organic compounds
4-Azidomethyl-7-methyl-2-oxo-2H-chromene-6-sulfonyl azide
aDepartment of Chemistry, Karnatak University, Dharwad 580 003, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: manohar274@gmail.com
In the title compound, C11H8N6O4S, the plane of the coumarin aromatic ring is twisted by 17.2 (2)° with respect to the plane of the azide group bound to the methylene substituent, whereas it is twisted by 83.2 (2)° to the plane of the azide attached to the sulfonyl group. The is stabilized by weak C—H⋯O interactions, leading to the formation of dimers with R22(12) graph-set motifs. These dimers are further linked by weak S—O⋯π and π–π contacts [centroid–centroid distance = 3.765 (2) Å], leading to the formation of a layered structure.
Related literature
For ); Amblard et al. (2009). For 4-azidomethylcoumarin derivatives, see: Melavanki et al. (2008, 2009, 2010); Naik & Kullkarni (2010); Basanagouda et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).
see: Scriven & Turnbull (1988Experimental
Crystal data
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810039693/dn2607sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039693/dn2607Isup2.hkl
The 4–Bromomethyl–7–methyl–coumarin-6–sufonyl chloride (3.51 g, 0.01 mol) was taken in acetone (20 ml) in a round bottom flask. To this, solution of sodium azide(1.56 g, 0.024 mol) in water (6 ml) was added drop wise with stirring. The stirring was continued for 10 h. Then the reaction mixture was poured on to crushed ice (100 g). The separated solid was filtered and recrystallized from benzene to obtain a colorless solid in 62% yield, m.p. 132–133 °C; IR (KBr) cm-1 1722 (C═O), 2130 (N3, azido); 1H NMR (CDCl3,300 MHz, TMS): δ 2.73 (s, 3H, C7—CH3), 4.62 (s, 2H, C4—CH2), 6.64 (s, 1H, C3—H), 7.31 (s, 1H, C8—H), 8.30 (s, 1H, C5—H); LC—MS: 321 (M+1). Anal. Calcd for C11H8N6O4S (%): Calcd. C, 41.25; H, 2.52; N, 26.24. Found C, 41.15; H, 2.46; N, 26.21.
All H atoms were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic), 0.96Å (methyl) or 0.97Å (methylene) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
Rigid bond restraints on the ellipsoids were used for both azide groups.
The Chemisty of
has been the subject of intensive investigations during the last 50 years because of its importance in preparative heterocyclic chemistry (Scriven et al., 1988). The Cu(I)-catalyzed 1,3-dipolar reaction between and has been suitable for the synthesis of a large number of modified and with a broad range of applications (Amblard et al., 2009). 4-Azidomethylcoumarin derivatives have aroused increasing interest because of their photophysical properties (Melavanki et al., 2008, 2009, 2010; Naik et al., 2010) and antimicrobial activities (Basanagouda et al., 2010). As a part of our study on synthesis of biological active compounds, We report the of 4-Azidomethyl-7-methyl-coumarin-6-sulfonyl azide.The title compound (I), the ═O···π (Table 1, Cg being the centroid of the C5-C10 ring) and slippest π–π interaction (symmetry code (-1/4 + x, 7/4 - y, 1/4 + z) with centroid to centroid distance = 3.765 (2) Å, interplanar distance = 3.564 (1)Å and an offset angle of 18.8°, which form a layered structure (Fig. 2).
(Fig.1) is preferred with the plane of the coumarin aromatic ring is 17.2 (2)° with respect to the plane of azide of methylene substituent whereas it is 83.2 (2)° to the plane of azide of sulfonyl group. The molecular arrangement is stabilized by the formation of dimer through C—H···O interactions with R22(12) ring motif (Bernstein et al., 1995)(Fig. 2) . Further, it is stabilized by SFor
see: Scriven et al. (1988); Amblard et al. (2009). For 4-azidomethylcoumarin derivatives, see: Melavanki et al. (2008, 2009, 2010); Naik et al., (2010); Basanagouda et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).C11H8N6O4S | Dx = 1.593 Mg m−3 |
Mr = 320.29 | Melting point: 406 K |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 400 reflections |
a = 13.5452 (12) Å | θ = 1.0–28.0° |
b = 27.952 (3) Å | µ = 0.27 mm−1 |
c = 14.1107 (13) Å | T = 292 K |
V = 5342.5 (9) Å3 | Hexagonal, pale yellow |
Z = 16 | 0.24 × 0.16 × 0.10 mm |
F(000) = 2624 |
Bruker SMART APEX CCD diffractometer | 3124 independent reflections |
Radiation source: fine-focus sealed tube | 2677 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 28.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −17→0 |
Tmin = 0.891, Tmax = 0.973 | k = −36→0 |
11344 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0532P)2 + 3.5426P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3124 reflections | Δρmax = 0.26 e Å−3 |
201 parameters | Δρmin = −0.21 e Å−3 |
7 restraints | Absolute structure: Flack (1983), 1438 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (8) |
C11H8N6O4S | V = 5342.5 (9) Å3 |
Mr = 320.29 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 13.5452 (12) Å | µ = 0.27 mm−1 |
b = 27.952 (3) Å | T = 292 K |
c = 14.1107 (13) Å | 0.24 × 0.16 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 3124 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 2677 reflections with I > 2σ(I) |
Tmin = 0.891, Tmax = 0.973 | Rint = 0.025 |
11344 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 0.26 e Å−3 |
S = 1.05 | Δρmin = −0.21 e Å−3 |
3124 reflections | Absolute structure: Flack (1983), 1438 Friedel pairs |
201 parameters | Absolute structure parameter: 0.09 (8) |
7 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.85568 (4) | 0.83758 (2) | 0.50177 (5) | 0.04317 (17) | |
O1 | 0.47627 (11) | 0.93758 (5) | 0.47959 (14) | 0.0462 (4) | |
O2 | 0.31442 (12) | 0.93929 (6) | 0.49151 (18) | 0.0610 (6) | |
O3 | 0.83522 (13) | 0.78772 (6) | 0.5081 (2) | 0.0663 (6) | |
O4 | 0.92870 (14) | 0.85453 (7) | 0.43818 (16) | 0.0598 (5) | |
N1 | 0.89734 (14) | 0.85727 (8) | 0.60674 (18) | 0.0507 (5) | |
N2 | 0.86115 (15) | 0.83563 (8) | 0.67677 (19) | 0.0511 (6) | |
N3 | 0.8356 (2) | 0.81892 (11) | 0.7443 (3) | 0.0727 (8) | |
N4 | 0.37159 (16) | 0.76434 (8) | 0.4783 (2) | 0.0643 (8) | |
N5 | 0.36677 (14) | 0.72360 (8) | 0.4993 (2) | 0.0494 (5) | |
N6 | 0.35192 (18) | 0.68477 (9) | 0.5172 (3) | 0.0715 (8) | |
C2 | 0.38675 (17) | 0.91435 (8) | 0.4834 (2) | 0.0439 (6) | |
C3 | 0.38818 (17) | 0.86301 (8) | 0.4776 (2) | 0.0436 (6) | |
H3 | 0.3284 | 0.8467 | 0.4752 | 0.052* | |
C4 | 0.47186 (17) | 0.83767 (7) | 0.47560 (17) | 0.0370 (5) | |
C5 | 0.65857 (15) | 0.84097 (8) | 0.48129 (17) | 0.0372 (5) | |
H5 | 0.6634 | 0.8078 | 0.4815 | 0.045* | |
C6 | 0.74334 (15) | 0.86865 (8) | 0.48503 (18) | 0.0368 (5) | |
C7 | 0.74063 (16) | 0.91904 (8) | 0.48102 (17) | 0.0366 (5) | |
C8 | 0.64872 (16) | 0.94005 (8) | 0.47701 (18) | 0.0397 (6) | |
H8 | 0.6439 | 0.9732 | 0.4741 | 0.048* | |
C9 | 0.56344 (16) | 0.91278 (8) | 0.47726 (18) | 0.0371 (5) | |
C10 | 0.56574 (15) | 0.86284 (7) | 0.47717 (17) | 0.0354 (5) | |
C11 | 0.83110 (18) | 0.95033 (9) | 0.4850 (2) | 0.0507 (7) | |
H11A | 0.8697 | 0.9457 | 0.4287 | 0.076* | |
H11B | 0.8698 | 0.9420 | 0.5395 | 0.076* | |
H11C | 0.8114 | 0.9833 | 0.4893 | 0.076* | |
C12 | 0.47394 (17) | 0.78398 (8) | 0.4712 (2) | 0.0482 (7) | |
H12A | 0.5036 | 0.7738 | 0.4119 | 0.058* | |
H12B | 0.5138 | 0.7716 | 0.5227 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0256 (2) | 0.0409 (3) | 0.0630 (4) | 0.0027 (2) | −0.0001 (3) | −0.0076 (3) |
O1 | 0.0301 (7) | 0.0290 (7) | 0.0796 (13) | 0.0036 (6) | −0.0053 (9) | 0.0013 (8) |
O2 | 0.0330 (8) | 0.0437 (9) | 0.1064 (17) | 0.0092 (7) | −0.0043 (12) | −0.0052 (11) |
O3 | 0.0391 (9) | 0.0387 (9) | 0.1212 (18) | 0.0081 (7) | −0.0105 (13) | −0.0100 (12) |
O4 | 0.0346 (9) | 0.0800 (14) | 0.0647 (12) | 0.0016 (9) | 0.0090 (9) | −0.0099 (11) |
N1 | 0.0365 (11) | 0.0561 (13) | 0.0595 (14) | −0.0065 (9) | −0.0045 (10) | 0.0077 (11) |
N2 | 0.0321 (11) | 0.0519 (14) | 0.0693 (16) | 0.0087 (10) | −0.0030 (11) | 0.0056 (12) |
N3 | 0.0538 (14) | 0.0844 (19) | 0.080 (2) | 0.0118 (13) | 0.0103 (15) | 0.0282 (17) |
N4 | 0.0326 (10) | 0.0369 (11) | 0.123 (3) | −0.0022 (8) | −0.0061 (13) | 0.0063 (13) |
N5 | 0.0336 (9) | 0.0501 (13) | 0.0645 (14) | −0.0067 (8) | −0.0001 (11) | −0.0062 (13) |
N6 | 0.0595 (15) | 0.0435 (13) | 0.111 (3) | −0.0128 (11) | 0.0026 (15) | 0.0127 (15) |
C2 | 0.0319 (11) | 0.0366 (12) | 0.0631 (17) | 0.0037 (8) | −0.0045 (11) | −0.0015 (12) |
C3 | 0.0293 (10) | 0.0351 (11) | 0.0662 (17) | −0.0035 (8) | −0.0032 (11) | 0.0006 (11) |
C4 | 0.0292 (10) | 0.0308 (10) | 0.0511 (14) | −0.0019 (8) | −0.0037 (10) | −0.0017 (11) |
C5 | 0.0299 (10) | 0.0315 (10) | 0.0502 (15) | 0.0013 (8) | −0.0011 (10) | −0.0032 (10) |
C6 | 0.0271 (9) | 0.0356 (10) | 0.0476 (13) | 0.0018 (8) | −0.0006 (10) | −0.0048 (10) |
C7 | 0.0346 (11) | 0.0318 (10) | 0.0433 (14) | −0.0053 (8) | 0.0007 (10) | −0.0012 (10) |
C8 | 0.0382 (11) | 0.0271 (10) | 0.0540 (15) | −0.0019 (8) | −0.0027 (12) | 0.0018 (10) |
C9 | 0.0293 (11) | 0.0326 (11) | 0.0495 (13) | 0.0025 (8) | −0.0036 (10) | 0.0000 (10) |
C10 | 0.0284 (10) | 0.0306 (10) | 0.0473 (13) | −0.0019 (8) | −0.0023 (10) | −0.0003 (9) |
C11 | 0.0356 (11) | 0.0391 (12) | 0.077 (2) | −0.0089 (9) | 0.0015 (14) | −0.0030 (14) |
C12 | 0.0310 (11) | 0.0321 (10) | 0.0814 (19) | −0.0031 (9) | −0.0035 (12) | −0.0037 (12) |
S1—O4 | 1.417 (2) | C4—C12 | 1.502 (3) |
S1—O3 | 1.4237 (18) | C5—C6 | 1.386 (3) |
S1—N1 | 1.678 (3) | C5—C10 | 1.399 (3) |
S1—C6 | 1.768 (2) | C5—H5 | 0.9300 |
O1—C9 | 1.370 (3) | C6—C7 | 1.410 (3) |
O1—C2 | 1.376 (3) | C7—C8 | 1.378 (3) |
O2—C2 | 1.208 (3) | C7—C11 | 1.507 (3) |
N1—N2 | 1.258 (3) | C8—C9 | 1.384 (3) |
N2—N3 | 1.116 (4) | C8—H8 | 0.9300 |
N4—N5 | 1.178 (3) | C9—C10 | 1.396 (3) |
N4—C12 | 1.495 (3) | C11—H11A | 0.9600 |
N5—N6 | 1.133 (3) | C11—H11B | 0.9600 |
C2—C3 | 1.438 (3) | C11—H11C | 0.9600 |
C3—C4 | 1.337 (3) | C12—H12A | 0.9700 |
C3—H3 | 0.9300 | C12—H12B | 0.9700 |
C4—C10 | 1.453 (3) | ||
O4—S1—O3 | 120.17 (13) | C7—C6—S1 | 121.23 (16) |
O4—S1—N1 | 102.39 (12) | C8—C7—C6 | 116.80 (19) |
O3—S1—N1 | 109.36 (14) | C8—C7—C11 | 119.3 (2) |
O4—S1—C6 | 110.61 (12) | C6—C7—C11 | 123.9 (2) |
O3—S1—C6 | 108.77 (11) | C7—C8—C9 | 121.3 (2) |
N1—S1—C6 | 104.26 (11) | C7—C8—H8 | 119.4 |
C9—O1—C2 | 121.45 (17) | C9—C8—H8 | 119.4 |
N2—N1—S1 | 113.88 (19) | O1—C9—C8 | 116.16 (18) |
N3—N2—N1 | 173.0 (3) | O1—C9—C10 | 121.68 (19) |
N5—N4—C12 | 115.0 (2) | C8—C9—C10 | 122.1 (2) |
N6—N5—N4 | 172.8 (3) | C9—C10—C5 | 117.18 (19) |
O2—C2—O1 | 116.5 (2) | C9—C10—C4 | 117.67 (19) |
O2—C2—C3 | 126.3 (2) | C5—C10—C4 | 125.13 (19) |
O1—C2—C3 | 117.18 (19) | C7—C11—H11A | 109.5 |
C4—C3—C2 | 122.8 (2) | C7—C11—H11B | 109.5 |
C4—C3—H3 | 118.6 | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 118.6 | C7—C11—H11C | 109.5 |
C3—C4—C10 | 119.02 (19) | H11A—C11—H11C | 109.5 |
C3—C4—C12 | 123.1 (2) | H11B—C11—H11C | 109.5 |
C10—C4—C12 | 117.89 (19) | N4—C12—C4 | 110.29 (18) |
C6—C5—C10 | 120.1 (2) | N4—C12—H12A | 109.6 |
C6—C5—H5 | 119.9 | C4—C12—H12A | 109.6 |
C10—C5—H5 | 119.9 | N4—C12—H12B | 109.6 |
C5—C6—C7 | 122.3 (2) | C4—C12—H12B | 109.6 |
C5—C6—S1 | 116.36 (17) | H12A—C12—H12B | 108.1 |
O4—S1—N1—N2 | −160.77 (19) | S1—C6—C7—C11 | 3.5 (4) |
O3—S1—N1—N2 | −32.3 (2) | C6—C7—C8—C9 | 0.2 (4) |
C6—S1—N1—N2 | 83.9 (2) | C11—C7—C8—C9 | −177.3 (2) |
C9—O1—C2—O2 | 175.3 (2) | C2—O1—C9—C8 | −177.7 (2) |
C9—O1—C2—C3 | −4.6 (4) | C2—O1—C9—C10 | 1.0 (4) |
O2—C2—C3—C4 | −175.0 (3) | C7—C8—C9—O1 | 175.7 (2) |
O1—C2—C3—C4 | 4.8 (4) | C7—C8—C9—C10 | −3.0 (4) |
C2—C3—C4—C10 | −1.4 (4) | O1—C9—C10—C5 | −175.7 (2) |
C2—C3—C4—C12 | 179.0 (3) | C8—C9—C10—C5 | 2.9 (3) |
C10—C5—C6—C7 | −2.6 (4) | O1—C9—C10—C4 | 2.5 (3) |
C10—C5—C6—S1 | 174.00 (18) | C8—C9—C10—C4 | −178.8 (2) |
O4—S1—C6—C5 | 134.2 (2) | C6—C5—C10—C9 | −0.1 (3) |
O3—S1—C6—C5 | 0.2 (3) | C6—C5—C10—C4 | −178.3 (2) |
N1—S1—C6—C5 | −116.4 (2) | C3—C4—C10—C9 | −2.3 (4) |
O4—S1—C6—C7 | −49.1 (2) | C12—C4—C10—C9 | 177.4 (2) |
O3—S1—C6—C7 | 176.8 (2) | C3—C4—C10—C5 | 175.8 (2) |
N1—S1—C6—C7 | 60.3 (2) | C12—C4—C10—C5 | −4.5 (4) |
C5—C6—C7—C8 | 2.6 (4) | N5—N4—C12—C4 | −161.8 (3) |
S1—C6—C7—C8 | −173.89 (19) | C3—C4—C12—N4 | −5.1 (4) |
C5—C6—C7—C11 | 179.9 (3) | C10—C4—C12—N4 | 175.3 (2) |
Cg is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.93 | 2.52 | 3.416 (3) | 161 |
S1—O4···Cgii | 1.42 (1) | 2.96 (1) | 3.931 (2) | 128 |
Symmetry codes: (i) −x+1, −y+2, z; (ii) x−1/4, −y+7/4, z−3/4. |
Experimental details
Crystal data | |
Chemical formula | C11H8N6O4S |
Mr | 320.29 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 292 |
a, b, c (Å) | 13.5452 (12), 27.952 (3), 14.1107 (13) |
V (Å3) | 5342.5 (9) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.24 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.891, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11344, 3124, 2677 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.102, 1.05 |
No. of reflections | 3124 |
No. of parameters | 201 |
No. of restraints | 7 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.21 |
Absolute structure | Flack (1983), 1438 Friedel pairs |
Absolute structure parameter | 0.09 (8) |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
Cg is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.93 | 2.52 | 3.416 (3) | 161 |
S1—O4···Cgii | 1.417 (2) | 2.963 (2) | 3.931 (2) | 128 |
Symmetry codes: (i) −x+1, −y+2, z; (ii) x−1/4, −y+7/4, z−3/4. |
Acknowledgements
The authors acknowledge the DST, the CCD X-ray facility at IISc, Bangalore, and the Sophisticated Instrumentation Centre at Karnatak University, Dharwad for the spectroscopic data. MB thanks Karnatak University for a Research Studentship.
References
Amblard, F., Cho, J. H. & Schhinazi, R. F. (2009). Chem. Rev. 109, 4207–4220. Web of Science CrossRef PubMed CAS Google Scholar
Basanagouda, M., Shivashankar, K., Kulkarni, M. V., Rasal, V. P., Patel, H., Mutha, S. S. & Mohite, A. A. (2010). Eur. J. Med. Chem. 45, 1151–1157. Web of Science CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Melavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2009). J. Lumin. 129, 1298–1303. Web of Science CrossRef CAS Google Scholar
Melavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2010). J Fluoresc. DOI: 10.1007/s10895-010-0664-7. Google Scholar
Melavanki, R. M., Kusanur, R. A., Kulkarni, M. V. & Kadadevarmath, J. S. (2008). J. Lumin. 128, 573–577. Web of Science CrossRef CAS Google Scholar
Naik, R. J. & Kullkarni, M. V. (2010). J. Lumin. 130, 2065–2071. Web of Science CrossRef CAS Google Scholar
Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Chemisty of azides has been the subject of intensive investigations during the last 50 years because of its importance in preparative heterocyclic chemistry (Scriven et al., 1988). The Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction between alkynes and azides has been suitable for the synthesis of a large number of modified nucleosides, nucleotides and oligonucleotides with a broad range of applications (Amblard et al., 2009). 4-Azidomethylcoumarin derivatives have aroused increasing interest because of their photophysical properties (Melavanki et al., 2008, 2009, 2010; Naik et al., 2010) and antimicrobial activities (Basanagouda et al., 2010). As a part of our study on synthesis of biological active compounds, We report the crystal structure of 4-Azidomethyl-7-methyl-coumarin-6-sulfonyl azide.
The title compound (I), the molecular conformation (Fig.1) is preferred with the plane of the coumarin aromatic ring is 17.2 (2)° with respect to the plane of azide of methylene substituent whereas it is 83.2 (2)° to the plane of azide of sulfonyl group. The molecular arrangement is stabilized by the formation of dimer through C—H···O interactions with R22(12) ring motif (Bernstein et al., 1995)(Fig. 2) . Further, it is stabilized by S═O···π (Table 1, Cg being the centroid of the C5-C10 ring) and slippest π–π interaction (symmetry code (-1/4 + x, 7/4 - y, 1/4 + z) with centroid to centroid distance = 3.765 (2) Å, interplanar distance = 3.564 (1)Å and an offset angle of 18.8°, which form a layered structure (Fig. 2).