organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Azido­methyl-7-methyl-2-oxo-2H-chromene-6-sulfonyl azide

aDepartment of Chemistry, Karnatak University, Dharwad 580 003, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: manohar274@gmail.com

(Received 27 September 2010; accepted 4 October 2010; online 9 October 2010)

In the title compound, C11H8N6O4S, the plane of the coumarin aromatic ring is twisted by 17.2 (2)° with respect to the plane of the azide group bound to the methyl­ene substituent, whereas it is twisted by 83.2 (2)° to the plane of the azide attached to the sulfonyl group. The crystal structure is stabilized by weak C—H⋯O inter­actions, leading to the formation of dimers with R22(12) graph-set motifs. These dimers are further linked by weak S—O⋯π and ππ contacts [centroid–centroid distance = 3.765 (2) Å], leading to the formation of a layered structure.

Related literature

For azides, see: Scriven & Turnbull (1988[Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297-368.]); Amblard et al. (2009[Amblard, F., Cho, J. H. & Schhinazi, R. F. (2009). Chem. Rev. 109, 4207-4220.]). For 4-azido­methyl­coumarin derivatives, see: Melavanki et al. (2008[Melavanki, R. M., Kusanur, R. A., Kulkarni, M. V. & Kadadevarmath, J. S. (2008). J. Lumin. 128, 573-577.], 2009[Melavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2009). J. Lumin. 129, 1298-1303.], 2010[Melavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2010). J Fluoresc. DOI: 10.1007/s10895-010-0664-7. ]); Naik & Kullkarni (2010[Naik, R. J. & Kullkarni, M. V. (2010). J. Lumin. 130, 2065-2071.]); Basanagouda et al. (2010[Basanagouda, M., Shivashankar, K., Kulkarni, M. V., Rasal, V. P., Patel, H., Mutha, S. S. & Mohite, A. A. (2010). Eur. J. Med. Chem. 45, 1151-1157.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N6O4S

  • Mr = 320.29

  • Orthorhombic, F d d 2

  • a = 13.5452 (12) Å

  • b = 27.952 (3) Å

  • c = 14.1107 (13) Å

  • V = 5342.5 (9) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 292 K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.891, Tmax = 0.973

  • 11344 measured reflections

  • 3124 independent reflections

  • 2677 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.05

  • 3124 reflections

  • 201 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1438 Friedel pairs

  • Flack parameter: 0.09 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.52 3.416 (3) 161
S1—O4⋯Cgii 1.42 (1) 2.96 (1) 3.931 (2) 128
Symmetry codes: (i) -x+1, -y+2, z; (ii) [x-{\script{1\over 4}}, -y+{\script{7\over 4}}, z-{\script{3\over 4}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Chemisty of azides has been the subject of intensive investigations during the last 50 years because of its importance in preparative heterocyclic chemistry (Scriven et al., 1988). The Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction between alkynes and azides has been suitable for the synthesis of a large number of modified nucleosides, nucleotides and oligonucleotides with a broad range of applications (Amblard et al., 2009). 4-Azidomethylcoumarin derivatives have aroused increasing interest because of their photophysical properties (Melavanki et al., 2008, 2009, 2010; Naik et al., 2010) and antimicrobial activities (Basanagouda et al., 2010). As a part of our study on synthesis of biological active compounds, We report the crystal structure of 4-Azidomethyl-7-methyl-coumarin-6-sulfonyl azide.

The title compound (I), the molecular conformation (Fig.1) is preferred with the plane of the coumarin aromatic ring is 17.2 (2)° with respect to the plane of azide of methylene substituent whereas it is 83.2 (2)° to the plane of azide of sulfonyl group. The molecular arrangement is stabilized by the formation of dimer through C—H···O interactions with R22(12) ring motif (Bernstein et al., 1995)(Fig. 2) . Further, it is stabilized by SO···π (Table 1, Cg being the centroid of the C5-C10 ring) and slippest ππ interaction (symmetry code (-1/4 + x, 7/4 - y, 1/4 + z) with centroid to centroid distance = 3.765 (2) Å, interplanar distance = 3.564 (1)Å and an offset angle of 18.8°, which form a layered structure (Fig. 2).

Related literature top

For azides, see: Scriven et al. (1988); Amblard et al. (2009). For 4-azidomethylcoumarin derivatives, see: Melavanki et al. (2008, 2009, 2010); Naik et al., (2010); Basanagouda et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The 4–Bromomethyl–7–methyl–coumarin-6–sufonyl chloride (3.51 g, 0.01 mol) was taken in acetone (20 ml) in a round bottom flask. To this, solution of sodium azide(1.56 g, 0.024 mol) in water (6 ml) was added drop wise with stirring. The stirring was continued for 10 h. Then the reaction mixture was poured on to crushed ice (100 g). The separated solid was filtered and recrystallized from benzene to obtain a colorless solid in 62% yield, m.p. 132–133 °C; IR (KBr) cm-1 1722 (CO), 2130 (N3, azido); 1H NMR (CDCl3,300 MHz, TMS): δ 2.73 (s, 3H, C7—CH3), 4.62 (s, 2H, C4—CH2), 6.64 (s, 1H, C3—H), 7.31 (s, 1H, C8—H), 8.30 (s, 1H, C5—H); LC—MS: 321 (M+1). Anal. Calcd for C11H8N6O4S (%): Calcd. C, 41.25; H, 2.52; N, 26.24. Found C, 41.15; H, 2.46; N, 26.21.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic), 0.96Å (methyl) or 0.97Å (methylene) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Rigid bond restraints on the ellipsoids were used for both azide groups.

Structure description top

The Chemisty of azides has been the subject of intensive investigations during the last 50 years because of its importance in preparative heterocyclic chemistry (Scriven et al., 1988). The Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction between alkynes and azides has been suitable for the synthesis of a large number of modified nucleosides, nucleotides and oligonucleotides with a broad range of applications (Amblard et al., 2009). 4-Azidomethylcoumarin derivatives have aroused increasing interest because of their photophysical properties (Melavanki et al., 2008, 2009, 2010; Naik et al., 2010) and antimicrobial activities (Basanagouda et al., 2010). As a part of our study on synthesis of biological active compounds, We report the crystal structure of 4-Azidomethyl-7-methyl-coumarin-6-sulfonyl azide.

The title compound (I), the molecular conformation (Fig.1) is preferred with the plane of the coumarin aromatic ring is 17.2 (2)° with respect to the plane of azide of methylene substituent whereas it is 83.2 (2)° to the plane of azide of sulfonyl group. The molecular arrangement is stabilized by the formation of dimer through C—H···O interactions with R22(12) ring motif (Bernstein et al., 1995)(Fig. 2) . Further, it is stabilized by SO···π (Table 1, Cg being the centroid of the C5-C10 ring) and slippest ππ interaction (symmetry code (-1/4 + x, 7/4 - y, 1/4 + z) with centroid to centroid distance = 3.765 (2) Å, interplanar distance = 3.564 (1)Å and an offset angle of 18.8°, which form a layered structure (Fig. 2).

For azides, see: Scriven et al. (1988); Amblard et al. (2009). For 4-azidomethylcoumarin derivatives, see: Melavanki et al. (2008, 2009, 2010); Naik et al., (2010); Basanagouda et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing showing the layered structure stabilized by ππ and SO···π contacts and the dimer formation through C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been omitted for clarity
4-Azidomethyl-7-methyl-2-oxo-2H-chromene-6-sulfonyl azide top
Crystal data top
C11H8N6O4SDx = 1.593 Mg m3
Mr = 320.29Melting point: 406 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 400 reflections
a = 13.5452 (12) Åθ = 1.0–28.0°
b = 27.952 (3) ŵ = 0.27 mm1
c = 14.1107 (13) ÅT = 292 K
V = 5342.5 (9) Å3Hexagonal, pale yellow
Z = 160.24 × 0.16 × 0.10 mm
F(000) = 2624
Data collection top
Bruker SMART APEX CCD
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube2677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 170
Tmin = 0.891, Tmax = 0.973k = 360
11344 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0532P)2 + 3.5426P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3124 reflectionsΔρmax = 0.26 e Å3
201 parametersΔρmin = 0.21 e Å3
7 restraintsAbsolute structure: Flack (1983), 1438 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (8)
Crystal data top
C11H8N6O4SV = 5342.5 (9) Å3
Mr = 320.29Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 13.5452 (12) ŵ = 0.27 mm1
b = 27.952 (3) ÅT = 292 K
c = 14.1107 (13) Å0.24 × 0.16 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2677 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.973Rint = 0.025
11344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.21 e Å3
3124 reflectionsAbsolute structure: Flack (1983), 1438 Friedel pairs
201 parametersAbsolute structure parameter: 0.09 (8)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85568 (4)0.83758 (2)0.50177 (5)0.04317 (17)
O10.47627 (11)0.93758 (5)0.47959 (14)0.0462 (4)
O20.31442 (12)0.93929 (6)0.49151 (18)0.0610 (6)
O30.83522 (13)0.78772 (6)0.5081 (2)0.0663 (6)
O40.92870 (14)0.85453 (7)0.43818 (16)0.0598 (5)
N10.89734 (14)0.85727 (8)0.60674 (18)0.0507 (5)
N20.86115 (15)0.83563 (8)0.67677 (19)0.0511 (6)
N30.8356 (2)0.81892 (11)0.7443 (3)0.0727 (8)
N40.37159 (16)0.76434 (8)0.4783 (2)0.0643 (8)
N50.36677 (14)0.72360 (8)0.4993 (2)0.0494 (5)
N60.35192 (18)0.68477 (9)0.5172 (3)0.0715 (8)
C20.38675 (17)0.91435 (8)0.4834 (2)0.0439 (6)
C30.38818 (17)0.86301 (8)0.4776 (2)0.0436 (6)
H30.32840.84670.47520.052*
C40.47186 (17)0.83767 (7)0.47560 (17)0.0370 (5)
C50.65857 (15)0.84097 (8)0.48129 (17)0.0372 (5)
H50.66340.80780.48150.045*
C60.74334 (15)0.86865 (8)0.48503 (18)0.0368 (5)
C70.74063 (16)0.91904 (8)0.48102 (17)0.0366 (5)
C80.64872 (16)0.94005 (8)0.47701 (18)0.0397 (6)
H80.64390.97320.47410.048*
C90.56344 (16)0.91278 (8)0.47726 (18)0.0371 (5)
C100.56574 (15)0.86284 (7)0.47717 (17)0.0354 (5)
C110.83110 (18)0.95033 (9)0.4850 (2)0.0507 (7)
H11A0.86970.94570.42870.076*
H11B0.86980.94200.53950.076*
H11C0.81140.98330.48930.076*
C120.47394 (17)0.78398 (8)0.4712 (2)0.0482 (7)
H12A0.50360.77380.41190.058*
H12B0.51380.77160.52270.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (2)0.0409 (3)0.0630 (4)0.0027 (2)0.0001 (3)0.0076 (3)
O10.0301 (7)0.0290 (7)0.0796 (13)0.0036 (6)0.0053 (9)0.0013 (8)
O20.0330 (8)0.0437 (9)0.1064 (17)0.0092 (7)0.0043 (12)0.0052 (11)
O30.0391 (9)0.0387 (9)0.1212 (18)0.0081 (7)0.0105 (13)0.0100 (12)
O40.0346 (9)0.0800 (14)0.0647 (12)0.0016 (9)0.0090 (9)0.0099 (11)
N10.0365 (11)0.0561 (13)0.0595 (14)0.0065 (9)0.0045 (10)0.0077 (11)
N20.0321 (11)0.0519 (14)0.0693 (16)0.0087 (10)0.0030 (11)0.0056 (12)
N30.0538 (14)0.0844 (19)0.080 (2)0.0118 (13)0.0103 (15)0.0282 (17)
N40.0326 (10)0.0369 (11)0.123 (3)0.0022 (8)0.0061 (13)0.0063 (13)
N50.0336 (9)0.0501 (13)0.0645 (14)0.0067 (8)0.0001 (11)0.0062 (13)
N60.0595 (15)0.0435 (13)0.111 (3)0.0128 (11)0.0026 (15)0.0127 (15)
C20.0319 (11)0.0366 (12)0.0631 (17)0.0037 (8)0.0045 (11)0.0015 (12)
C30.0293 (10)0.0351 (11)0.0662 (17)0.0035 (8)0.0032 (11)0.0006 (11)
C40.0292 (10)0.0308 (10)0.0511 (14)0.0019 (8)0.0037 (10)0.0017 (11)
C50.0299 (10)0.0315 (10)0.0502 (15)0.0013 (8)0.0011 (10)0.0032 (10)
C60.0271 (9)0.0356 (10)0.0476 (13)0.0018 (8)0.0006 (10)0.0048 (10)
C70.0346 (11)0.0318 (10)0.0433 (14)0.0053 (8)0.0007 (10)0.0012 (10)
C80.0382 (11)0.0271 (10)0.0540 (15)0.0019 (8)0.0027 (12)0.0018 (10)
C90.0293 (11)0.0326 (11)0.0495 (13)0.0025 (8)0.0036 (10)0.0000 (10)
C100.0284 (10)0.0306 (10)0.0473 (13)0.0019 (8)0.0023 (10)0.0003 (9)
C110.0356 (11)0.0391 (12)0.077 (2)0.0089 (9)0.0015 (14)0.0030 (14)
C120.0310 (11)0.0321 (10)0.0814 (19)0.0031 (9)0.0035 (12)0.0037 (12)
Geometric parameters (Å, º) top
S1—O41.417 (2)C4—C121.502 (3)
S1—O31.4237 (18)C5—C61.386 (3)
S1—N11.678 (3)C5—C101.399 (3)
S1—C61.768 (2)C5—H50.9300
O1—C91.370 (3)C6—C71.410 (3)
O1—C21.376 (3)C7—C81.378 (3)
O2—C21.208 (3)C7—C111.507 (3)
N1—N21.258 (3)C8—C91.384 (3)
N2—N31.116 (4)C8—H80.9300
N4—N51.178 (3)C9—C101.396 (3)
N4—C121.495 (3)C11—H11A0.9600
N5—N61.133 (3)C11—H11B0.9600
C2—C31.438 (3)C11—H11C0.9600
C3—C41.337 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C101.453 (3)
O4—S1—O3120.17 (13)C7—C6—S1121.23 (16)
O4—S1—N1102.39 (12)C8—C7—C6116.80 (19)
O3—S1—N1109.36 (14)C8—C7—C11119.3 (2)
O4—S1—C6110.61 (12)C6—C7—C11123.9 (2)
O3—S1—C6108.77 (11)C7—C8—C9121.3 (2)
N1—S1—C6104.26 (11)C7—C8—H8119.4
C9—O1—C2121.45 (17)C9—C8—H8119.4
N2—N1—S1113.88 (19)O1—C9—C8116.16 (18)
N3—N2—N1173.0 (3)O1—C9—C10121.68 (19)
N5—N4—C12115.0 (2)C8—C9—C10122.1 (2)
N6—N5—N4172.8 (3)C9—C10—C5117.18 (19)
O2—C2—O1116.5 (2)C9—C10—C4117.67 (19)
O2—C2—C3126.3 (2)C5—C10—C4125.13 (19)
O1—C2—C3117.18 (19)C7—C11—H11A109.5
C4—C3—C2122.8 (2)C7—C11—H11B109.5
C4—C3—H3118.6H11A—C11—H11B109.5
C2—C3—H3118.6C7—C11—H11C109.5
C3—C4—C10119.02 (19)H11A—C11—H11C109.5
C3—C4—C12123.1 (2)H11B—C11—H11C109.5
C10—C4—C12117.89 (19)N4—C12—C4110.29 (18)
C6—C5—C10120.1 (2)N4—C12—H12A109.6
C6—C5—H5119.9C4—C12—H12A109.6
C10—C5—H5119.9N4—C12—H12B109.6
C5—C6—C7122.3 (2)C4—C12—H12B109.6
C5—C6—S1116.36 (17)H12A—C12—H12B108.1
O4—S1—N1—N2160.77 (19)S1—C6—C7—C113.5 (4)
O3—S1—N1—N232.3 (2)C6—C7—C8—C90.2 (4)
C6—S1—N1—N283.9 (2)C11—C7—C8—C9177.3 (2)
C9—O1—C2—O2175.3 (2)C2—O1—C9—C8177.7 (2)
C9—O1—C2—C34.6 (4)C2—O1—C9—C101.0 (4)
O2—C2—C3—C4175.0 (3)C7—C8—C9—O1175.7 (2)
O1—C2—C3—C44.8 (4)C7—C8—C9—C103.0 (4)
C2—C3—C4—C101.4 (4)O1—C9—C10—C5175.7 (2)
C2—C3—C4—C12179.0 (3)C8—C9—C10—C52.9 (3)
C10—C5—C6—C72.6 (4)O1—C9—C10—C42.5 (3)
C10—C5—C6—S1174.00 (18)C8—C9—C10—C4178.8 (2)
O4—S1—C6—C5134.2 (2)C6—C5—C10—C90.1 (3)
O3—S1—C6—C50.2 (3)C6—C5—C10—C4178.3 (2)
N1—S1—C6—C5116.4 (2)C3—C4—C10—C92.3 (4)
O4—S1—C6—C749.1 (2)C12—C4—C10—C9177.4 (2)
O3—S1—C6—C7176.8 (2)C3—C4—C10—C5175.8 (2)
N1—S1—C6—C760.3 (2)C12—C4—C10—C54.5 (4)
C5—C6—C7—C82.6 (4)N5—N4—C12—C4161.8 (3)
S1—C6—C7—C8173.89 (19)C3—C4—C12—N45.1 (4)
C5—C6—C7—C11179.9 (3)C10—C4—C12—N4175.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.523.416 (3)161
S1—O4···Cgii1.42 (1)2.96 (1)3.931 (2)128
Symmetry codes: (i) x+1, y+2, z; (ii) x1/4, y+7/4, z3/4.

Experimental details

Crystal data
Chemical formulaC11H8N6O4S
Mr320.29
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)292
a, b, c (Å)13.5452 (12), 27.952 (3), 14.1107 (13)
V3)5342.5 (9)
Z16
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.891, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
11344, 3124, 2677
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.05
No. of reflections3124
No. of parameters201
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21
Absolute structureFlack (1983), 1438 Friedel pairs
Absolute structure parameter0.09 (8)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.523.416 (3)161
S1—O4···Cgii1.417 (2)2.963 (2)3.931 (2)128
Symmetry codes: (i) x+1, y+2, z; (ii) x1/4, y+7/4, z3/4.
 

Acknowledgements

The authors acknowledge the DST, the CCD X-ray facility at IISc, Bangalore, and the Sophisticated Instrumentation Centre at Karnatak University, Dharwad for the spectroscopic data. MB thanks Karnatak University for a Research Studentship.

References

First citationAmblard, F., Cho, J. H. & Schhinazi, R. F. (2009). Chem. Rev. 109, 4207–4220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBasanagouda, M., Shivashankar, K., Kulkarni, M. V., Rasal, V. P., Patel, H., Mutha, S. S. & Mohite, A. A. (2010). Eur. J. Med. Chem. 45, 1151–1157.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMelavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2009). J. Lumin. 129, 1298–1303.  Web of Science CrossRef CAS Google Scholar
First citationMelavanki, R. M., Kusanur, R. A., Kadadevarmath, J. S. & Kulkarni, M. V. (2010). J Fluoresc. DOI: 10.1007/s10895-010-0664-7.  Google Scholar
First citationMelavanki, R. M., Kusanur, R. A., Kulkarni, M. V. & Kadadevarmath, J. S. (2008). J. Lumin. 128, 573–577.  Web of Science CrossRef CAS Google Scholar
First citationNaik, R. J. & Kullkarni, M. V. (2010). J. Lumin. 130, 2065–2071.  Web of Science CrossRef CAS Google Scholar
First citationScriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds