metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,2-Bis(di­phenyl­phosphan­yl)propane-κ2P,P′]tetra­carbonyl­chromium(0) di­chloro­methane monosolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: normen.peulecke@catalysis.de

(Received 21 October 2010; accepted 26 October 2010; online 31 October 2010)

The title compound, [Cr(C27H26P2)(CO)4]·CH2Cl2, was obtained by the reaction of Ph2PCMe2PPh2 with Cr(CO)6 in refluxing toluene by substitution of two carbonyl ligands. The CrC4P2 coordination geometry at the Cr atom is distorted octa­hedral, with a P—Cr—P bite angle of 70.27 (2)°.

Related literature

For the original synthesis of Ph2PCMe2PPh2, see: Hewertson & Watson (1962[Hewertson, W. & Watson, H. R. (1962). J. Chem. Soc. 1490-1494.]). For an alternative synthesis of the title compound, see: Al-Jibori & Shaw (1983[Al-Jibori, S. & Shaw, B. L. (1983). Inorg. Chim. Acta, 74, 235-239.]). For the synthesis of Ph2PCMe2PPh2 and Mo or W carbonyl complexes of related ligands with different substituents at the central carbon, see: Hogarth & Kilmartin (2007[Hogarth, G. & Kilmartin, J. (2007). J. Organomet. Chem. 692, 5655-5670.]). For complexation of Ph2PCMe2PPh2 and structural characterization of monomeric complexes of Pd or Ru, see: Barkley et al. (1995[Barkley, J. V., Grimshaw, J. C., Higgins, S. J., Hoare, P. B., McCart, M. K. & Smith, A. K. (1995). J. Chem. Soc. Dalton Trans. pp. 2901-2908.], 1998[Barkley, J., Ellis, M., Higgins, S. J. & McCart, M. K. (1998). Organometallics, 17, 1725-1731.]); Anandhi et al. (2003[Anandhi, U., Holbert, T., Lueng, D. & Sharp, P. R. (2003). Inorg. Chem. 42, 1282-1295.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C27H26P2)(CO)4]·CH2Cl2

  • Mr = 661.38

  • Triclinic, [P \overline 1]

  • a = 8.9998 (5) Å

  • b = 9.4895 (5) Å

  • c = 18.3178 (9) Å

  • α = 99.811 (4)°

  • β = 94.856 (4)°

  • γ = 93.020 (4)°

  • V = 1532.40 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 150 K

  • 0.50 × 0.50 × 0.27 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.700, Tmax = 0.834

  • 25497 measured reflections

  • 7051 independent reflections

  • 5824 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.06

  • 7051 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2-Bis(diphenylphosphino)propane was first prepared by cleavage of triphenylphosphine with sodium in liquid ammonia and following treatment with 2,2-dichloropropane (Hewertson & Watson, 1962). Most of the small bite-angle diphosphine complexes, of the type [M(CO)4{Ph2PC(R1R2)PPh2}] (M = Mo, W; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(Ph2PCH2PPh2)] (Ph2PCH2PPh2 = dppm) as a result of successive deprotonation and alkyl halide addition (Hogarth & Kilmartin, 2007). The above mentioned chromium complex [Cr(CO)4(Ph2PCMe2PPh2)] was prepared also by this way, but not structurally characterized yet (Al-Jibori & Shaw, 1983). Molecular structures of monomeric ruthenium (Barkley et al., 1998; Anandhi et al., 2003) and palladium (Barkley et al., 1995) complexes of 2,2-bis(diphenylphosphino)propane are already known.

Here we describe the synthesis of the known chromium complex C31H26CrO4P2 by direct reaction of Ph2PCMe2PPh2 with Cr(CO)6. Crystals suitable for X-ray analysis were obtained from dichloromethane/methanol solution. The asymmetric unit contains one complex molecule and additionally one solvent molecule dichloromethane. The chromium center is coordinated by the chelating diphosphine Ph2PCMe2PPh2 and four carbonyl ligands in a distorted octahedral geometry. A bite-angle P—Cr—P of 70.27 (2)° was observed. The P—C—P angle of the complexed ligand is 92.07 (7)°. In the crystal structure, short distance of 3.807 (2) Å between the centroids of aromatic rings C14–C19 from the neighbouring molecules suggests an existence of weak ππ interactions.

Related literature top

For the original synthesis of Ph2PCMe2PPh2, see: Hewertson & Watson (1962). For an alternative synthesis of the title compound, see: Al-Jibori & Shaw (1983). For the synthesis of Ph2PCMe2PPh2 and Mo or W carbonyl complexes of related ligands with different substituents at the central carbon, see: Hogarth & Kilmartin (2007). For complexation of Ph2PCMe2PPh2 and structural characterization of monomeric complexes of Pd or Ru, see: Barkley et al. (1995, 1998); Anandhi et al. (2003).

Experimental top

Cr(CO)6 (175 mg, 0.8 mmol) was added to a solution of Ph2PCMe2PPh2 (309 mg, 0.75 mmol) in 20 ml of toluene and the resulting solution was stirred at reflux temperature for 72 h. Subsequently, the formed yellow solution was cooled down to 0°C and filtered. Toluene was removed in vacuum and the product was extracted with dichloromethane. The major part of dichloromethane was removed and the remaining solution was over-layered with methanol to get crystals of the title compound at -40°C, which are suitable for X-ray crystal structure analysis. The analytical data of the yellow compound correspond with those in the literature.

Refinement top

All H atoms were placed in idealized positions with d(C—H) = 0.99 (CH2), 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5Ueq(C) for CH3 and 1.2Ueq(C) for CH2 and CH.

Structure description top

2,2-Bis(diphenylphosphino)propane was first prepared by cleavage of triphenylphosphine with sodium in liquid ammonia and following treatment with 2,2-dichloropropane (Hewertson & Watson, 1962). Most of the small bite-angle diphosphine complexes, of the type [M(CO)4{Ph2PC(R1R2)PPh2}] (M = Mo, W; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(Ph2PCH2PPh2)] (Ph2PCH2PPh2 = dppm) as a result of successive deprotonation and alkyl halide addition (Hogarth & Kilmartin, 2007). The above mentioned chromium complex [Cr(CO)4(Ph2PCMe2PPh2)] was prepared also by this way, but not structurally characterized yet (Al-Jibori & Shaw, 1983). Molecular structures of monomeric ruthenium (Barkley et al., 1998; Anandhi et al., 2003) and palladium (Barkley et al., 1995) complexes of 2,2-bis(diphenylphosphino)propane are already known.

Here we describe the synthesis of the known chromium complex C31H26CrO4P2 by direct reaction of Ph2PCMe2PPh2 with Cr(CO)6. Crystals suitable for X-ray analysis were obtained from dichloromethane/methanol solution. The asymmetric unit contains one complex molecule and additionally one solvent molecule dichloromethane. The chromium center is coordinated by the chelating diphosphine Ph2PCMe2PPh2 and four carbonyl ligands in a distorted octahedral geometry. A bite-angle P—Cr—P of 70.27 (2)° was observed. The P—C—P angle of the complexed ligand is 92.07 (7)°. In the crystal structure, short distance of 3.807 (2) Å between the centroids of aromatic rings C14–C19 from the neighbouring molecules suggests an existence of weak ππ interactions.

For the original synthesis of Ph2PCMe2PPh2, see: Hewertson & Watson (1962). For an alternative synthesis of the title compound, see: Al-Jibori & Shaw (1983). For the synthesis of Ph2PCMe2PPh2 and Mo or W carbonyl complexes of related ligands with different substituents at the central carbon, see: Hogarth & Kilmartin (2007). For complexation of Ph2PCMe2PPh2 and structural characterization of monomeric complexes of Pd or Ru, see: Barkley et al. (1995, 1998); Anandhi et al. (2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. H atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.
[2,2-Bis(diphenylphosphanyl)propane- κ2P,P']tetracarbonylchromium dichloromethane monosolvate top
Crystal data top
[Cr(C27H26P2)(CO)4]·CH2Cl2Z = 2
Mr = 661.38F(000) = 680
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9998 (5) ÅCell parameters from 4481 reflections
b = 9.4895 (5) Åθ = 2.2–29.6°
c = 18.3178 (9) ŵ = 0.69 mm1
α = 99.811 (4)°T = 150 K
β = 94.856 (4)°Prism, yellow
γ = 93.020 (4)°0.50 × 0.50 × 0.27 mm
V = 1532.40 (14) Å3
Data collection top
Stoe IPDS II
diffractometer
7051 independent reflections
Radiation source: fine-focus sealed tube5824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1111
Tmin = 0.700, Tmax = 0.834k = 1212
25497 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3172P]
where P = (Fo2 + 2Fc2)/3
7051 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Cr(C27H26P2)(CO)4]·CH2Cl2γ = 93.020 (4)°
Mr = 661.38V = 1532.40 (14) Å3
Triclinic, P1Z = 2
a = 8.9998 (5) ÅMo Kα radiation
b = 9.4895 (5) ŵ = 0.69 mm1
c = 18.3178 (9) ÅT = 150 K
α = 99.811 (4)°0.50 × 0.50 × 0.27 mm
β = 94.856 (4)°
Data collection top
Stoe IPDS II
diffractometer
7051 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
5824 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.834Rint = 0.038
25497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.06Δρmax = 0.71 e Å3
7051 reflectionsΔρmin = 0.65 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01536 (18)0.20775 (19)0.18509 (10)0.0267 (4)
C20.76174 (18)0.13420 (18)0.22785 (10)0.0248 (3)
C30.96144 (18)0.26041 (19)0.33115 (10)0.0277 (4)
C41.02766 (18)0.46144 (19)0.25461 (10)0.0270 (4)
C50.57483 (17)0.44246 (17)0.20067 (9)0.0216 (3)
C60.45608 (17)0.31571 (19)0.19234 (10)0.0259 (3)
H6A0.38010.34050.22680.039*
H6B0.50410.23070.20380.039*
H6C0.40870.29550.14110.039*
C70.49660 (19)0.57332 (19)0.18302 (10)0.0277 (4)
H7A0.44900.55250.13190.041*
H7B0.57020.65520.18830.041*
H7C0.42040.59630.21760.041*
C80.80565 (17)0.54283 (18)0.10865 (10)0.0241 (3)
C90.81566 (19)0.5386 (2)0.03282 (11)0.0300 (4)
H90.78020.45470.00170.036*
C100.8776 (2)0.6569 (2)0.00739 (12)0.0369 (4)
H100.88410.65330.04440.044*
C110.9293 (2)0.7788 (2)0.05695 (13)0.0381 (5)
H110.97120.85920.03930.046*
C120.9204 (2)0.7847 (2)0.13238 (13)0.0356 (4)
H120.95580.86910.16650.043*
C130.85938 (18)0.66646 (19)0.15817 (11)0.0292 (4)
H130.85440.67030.21010.035*
C140.66313 (18)0.26334 (18)0.06079 (9)0.0240 (3)
C150.73759 (18)0.14068 (19)0.03805 (10)0.0264 (4)
H150.82060.11860.06870.032*
C160.6919 (2)0.0507 (2)0.02876 (11)0.0316 (4)
H160.74510.03130.04430.038*
C170.5691 (2)0.0798 (2)0.07279 (10)0.0325 (4)
H170.53800.01800.11860.039*
C180.4914 (2)0.1991 (2)0.05008 (10)0.0309 (4)
H180.40530.21760.07970.037*
C190.53874 (19)0.2914 (2)0.01568 (10)0.0282 (4)
H190.48640.37440.03030.034*
C200.74847 (18)0.63022 (18)0.34037 (9)0.0241 (3)
C210.6667 (2)0.74999 (19)0.33735 (11)0.0321 (4)
H210.57470.74100.30690.039*
C220.7189 (3)0.8825 (2)0.37862 (12)0.0403 (5)
H220.66320.96400.37550.048*
C230.8507 (2)0.8967 (2)0.42396 (12)0.0410 (5)
H230.88670.98800.45130.049*
C240.9306 (2)0.7781 (2)0.42962 (11)0.0367 (4)
H241.01970.78690.46230.044*
C250.88029 (19)0.6458 (2)0.38738 (10)0.0289 (4)
H250.93670.56480.39060.035*
C260.56456 (17)0.39289 (17)0.35684 (9)0.0232 (3)
C270.44294 (19)0.4714 (2)0.37624 (11)0.0309 (4)
H270.42470.55500.35570.037*
C280.3486 (2)0.4280 (2)0.42524 (12)0.0377 (4)
H280.26540.48160.43800.045*
C290.3749 (2)0.3072 (2)0.45557 (11)0.0381 (5)
H290.30980.27760.48920.046*
C300.4951 (2)0.2296 (2)0.43722 (11)0.0371 (4)
H300.51330.14690.45850.045*
C310.5902 (2)0.27148 (19)0.38763 (10)0.0293 (4)
H310.67280.21700.37480.035*
C320.2113 (3)0.9291 (3)0.33113 (16)0.0622 (7)
H32A0.11550.87200.31450.075*
H32B0.18811.02810.35150.075*
Cl10.30771 (6)0.85575 (7)0.40154 (4)0.05184 (15)
Cl20.31373 (9)0.93219 (10)0.25513 (5)0.0796 (2)
Cr10.88203 (3)0.30677 (3)0.242280 (15)0.02031 (8)
O11.09906 (15)0.14688 (15)0.14916 (8)0.0396 (3)
O20.69755 (15)0.02391 (13)0.21958 (8)0.0353 (3)
O31.00875 (16)0.22861 (17)0.38596 (8)0.0426 (3)
O41.12468 (14)0.54764 (15)0.26147 (9)0.0401 (3)
P10.73655 (4)0.38536 (4)0.14524 (2)0.02048 (10)
P20.69140 (4)0.44708 (4)0.29237 (2)0.01995 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (8)0.0285 (9)0.0269 (9)0.0012 (7)0.0000 (7)0.0071 (7)
C20.0244 (7)0.0281 (9)0.0225 (9)0.0037 (6)0.0024 (6)0.0059 (7)
C30.0239 (8)0.0286 (9)0.0303 (10)0.0001 (6)0.0025 (7)0.0050 (7)
C40.0233 (8)0.0305 (9)0.0274 (9)0.0040 (7)0.0026 (7)0.0052 (7)
C50.0195 (7)0.0232 (8)0.0223 (8)0.0007 (6)0.0019 (6)0.0055 (6)
C60.0208 (7)0.0305 (9)0.0255 (9)0.0047 (6)0.0011 (6)0.0045 (7)
C70.0262 (8)0.0297 (9)0.0282 (9)0.0041 (7)0.0018 (7)0.0083 (7)
C80.0197 (7)0.0257 (8)0.0293 (9)0.0016 (6)0.0050 (6)0.0107 (7)
C90.0283 (8)0.0338 (9)0.0312 (10)0.0033 (7)0.0074 (7)0.0120 (8)
C100.0367 (9)0.0418 (11)0.0396 (11)0.0070 (8)0.0164 (8)0.0207 (9)
C110.0294 (9)0.0347 (10)0.0577 (14)0.0022 (7)0.0145 (9)0.0242 (10)
C120.0270 (8)0.0296 (9)0.0516 (13)0.0030 (7)0.0042 (8)0.0128 (9)
C130.0252 (8)0.0287 (9)0.0347 (10)0.0008 (7)0.0035 (7)0.0095 (8)
C140.0235 (7)0.0274 (8)0.0216 (8)0.0035 (6)0.0033 (6)0.0067 (7)
C150.0245 (8)0.0299 (9)0.0248 (9)0.0010 (6)0.0042 (7)0.0046 (7)
C160.0311 (9)0.0329 (9)0.0296 (10)0.0017 (7)0.0090 (7)0.0004 (8)
C170.0352 (9)0.0396 (10)0.0202 (9)0.0110 (8)0.0033 (7)0.0017 (8)
C180.0307 (9)0.0385 (10)0.0234 (9)0.0066 (7)0.0021 (7)0.0101 (8)
C190.0276 (8)0.0322 (9)0.0255 (9)0.0007 (7)0.0013 (7)0.0084 (7)
C200.0255 (7)0.0247 (8)0.0226 (8)0.0036 (6)0.0068 (6)0.0049 (7)
C210.0390 (9)0.0258 (9)0.0310 (10)0.0009 (7)0.0028 (8)0.0038 (8)
C220.0588 (12)0.0235 (9)0.0390 (12)0.0011 (8)0.0100 (10)0.0046 (8)
C230.0545 (12)0.0281 (10)0.0363 (11)0.0162 (9)0.0128 (9)0.0043 (8)
C240.0323 (9)0.0430 (11)0.0294 (10)0.0122 (8)0.0051 (8)0.0055 (8)
C250.0268 (8)0.0319 (9)0.0259 (9)0.0030 (7)0.0049 (7)0.0002 (7)
C260.0240 (7)0.0244 (8)0.0204 (8)0.0043 (6)0.0026 (6)0.0037 (7)
C270.0286 (8)0.0334 (9)0.0323 (10)0.0017 (7)0.0072 (7)0.0086 (8)
C280.0301 (9)0.0443 (11)0.0390 (11)0.0010 (8)0.0127 (8)0.0047 (9)
C290.0386 (10)0.0449 (11)0.0314 (10)0.0105 (8)0.0124 (8)0.0083 (9)
C300.0467 (11)0.0348 (10)0.0326 (11)0.0041 (8)0.0093 (9)0.0136 (8)
C310.0338 (9)0.0273 (9)0.0281 (10)0.0001 (7)0.0063 (7)0.0075 (7)
C320.0465 (13)0.085 (2)0.0622 (17)0.0223 (13)0.0112 (12)0.0258 (15)
Cl10.0416 (3)0.0617 (4)0.0546 (4)0.0032 (2)0.0064 (2)0.0164 (3)
Cl20.0798 (5)0.1007 (6)0.0752 (5)0.0227 (4)0.0300 (4)0.0472 (5)
Cr10.01840 (12)0.02201 (14)0.02079 (15)0.00010 (9)0.00154 (10)0.00511 (10)
O10.0335 (7)0.0421 (8)0.0431 (8)0.0087 (6)0.0132 (6)0.0005 (7)
O20.0371 (7)0.0261 (7)0.0414 (8)0.0056 (5)0.0009 (6)0.0059 (6)
O30.0417 (8)0.0550 (9)0.0330 (8)0.0023 (6)0.0071 (6)0.0186 (7)
O40.0281 (6)0.0383 (7)0.0523 (9)0.0088 (6)0.0027 (6)0.0071 (7)
P10.01951 (18)0.0222 (2)0.0203 (2)0.00082 (15)0.00222 (15)0.00564 (16)
P20.01915 (18)0.0205 (2)0.0203 (2)0.00140 (14)0.00230 (15)0.00456 (16)
Geometric parameters (Å, º) top
C1—O11.155 (2)C16—H160.9500
C1—Cr11.8484 (19)C17—C181.384 (3)
C2—O21.149 (2)C17—H170.9500
C2—Cr11.8817 (17)C18—C191.383 (3)
C3—O31.151 (2)C18—H180.9500
C3—Cr11.8533 (19)C19—H190.9500
C4—O41.148 (2)C20—C251.391 (2)
C4—Cr11.8860 (17)C20—C211.392 (3)
C5—C71.527 (2)C20—P21.8347 (17)
C5—C61.545 (2)C21—C221.388 (3)
C5—P11.8943 (16)C21—H210.9500
C5—P21.8963 (17)C22—C231.376 (3)
C6—H6A0.9800C22—H220.9500
C6—H6B0.9800C23—C241.381 (3)
C6—H6C0.9800C23—H230.9500
C7—H7A0.9800C24—C251.389 (3)
C7—H7B0.9800C24—H240.9500
C7—H7C0.9800C25—H250.9500
C8—C131.392 (3)C26—C311.388 (2)
C8—C91.393 (3)C26—C271.393 (3)
C8—P11.8393 (16)C26—P21.8263 (16)
C9—C101.394 (2)C27—C281.384 (2)
C9—H90.9500C27—H270.9500
C10—C111.376 (3)C28—C291.380 (3)
C10—H100.9500C28—H280.9500
C11—C121.383 (3)C29—C301.373 (3)
C11—H110.9500C29—H290.9500
C12—C131.394 (2)C30—C311.391 (2)
C12—H120.9500C30—H300.9500
C13—H130.9500C31—H310.9500
C14—C151.393 (3)C32—Cl21.737 (3)
C14—C191.399 (2)C32—Cl11.755 (3)
C14—P11.8184 (18)C32—H32A0.9900
C15—C161.385 (3)C32—H32B0.9900
C15—H150.9500Cr1—P12.3644 (5)
C16—C171.380 (3)Cr1—P22.3767 (5)
O1—C1—Cr1179.44 (16)C23—C22—C21120.44 (19)
O2—C2—Cr1175.10 (15)C23—C22—H22119.8
O3—C3—Cr1178.39 (16)C21—C22—H22119.8
O4—C4—Cr1174.55 (16)C22—C23—C24119.97 (18)
C7—C5—C6108.25 (13)C22—C23—H23120.0
C7—C5—P1117.15 (11)C24—C23—H23120.0
C6—C5—P1109.61 (12)C23—C24—C25119.77 (19)
C7—C5—P2121.62 (12)C23—C24—H24120.1
C6—C5—P2106.88 (11)C25—C24—H24120.1
P1—C5—P292.07 (7)C24—C25—C20120.90 (18)
C5—C6—H6A109.5C24—C25—H25119.6
C5—C6—H6B109.5C20—C25—H25119.6
H6A—C6—H6B109.5C31—C26—C27119.18 (15)
C5—C6—H6C109.5C31—C26—P2119.40 (13)
H6A—C6—H6C109.5C27—C26—P2121.43 (13)
H6B—C6—H6C109.5C28—C27—C26120.27 (17)
C5—C7—H7A109.5C28—C27—H27119.9
C5—C7—H7B109.5C26—C27—H27119.9
H7A—C7—H7B109.5C29—C28—C27120.18 (19)
C5—C7—H7C109.5C29—C28—H28119.9
H7A—C7—H7C109.5C27—C28—H28119.9
H7B—C7—H7C109.5C30—C29—C28120.01 (17)
C13—C8—C9118.82 (15)C30—C29—H29120.0
C13—C8—P1119.29 (13)C28—C29—H29120.0
C9—C8—P1121.74 (14)C29—C30—C31120.39 (18)
C8—C9—C10120.26 (19)C29—C30—H30119.8
C8—C9—H9119.9C31—C30—H30119.8
C10—C9—H9119.9C26—C31—C30119.97 (18)
C11—C10—C9120.31 (19)C26—C31—H31120.0
C11—C10—H10119.8C30—C31—H31120.0
C9—C10—H10119.8Cl2—C32—Cl1112.25 (14)
C10—C11—C12120.14 (17)Cl2—C32—H32A109.2
C10—C11—H11119.9Cl1—C32—H32A109.2
C12—C11—H11119.9Cl2—C32—H32B109.2
C11—C12—C13119.81 (19)Cl1—C32—H32B109.2
C11—C12—H12120.1H32A—C32—H32B107.9
C13—C12—H12120.1C1—Cr1—C394.87 (8)
C8—C13—C12120.66 (18)C1—Cr1—C287.32 (7)
C8—C13—H13119.7C3—Cr1—C287.49 (7)
C12—C13—H13119.7C1—Cr1—C484.72 (7)
C15—C14—C19118.54 (16)C3—Cr1—C489.19 (7)
C15—C14—P1118.92 (13)C2—Cr1—C4171.09 (7)
C19—C14—P1122.46 (14)C1—Cr1—P198.01 (6)
C16—C15—C14120.68 (17)C3—Cr1—P1166.91 (6)
C16—C15—H15119.7C2—Cr1—P190.76 (5)
C14—C15—H15119.7C4—Cr1—P194.31 (5)
C17—C16—C15120.13 (18)C1—Cr1—P2168.24 (6)
C17—C16—H16119.9C3—Cr1—P296.88 (6)
C15—C16—H16119.9C2—Cr1—P293.54 (5)
C16—C17—C18119.94 (17)C4—Cr1—P295.07 (5)
C16—C17—H17120.0P1—Cr1—P270.265 (16)
C18—C17—H17120.0C14—P1—C8102.23 (8)
C19—C18—C17120.19 (17)C14—P1—C5108.57 (7)
C19—C18—H18119.9C8—P1—C5106.88 (7)
C17—C18—H18119.9C14—P1—Cr1121.91 (6)
C18—C19—C14120.47 (17)C8—P1—Cr1119.29 (6)
C18—C19—H19119.8C5—P1—Cr196.77 (5)
C14—C19—H19119.8C26—P2—C2099.66 (7)
C25—C20—C21118.50 (16)C26—P2—C5106.62 (7)
C25—C20—P2115.71 (13)C20—P2—C5112.64 (7)
C21—C20—P2125.64 (13)C26—P2—Cr1124.58 (6)
C22—C21—C20120.37 (18)C20—P2—Cr1116.97 (5)
C22—C21—H21119.8C5—P2—Cr196.31 (5)
C20—C21—H21119.8

Experimental details

Crystal data
Chemical formula[Cr(C27H26P2)(CO)4]·CH2Cl2
Mr661.38
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.9998 (5), 9.4895 (5), 18.3178 (9)
α, β, γ (°)99.811 (4), 94.856 (4), 93.020 (4)
V3)1532.40 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.50 × 0.50 × 0.27
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.700, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
25497, 7051, 5824
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.06
No. of reflections7051
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.65

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationAl-Jibori, S. & Shaw, B. L. (1983). Inorg. Chim. Acta, 74, 235–239.  CrossRef CAS Web of Science Google Scholar
First citationAnandhi, U., Holbert, T., Lueng, D. & Sharp, P. R. (2003). Inorg. Chem. 42, 1282–1295.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarkley, J., Ellis, M., Higgins, S. J. & McCart, M. K. (1998). Organometallics, 17, 1725–1731.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarkley, J. V., Grimshaw, J. C., Higgins, S. J., Hoare, P. B., McCart, M. K. & Smith, A. K. (1995). J. Chem. Soc. Dalton Trans. pp. 2901–2908.  CSD CrossRef Web of Science Google Scholar
First citationHewertson, W. & Watson, H. R. (1962). J. Chem. Soc. 1490–1494.  Google Scholar
First citationHogarth, G. & Kilmartin, J. (2007). J. Organomet. Chem. 692, 5655–5670.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds