14—C9120.63 (14)C3—P1—Cr1120.78 (5)
C13—C14—H14119.7C9—P1—Cr1120.41 (4)
C9—C14—H14119.7Si1—P1—Cr195.386 (16)
C16—C15—C20118.32 (14)C15—P2—C21102.83 (6)
C16—C15—P2123.72 (12)C15—P2—Si1112.95 (5)
C20—C15—P2117.92 (11)C21—P2—Si1107.65 (5)
C15—C16—C17120.34 (17)C15—P2—Cr1117.58 (5)
C15—C16—H16119.8C21—P2—Cr1120.72 (5)
C17—C16—H16119.8Si1—P2—Cr194.919 (16)
C18—C17—C16120.68 (17)C2—Si1—C1110.61 (8)
C18—C17—H17119.7C2—Si1—P1110.83 (6)
C16—C17—H17119.7C1—Si1—P1117.22 (6)
C19—C18—C17119.50 (16)C2—Si1—P2106.93 (6)
C19—C18—H18120.3C1—Si1—P2123.42 (6)
C17—C18—H18120.3P1—Si1—P285.312 (17)
C18—C19—C20120.47 (17)

Experimental details

Crystal data
Chemical formula[Cr(C26H26P2Si)(CO)4]
Mr592.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.7832 (4), 11.9204 (2), 18.1329 (5)
β (°) 102.073 (2)
V3)2913.36 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.45 × 0.40 × 0.38
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.773, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
47168, 6688, 5370
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 0.93
No. of reflections6688
No. of parameters345
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationChen, T., Jackson, J., Jasper, S. A., Duesler, E. N., Nöth, H. & Paine, R. T. (1999). J. Organomet. Chem. 582, 25–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationHassler, K. & Seidl, S. (1988). Monatsh. Chem. 119, 1241–1244.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, W. S. & Borkenstein, A. (1977). Acta Cryst. B33, 2916–2918.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds