organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–cyclo­hexane-1,2,4,5-tetra­carb­­oxy­lic acid (1/1)

aGuangdong Medical College, School of Pharmacy, Dongguan 523808, People's Republic of China
*Correspondence e-mail: Jianqiangliu2010@126.com

(Received 27 September 2010; accepted 29 September 2010; online 9 October 2010)

In the title 1:1 adduct, C10H8N2·C10H12O8, the dihedral angle between the pyridine rings in the 4,4-bipyridine molecule is 8.33 (13)°. In the crystal, the cyclo­hexane-1,2,4,5-tetra­carb­oxy­lic acid mol­ecules inter­act with each other through inter­molecular O—H⋯O hydrogen bonds, forming an infinite chain along the a axis, which is further linked perpendicularly by O—H⋯N hydrogen bonds involving bipyridine, resulting in a supra­molecular corrugated sheet parallel to the (110) plane.

Related literature

For background to crystal engineering, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Schultheiss et al. (2010[Schultheiss, N., Roe, M. & Smit, J. P. (2010). Acta Cryst. E66, o2297-o2298.]); Ebenezer & Muthiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634-o2635.]); An et al. (2010[An, L., Zhou, J., Zhao, L. & Lv, Y. J. (2010). Struct. Chem. 21, 159-164.]). For a related flexible tetracarboxylic acid, see Holmes et al. (1987[Holmes, R. R., Schmid, C. G., Chandrasekhar, V., Day, R. O. & Holmes, J. M. J. (1987). J. Am. Chem. Soc. 109, 1408-1409.]); Wang et al. (2009[Wang, J., Ou, Y. C., Shen, Y., Yun, L., Leng, J. D., Lin, Z. J. & Tong, M. L. (2009). Cryst. Growth Des. 9, 2442-2450.]). For a related structure, see: Bhogala et al.(2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C10H12O8

  • Mr = 416.38

  • Monoclinic, P 21 /c

  • a = 12.345 (3) Å

  • b = 9.724 (2) Å

  • c = 16.497 (4) Å

  • β = 106.364 (3)°

  • V = 1900.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.22 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.975, Tmax = 0.991

  • 9330 measured reflections

  • 3416 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.05

  • 3416 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.81 2.630 (3) 177
O4—H4⋯N2 0.82 1.86 2.678 (3) 175
O5—H5⋯O2ii 0.82 1.96 2.723 (2) 153
O8—H8⋯O7iii 0.82 1.82 2.641 (2) 174
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of non-covalent interactions, such as hydrogen bonding, plays an important role in molecular assembly and crystal engineering (Desiraju, 1989; Schultheiss et al., 2010; Ebenezer & Muthiah, 2010). The simplest cyclohexane-carboxylic acid was firstly employed in the area of coordination chemistry, and many metal–organic frameworks containing cyclohexane-polycarboxylate ligands have been obtained (Holmes et al., 1987; Wang et al., 2009). Furthermore, the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) with H-bond donor/acceptor groups provides inter- and intramolecular H-bonding interactions with N-donor ligands, a driving force for the assembly of polymeric motifs (An et al., 2010). Initially, we attempted to use H4L and 4,4'-bipyridine as co-ligands in the presence of CuII ion, unfortunately, we only obtained the title compound.

The asymmetric unit contains two molecules the 4,4'-bipyridine and the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) connected through O—H···N hydrogen bond (Fig. 1). The cyclohexane-1,2,4,5-tetracarboxylic acid molecule interacts with symmetry related molecules through intermolecular O—H···O hydrogen bonds (Table 1), forming a chain parallel to the a axis. These chains are further linked by O—H···N hydrogen bonds involving the bipyridine resulting in a supramolecular corrugated sheet parallel to the (110) plane (Fig. 2, Table 1). Distances and angles agree with related compounds (Bhogala et al., 2005). It is interesting to note that the cyclohexane-1,2,4,5-tetracarboxylic acid is chiral with four stereogenic center corresponding to the RSRS/SRSR diastereoisomer.

Related literature top

For background to crystal engineering, see: Desiraju (1989); Schultheiss et al. (2010); Ebenezer & Muthiah (2010); An et al. (2010). For the related cyclohexane-carboxylic acid, see Holmes et al. (1987); Wang et al. (2009). For a related structure, see: Bhogala et al.(2005).

Experimental top

A mixture of Cu(AC)2.H2O (23 mg, 0.1 mmol), H4L (24 mg, 0.1 mmol), 4,4'-pyridine (16 mg, 0.1 mmol), NaOH (0.1 mmol) and 10ml H2O was stirred for 2 h, and then the mixture was transferred to a 25 ml Teflon-lined reactor and kept under autogenous pressure at 423 K for 5 d. After the reactor was slowly cooled to room temperature over, the title compound was obtained.

Refinement top

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5 Ueq(O) .

Structure description top

The study of non-covalent interactions, such as hydrogen bonding, plays an important role in molecular assembly and crystal engineering (Desiraju, 1989; Schultheiss et al., 2010; Ebenezer & Muthiah, 2010). The simplest cyclohexane-carboxylic acid was firstly employed in the area of coordination chemistry, and many metal–organic frameworks containing cyclohexane-polycarboxylate ligands have been obtained (Holmes et al., 1987; Wang et al., 2009). Furthermore, the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) with H-bond donor/acceptor groups provides inter- and intramolecular H-bonding interactions with N-donor ligands, a driving force for the assembly of polymeric motifs (An et al., 2010). Initially, we attempted to use H4L and 4,4'-bipyridine as co-ligands in the presence of CuII ion, unfortunately, we only obtained the title compound.

The asymmetric unit contains two molecules the 4,4'-bipyridine and the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) connected through O—H···N hydrogen bond (Fig. 1). The cyclohexane-1,2,4,5-tetracarboxylic acid molecule interacts with symmetry related molecules through intermolecular O—H···O hydrogen bonds (Table 1), forming a chain parallel to the a axis. These chains are further linked by O—H···N hydrogen bonds involving the bipyridine resulting in a supramolecular corrugated sheet parallel to the (110) plane (Fig. 2, Table 1). Distances and angles agree with related compounds (Bhogala et al., 2005). It is interesting to note that the cyclohexane-1,2,4,5-tetracarboxylic acid is chiral with four stereogenic center corresponding to the RSRS/SRSR diastereoisomer.

For background to crystal engineering, see: Desiraju (1989); Schultheiss et al. (2010); Ebenezer & Muthiah (2010); An et al. (2010). For the related cyclohexane-carboxylic acid, see Holmes et al. (1987); Wang et al. (2009). For a related structure, see: Bhogala et al.(2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of the sheet through O—H···O and N—H···O hydrogen bonds displayed as dashed line. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x, -y + 1, -z.]
4,4'-Bipyridine–cyclohexane-1,2,4,5-tetracarboxylic acid (1/1) top
Crystal data top
C10H8N2·C10H12O8F(000) = 872
Mr = 416.38Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 12.345 (3) Åθ = 1.7–25.2°
b = 9.724 (2) ŵ = 0.11 mm1
c = 16.497 (4) ÅT = 298 K
β = 106.364 (3)°Block, colourless
V = 1900.1 (8) Å30.22 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1414
Tmin = 0.975, Tmax = 0.991k = 1111
9330 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.4389P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H8N2·C10H12O8V = 1900.1 (8) Å3
Mr = 416.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.345 (3) ŵ = 0.11 mm1
b = 9.724 (2) ÅT = 298 K
c = 16.497 (4) Å0.22 × 0.15 × 0.08 mm
β = 106.364 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2243 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.991Rint = 0.032
9330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3416 reflectionsΔρmin = 0.22 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27706 (14)0.44090 (19)0.44732 (12)0.0641 (5)
H10.29940.51680.46650.096*
O20.11097 (14)0.54658 (17)0.41482 (10)0.0518 (5)
O30.18983 (14)0.55768 (18)0.23240 (12)0.0636 (5)
O40.34420 (14)0.42876 (17)0.26978 (12)0.0589 (5)
H40.37560.50370.27940.088*
O50.04992 (17)0.3310 (2)0.45621 (11)0.0667 (5)
H50.08830.36810.48320.100*
O60.15670 (16)0.4586 (2)0.35120 (11)0.0692 (6)
O70.05944 (14)0.47589 (18)0.07724 (9)0.0553 (5)
O80.10445 (14)0.3927 (2)0.06854 (10)0.0578 (5)
H80.08520.43240.02290.087*
C110.0262 (2)0.4068 (2)0.10675 (14)0.0448 (6)
C120.04494 (19)0.3292 (2)0.18872 (13)0.0434 (6)
H120.01470.23650.17380.052*
C130.02428 (18)0.3930 (2)0.24293 (13)0.0439 (6)
H13A0.00300.48870.25370.053*
H13B0.10370.39000.21200.053*
C140.00665 (19)0.3186 (2)0.32665 (14)0.0447 (6)
H140.03320.22410.31300.054*
C150.0792 (2)0.3797 (3)0.37755 (15)0.0510 (6)
C160.11869 (19)0.3086 (2)0.37600 (14)0.0439 (6)
H160.12340.24630.42360.053*
C170.1676 (2)0.4448 (3)0.41336 (13)0.0448 (6)
C180.1851 (2)0.2407 (2)0.32092 (14)0.0462 (6)
H18A0.16100.14570.31100.055*
H18B0.26460.24050.35170.055*
C190.17057 (19)0.3116 (2)0.23536 (14)0.0426 (6)
H190.20320.25090.20110.051*
C200.23417 (19)0.4466 (2)0.24532 (13)0.0434 (6)
N10.64426 (18)1.3190 (2)0.48929 (14)0.0598 (6)
N20.45114 (19)0.6692 (2)0.31157 (14)0.0628 (6)
C10.3891 (2)0.7823 (3)0.2905 (2)0.0752 (9)
H1A0.31800.77430.25210.090*
C20.5531 (2)0.6854 (3)0.36420 (18)0.0708 (8)
H20.59920.60830.37840.085*
C30.5951 (2)0.8100 (3)0.39928 (17)0.0642 (8)
H30.66750.81540.43600.077*
C40.4243 (2)0.9105 (3)0.32249 (19)0.0713 (8)
H4A0.37740.98630.30560.086*
C50.5293 (2)0.9264 (3)0.37970 (15)0.0502 (6)
C60.5699 (2)1.0628 (3)0.41730 (15)0.0510 (6)
C70.6679 (2)1.0774 (3)0.4825 (2)0.0817 (10)
H70.71141.00050.50390.098*
C80.7015 (2)1.2050 (3)0.5157 (2)0.0809 (10)
H8A0.76821.21160.55920.097*
C90.5115 (2)1.1812 (3)0.39072 (19)0.0710 (8)
H90.44521.17820.34660.085*
C100.5494 (2)1.3050 (3)0.42825 (19)0.0770 (9)
H100.50591.38290.40960.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (10)0.0539 (12)0.0736 (12)0.0025 (9)0.0055 (9)0.0150 (9)
O20.0551 (10)0.0423 (10)0.0511 (10)0.0043 (8)0.0035 (8)0.0037 (7)
O30.0496 (10)0.0378 (11)0.0928 (14)0.0003 (8)0.0027 (9)0.0034 (9)
O40.0451 (10)0.0509 (11)0.0739 (12)0.0023 (8)0.0055 (9)0.0018 (9)
O50.0850 (14)0.0675 (13)0.0526 (11)0.0182 (10)0.0275 (10)0.0121 (9)
O60.0627 (12)0.0789 (14)0.0641 (12)0.0200 (11)0.0148 (9)0.0068 (10)
O70.0520 (10)0.0667 (12)0.0430 (9)0.0097 (9)0.0066 (8)0.0042 (8)
O80.0573 (11)0.0720 (13)0.0431 (10)0.0095 (9)0.0123 (8)0.0055 (8)
C110.0442 (14)0.0421 (14)0.0432 (13)0.0045 (11)0.0042 (11)0.0098 (10)
C120.0472 (13)0.0361 (13)0.0405 (12)0.0070 (10)0.0019 (10)0.0041 (10)
C130.0406 (13)0.0433 (14)0.0429 (12)0.0008 (11)0.0040 (10)0.0006 (10)
C140.0496 (13)0.0344 (13)0.0472 (13)0.0021 (11)0.0090 (11)0.0006 (10)
C150.0538 (15)0.0488 (16)0.0481 (14)0.0035 (13)0.0106 (12)0.0012 (12)
C160.0499 (14)0.0350 (13)0.0435 (13)0.0012 (11)0.0079 (10)0.0055 (10)
C170.0506 (15)0.0448 (15)0.0341 (12)0.0025 (12)0.0038 (10)0.0021 (10)
C180.0528 (14)0.0309 (13)0.0500 (13)0.0029 (11)0.0064 (11)0.0011 (10)
C190.0460 (13)0.0346 (13)0.0447 (13)0.0006 (10)0.0085 (10)0.0041 (10)
C200.0417 (13)0.0461 (15)0.0377 (12)0.0015 (11)0.0037 (10)0.0014 (10)
N10.0532 (13)0.0507 (14)0.0681 (14)0.0042 (11)0.0051 (11)0.0076 (11)
N20.0562 (14)0.0545 (15)0.0725 (15)0.0120 (12)0.0098 (12)0.0052 (11)
C10.0527 (17)0.064 (2)0.097 (2)0.0059 (15)0.0005 (15)0.0144 (17)
C20.0712 (19)0.0468 (17)0.081 (2)0.0035 (14)0.0001 (16)0.0061 (14)
C30.0571 (16)0.0519 (17)0.0703 (18)0.0051 (13)0.0037 (13)0.0025 (13)
C40.0489 (16)0.0555 (18)0.096 (2)0.0009 (13)0.0007 (15)0.0136 (15)
C50.0472 (14)0.0479 (16)0.0551 (14)0.0075 (12)0.0140 (11)0.0017 (11)
C60.0438 (14)0.0524 (16)0.0554 (15)0.0050 (12)0.0116 (11)0.0009 (12)
C70.0556 (17)0.0535 (19)0.113 (3)0.0029 (14)0.0137 (17)0.0099 (17)
C80.0566 (18)0.063 (2)0.100 (2)0.0029 (16)0.0161 (16)0.0139 (17)
C90.0581 (17)0.0552 (18)0.0795 (19)0.0018 (14)0.0135 (14)0.0039 (14)
C100.0664 (19)0.0549 (19)0.090 (2)0.0023 (15)0.0099 (16)0.0040 (15)
Geometric parameters (Å, º) top
O1—C171.310 (3)C18—H18A0.9700
O1—H10.8200C18—H18B0.9700
O2—C171.215 (3)C19—C201.515 (3)
O3—C201.202 (3)C19—H190.9800
O4—C201.315 (3)N1—C101.319 (3)
O4—H40.8200N1—C81.321 (3)
O5—C151.332 (3)N2—C21.321 (3)
O5—H50.8200N2—C11.329 (4)
O6—C151.207 (3)C1—C41.375 (4)
O7—C111.231 (3)C1—H1A0.9300
O8—C111.301 (3)C2—C31.379 (4)
O8—H80.8200C2—H20.9300
C11—C121.508 (3)C3—C51.378 (4)
C12—C131.532 (3)C3—H30.9300
C12—C191.534 (3)C4—C51.380 (3)
C12—H120.9800C4—H4A0.9300
C13—C141.520 (3)C5—C61.490 (3)
C13—H13A0.9700C6—C91.364 (4)
C13—H13B0.9700C6—C71.381 (4)
C14—C151.512 (3)C7—C81.372 (4)
C14—C161.535 (3)C7—H70.9300
C14—H140.9800C8—H8A0.9300
C16—C171.513 (3)C9—C101.374 (4)
C16—C181.534 (3)C9—H90.9300
C16—H160.9800C10—H100.9300
C18—C191.535 (3)
C17—O1—H1109.5H18A—C18—H18B107.6
C20—O4—H4109.5C20—C19—C12112.18 (19)
C15—O5—H5109.5C20—C19—C18111.54 (18)
C11—O8—H8109.5C12—C19—C18110.52 (19)
O7—C11—O8122.5 (2)C20—C19—H19107.5
O7—C11—C12121.7 (2)C12—C19—H19107.5
O8—C11—C12115.7 (2)C18—C19—H19107.5
C11—C12—C13110.54 (19)O3—C20—O4123.5 (2)
C11—C12—C19112.56 (19)O3—C20—C19124.3 (2)
C13—C12—C19113.81 (18)O4—C20—C19112.2 (2)
C11—C12—H12106.5C10—N1—C8116.2 (2)
C13—C12—H12106.5C2—N2—C1116.4 (2)
C19—C12—H12106.5N2—C1—C4123.6 (3)
C14—C13—C12112.17 (19)N2—C1—H1A118.2
C14—C13—H13A109.2C4—C1—H1A118.2
C12—C13—H13A109.2N2—C2—C3123.8 (3)
C14—C13—H13B109.2N2—C2—H2118.1
C12—C13—H13B109.2C3—C2—H2118.1
H13A—C13—H13B107.9C5—C3—C2119.8 (2)
C15—C14—C13111.2 (2)C5—C3—H3120.1
C15—C14—C16113.39 (19)C2—C3—H3120.1
C13—C14—C16112.16 (19)C1—C4—C5119.9 (3)
C15—C14—H14106.5C1—C4—H4A120.1
C13—C14—H14106.5C5—C4—H4A120.1
C16—C14—H14106.5C3—C5—C4116.5 (2)
O6—C15—O5123.2 (2)C3—C5—C6121.8 (2)
O6—C15—C14125.7 (2)C4—C5—C6121.7 (2)
O5—C15—C14111.1 (2)C9—C6—C7115.6 (2)
C17—C16—C18113.58 (19)C9—C6—C5122.2 (2)
C17—C16—C14112.76 (19)C7—C6—C5122.3 (2)
C18—C16—C14109.87 (18)C8—C7—C6120.2 (3)
C17—C16—H16106.7C8—C7—H7119.9
C18—C16—H16106.7C6—C7—H7119.9
C14—C16—H16106.7N1—C8—C7123.7 (3)
O2—C17—O1123.0 (2)N1—C8—H8A118.2
O2—C17—C16123.7 (2)C7—C8—H8A118.2
O1—C17—C16113.2 (2)C6—C9—C10120.9 (2)
C16—C18—C19114.08 (18)C6—C9—H9119.6
C16—C18—H18A108.7C10—C9—H9119.6
C19—C18—H18A108.7N1—C10—C9123.4 (3)
C16—C18—H18B108.7N1—C10—H10118.3
C19—C18—H18B108.7C9—C10—H10118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.812.630 (3)177
O4—H4···N20.821.862.678 (3)175
O5—H5···O2ii0.821.962.723 (2)153
O8—H8···O7iii0.821.822.641 (2)174
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·C10H12O8
Mr416.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.345 (3), 9.724 (2), 16.497 (4)
β (°) 106.364 (3)
V3)1900.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9330, 3416, 2243
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.05
No. of reflections3416
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: APEX2 (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), Please provide missing details.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.812.630 (3)177.2
O4—H4···N20.821.862.678 (3)174.7
O5—H5···O2ii0.821.962.723 (2)153.4
O8—H8···O7iii0.821.822.641 (2)173.5
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The author is grateful to Guangdong Medical College for financial support.

References

First citationAn, L., Zhou, J., Zhao, L. & Lv, Y. J. (2010). Struct. Chem. 21, 159–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634–o2635.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolmes, R. R., Schmid, C. G., Chandrasekhar, V., Day, R. O. & Holmes, J. M. J. (1987). J. Am. Chem. Soc. 109, 1408–1409.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchultheiss, N., Roe, M. & Smit, J. P. (2010). Acta Cryst. E66, o2297–o2298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Ou, Y. C., Shen, Y., Yun, L., Leng, J. D., Lin, Z. J. & Tong, M. L. (2009). Cryst. Growth Des. 9, 2442–2450.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds