organic compounds
6-Isopropyl-5-methoxy-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one
aInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, People's Republic of China, and bCenter of Oncology, People's Hospital affiliated with Hubei Medical University, Shi Yan 442000, People's Republic of China
*Correspondence e-mail: zken710@yahoo.com.cn
In the title compound, C14H15N5O2, the whole molecule apart from the terminal C atoms of the isopropyl group is located on a crystallographic mirror plane. An intramolecular C—H⋯N hydrogen-bonding interaction may stabilize the molecular conformation. The crystal packing features weak slipped π–π interactions between the pyrimidine and the phenyl rings of symmetry-related molecules [centroid–centroid distance = 3.746 (1)Å, slippage of 1.574 Å].
Related literature
Fpr the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Chen & Shi (2006); Ferguson et al. (1998); Li et al. (2004); Maldonado et al. (2006); Wang et al. (2006); Xiao & Shi (2007); Zeng et al. (2006, 2009); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Zhao, Xie et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810041978/dn2610sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041978/dn2610Isup2.hkl
To the solution of carbodiimide prepared according to Zeng et al. (2006) in a mixed solvent (CH2Cl2/MeOH,1:4 v/v, 15 ml) was added a fresh prepared solution of Na/MeOH (0.1 g/2 ml). After stirring the reaction mixture for 6 h, the solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound (I) in 89% yield (m.p. 471 K). Elemental analysis: calculated for C14H15N5O2: C, 58.94; H, 5.30; N, 24.55%. Found: C, 57.62; H, 5.72; N, 24.01%. Crystals suitable for X-ray diffraction study were obtained by recrystallization from hexane and dichloromethane (1:3 v/v) at room temperature.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties, such as antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor (Mitchell et al., 1950; Levine et al., 1963), antileukemie (Montgomery et al., 1962), hypersusceptibility inhibitor and acesodyne activities (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).
In recent years, Zhao's group succeeded in synthesizing the derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic
(Zhao, Xie et al., 2005). As a continuation of the quest for new biologically active derivatives of 8-azaguanine, the title compound, (I), was obtained from beta-ethoxycarbonyl iminophosphorane with aliphatic isocyanate, and structurally characterized.In the title compound, C14H15N5O2, the whole molecule but the terminal C atoms of the isopropyl group is located in a mirror plane and is then perfectly planar (Fig. 1). The bond lengths and angles in the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). the triazolopyrimidine ring system is perfectly coplanar (Chen & Shi, 2006; Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Wang et al., 2006; Xiao & Shi, 2007; Zeng et al., 2009).
The molecules are packed along the b axis with weak slippest π–π interaction between the pyrimidin and the phenyl rings of symmetry related molecules (Centroid to centroid distance= 3.746 (1)Å, interplanar distance= 3.399 Å with a slippage of 1.574 Å).
Fpr the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Chen & Shi (2006); Ferguson et al. (1998); Li et al. (2004); Maldonado et al. (2006); Wang et al. (2006); Xiao & Shi (2007); Zeng et al. (2006, 2009); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Zhao, Xie et al. (2005).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H15N5O2 | F(000) = 600 |
Mr = 285.31 | Dx = 1.350 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 982 reflections |
a = 14.921 (2) Å | θ = 2.9–20.5° |
b = 6.7989 (11) Å | µ = 0.10 mm−1 |
c = 13.839 (2) Å | T = 298 K |
V = 1404.0 (4) Å3 | Block, colourless |
Z = 4 | 0.16 × 0.12 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1418 independent reflections |
Radiation source: fine-focus sealed tube | 1045 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 25.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −17→18 |
Tmin = 0.985, Tmax = 0.991 | k = −8→8 |
7422 measured reflections | l = −13→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0883P)2 + 0.4734P] where P = (Fo2 + 2Fc2)/3 |
1418 reflections | (Δ/σ)max < 0.001 |
125 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C14H15N5O2 | V = 1404.0 (4) Å3 |
Mr = 285.31 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 14.921 (2) Å | µ = 0.10 mm−1 |
b = 6.7989 (11) Å | T = 298 K |
c = 13.839 (2) Å | 0.16 × 0.12 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1418 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 1045 reflections with I > 2σ(I) |
Tmin = 0.985, Tmax = 0.991 | Rint = 0.039 |
7422 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
1418 reflections | Δρmin = −0.29 e Å−3 |
125 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.36483 (19) | 0.2500 | 0.3850 (3) | 0.1092 (13) | |
O2 | 0.24610 (18) | 0.2500 | 0.6874 (2) | 0.0829 (9) | |
N1 | 0.06296 (18) | 0.2500 | 0.41475 (18) | 0.0507 (7) | |
N2 | 0.0868 (3) | 0.2500 | 0.3193 (2) | 0.0843 (12) | |
N3 | 0.1730 (3) | 0.2500 | 0.3126 (2) | 0.0908 (12) | |
N4 | 0.14519 (17) | 0.2500 | 0.5659 (2) | 0.0495 (7) | |
N5 | 0.30395 (19) | 0.2500 | 0.5368 (3) | 0.0629 (9) | |
C1 | −0.0298 (2) | 0.2500 | 0.4402 (2) | 0.0462 (8) | |
C2 | −0.0554 (2) | 0.2500 | 0.5362 (2) | 0.0546 (9) | |
H2 | −0.0124 | 0.2500 | 0.5848 | 0.065* | |
C3 | −0.1452 (2) | 0.2500 | 0.5591 (3) | 0.0599 (10) | |
H3 | −0.1626 | 0.2500 | 0.6236 | 0.072* | |
C4 | −0.2092 (3) | 0.2500 | 0.4886 (3) | 0.0630 (10) | |
H4 | −0.2697 | 0.2500 | 0.5049 | 0.076* | |
C5 | −0.1835 (3) | 0.2500 | 0.3938 (3) | 0.0672 (11) | |
H5 | −0.2270 | 0.2500 | 0.3457 | 0.081* | |
C6 | −0.0949 (3) | 0.2500 | 0.3683 (3) | 0.0580 (10) | |
H6 | −0.0783 | 0.2500 | 0.3035 | 0.070* | |
C7 | 0.1382 (2) | 0.2500 | 0.4688 (2) | 0.0464 (8) | |
C8 | 0.2070 (2) | 0.2500 | 0.4039 (3) | 0.0608 (10) | |
C9 | 0.2979 (3) | 0.2500 | 0.4346 (3) | 0.0721 (11) | |
C10 | 0.2277 (2) | 0.2500 | 0.5942 (3) | 0.0589 (9) | |
C11 | 0.3973 (3) | 0.2500 | 0.5789 (4) | 0.0879 (14) | |
H11 | 0.4338 | 0.2500 | 0.5200 | 0.105* | |
C12 | 0.4225 (2) | 0.0624 (6) | 0.6212 (3) | 0.1210 (15) | |
H12A | 0.4861 | 0.0599 | 0.6319 | 0.181* | |
H12B | 0.4063 | −0.0421 | 0.5780 | 0.181* | |
H12C | 0.3919 | 0.0454 | 0.6816 | 0.181* | |
C13 | 0.1714 (3) | 0.2500 | 0.7534 (3) | 0.1016 (17) | |
H13A | 0.1933 | 0.2500 | 0.8186 | 0.152* | |
H13B | 0.1356 | 0.1347 | 0.7427 | 0.152* | 0.50 |
H13C | 0.1356 | 0.3653 | 0.7427 | 0.152* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0561 (19) | 0.156 (3) | 0.115 (3) | 0.000 | 0.0314 (18) | 0.000 |
O2 | 0.0545 (17) | 0.125 (3) | 0.0687 (18) | 0.000 | −0.0150 (14) | 0.000 |
N1 | 0.0539 (18) | 0.0584 (17) | 0.0399 (14) | 0.000 | 0.0009 (13) | 0.000 |
N2 | 0.075 (2) | 0.131 (3) | 0.0470 (19) | 0.000 | 0.0067 (17) | 0.000 |
N3 | 0.074 (3) | 0.142 (4) | 0.056 (2) | 0.000 | 0.0142 (18) | 0.000 |
N4 | 0.0419 (16) | 0.0507 (16) | 0.0559 (18) | 0.000 | −0.0071 (12) | 0.000 |
N5 | 0.0365 (16) | 0.0593 (19) | 0.093 (2) | 0.000 | −0.0019 (15) | 0.000 |
C1 | 0.050 (2) | 0.0395 (17) | 0.0485 (19) | 0.000 | −0.0052 (15) | 0.000 |
C2 | 0.043 (2) | 0.066 (2) | 0.055 (2) | 0.000 | −0.0077 (16) | 0.000 |
C3 | 0.052 (2) | 0.065 (2) | 0.063 (2) | 0.000 | 0.0000 (17) | 0.000 |
C4 | 0.047 (2) | 0.060 (2) | 0.082 (3) | 0.000 | −0.0074 (19) | 0.000 |
C5 | 0.054 (2) | 0.064 (2) | 0.083 (3) | 0.000 | −0.030 (2) | 0.000 |
C6 | 0.067 (3) | 0.056 (2) | 0.051 (2) | 0.000 | −0.0148 (18) | 0.000 |
C7 | 0.048 (2) | 0.0419 (18) | 0.0497 (19) | 0.000 | −0.0003 (15) | 0.000 |
C8 | 0.050 (2) | 0.072 (2) | 0.060 (2) | 0.000 | 0.0094 (17) | 0.000 |
C9 | 0.060 (3) | 0.078 (3) | 0.078 (3) | 0.000 | 0.016 (2) | 0.000 |
C10 | 0.055 (2) | 0.055 (2) | 0.067 (2) | 0.000 | −0.0120 (19) | 0.000 |
C11 | 0.045 (2) | 0.086 (3) | 0.133 (4) | 0.000 | −0.013 (2) | 0.000 |
C12 | 0.082 (2) | 0.118 (3) | 0.163 (4) | 0.011 (2) | −0.034 (2) | 0.043 (3) |
C13 | 0.079 (3) | 0.172 (5) | 0.054 (2) | 0.000 | −0.016 (2) | 0.000 |
O1—C9 | 1.212 (5) | C3—H3 | 0.9300 |
O2—C10 | 1.319 (4) | C4—C5 | 1.367 (6) |
O2—C13 | 1.441 (5) | C4—H4 | 0.9300 |
N1—C7 | 1.350 (4) | C5—C6 | 1.369 (5) |
N1—N2 | 1.368 (4) | C5—H5 | 0.9300 |
N1—C1 | 1.428 (4) | C6—H6 | 0.9300 |
N2—N3 | 1.290 (5) | C7—C8 | 1.364 (5) |
N3—C8 | 1.360 (5) | C8—C9 | 1.421 (5) |
N4—C10 | 1.293 (4) | C11—C12i | 1.453 (4) |
N4—C7 | 1.348 (4) | C11—C12 | 1.453 (4) |
N5—C10 | 1.387 (5) | C11—H11 | 0.9800 |
N5—C9 | 1.418 (5) | C12—H12A | 0.9600 |
N5—C11 | 1.510 (5) | C12—H12B | 0.9600 |
C1—C2 | 1.382 (5) | C12—H12C | 0.9600 |
C1—C6 | 1.391 (4) | C13—H13A | 0.9600 |
C2—C3 | 1.377 (5) | C13—H13B | 0.9600 |
C2—H2 | 0.9300 | C13—H13C | 0.9600 |
C3—C4 | 1.365 (5) | ||
C10—O2—C13 | 117.3 (3) | N4—C7—C8 | 126.8 (3) |
C7—N1—N2 | 108.6 (3) | N1—C7—C8 | 105.1 (3) |
C7—N1—C1 | 132.0 (3) | N3—C8—C7 | 109.4 (3) |
N2—N1—C1 | 119.4 (3) | N3—C8—C9 | 129.3 (4) |
N3—N2—N1 | 109.2 (3) | C7—C8—C9 | 121.4 (4) |
N2—N3—C8 | 107.8 (3) | O1—C9—N5 | 120.8 (4) |
C10—N4—C7 | 112.0 (3) | O1—C9—C8 | 128.1 (4) |
C10—N5—C9 | 121.2 (3) | N5—C9—C8 | 111.1 (3) |
C10—N5—C11 | 122.4 (4) | N4—C10—O2 | 119.6 (3) |
C9—N5—C11 | 116.4 (3) | N4—C10—N5 | 127.5 (4) |
C2—C1—C6 | 119.6 (3) | O2—C10—N5 | 112.9 (3) |
C2—C1—N1 | 120.4 (3) | C12i—C11—C12 | 122.8 (5) |
C6—C1—N1 | 120.0 (3) | C12i—C11—N5 | 113.2 (2) |
C3—C2—C1 | 119.4 (3) | C12—C11—N5 | 113.2 (2) |
C3—C2—H2 | 120.3 | C12i—C11—H11 | 101.0 |
C1—C2—H2 | 120.3 | C12—C11—H11 | 101.0 |
C4—C3—C2 | 121.1 (4) | N5—C11—H11 | 101.0 |
C4—C3—H3 | 119.5 | C11—C12—H12A | 109.5 |
C2—C3—H3 | 119.5 | C11—C12—H12B | 109.5 |
C3—C4—C5 | 119.3 (4) | H12A—C12—H12B | 109.5 |
C3—C4—H4 | 120.3 | C11—C12—H12C | 109.5 |
C5—C4—H4 | 120.3 | H12A—C12—H12C | 109.5 |
C4—C5—C6 | 121.2 (3) | H12B—C12—H12C | 109.5 |
C4—C5—H5 | 119.4 | O2—C13—H13A | 109.5 |
C6—C5—H5 | 119.4 | O2—C13—H13B | 109.5 |
C5—C6—C1 | 119.4 (3) | H13A—C13—H13B | 109.5 |
C5—C6—H6 | 120.3 | O2—C13—H13C | 109.5 |
C1—C6—H6 | 120.3 | H13A—C13—H13C | 109.5 |
N4—C7—N1 | 128.1 (3) | H13B—C13—H13C | 109.5 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N4 | 0.93 | 2.37 | 3.021 (4) | 127 |
C6—H6···N2 | 0.93 | 2.47 | 2.794 (5) | 100 |
C11—H11···O1 | 0.98 | 2.13 | 2.727 (7) | 117 |
C12—H12C···O2 | 0.96 | 2.58 | 3.065 (5) | 111 |
Experimental details
Crystal data | |
Chemical formula | C14H15N5O2 |
Mr | 285.31 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 298 |
a, b, c (Å) | 14.921 (2), 6.7989 (11), 13.839 (2) |
V (Å3) | 1404.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.16 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.985, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7422, 1418, 1045 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.185, 1.07 |
No. of reflections | 1418 |
No. of parameters | 125 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.29 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N4 | 0.93 | 2.37 | 3.021 (4) | 127.3 |
C6—H6···N2 | 0.93 | 2.47 | 2.794 (5) | 100.3 |
C11—H11···O1 | 0.98 | 2.13 | 2.727 (7) | 117.4 |
C12—H12C···O2 | 0.96 | 2.58 | 3.065 (5) | 111.3 |
Acknowledgements
We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province (grant Nos. B200624004, B20092412), the Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and Hubei Medical University (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).
References
Bariana, D. S. (1971). J. Med. Chem. 14, 535–543. PubMed Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031. CrossRef IUCr Journals Google Scholar
Holland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449. CAS Google Scholar
Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N. Y.), 16, 269–272. CrossRef CAS Google Scholar
Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14. Google Scholar
Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649. CAS Google Scholar
Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509. PubMed CAS Web of Science Google Scholar
Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142. CrossRef CAS PubMed Web of Science Google Scholar
Zeng, X.-H., Liu, X.-L., Deng, S.-H., Chen, P. & Wang, H.-M. (2009). Acta Cryst. E65, o2583–o2584. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, X.-H., Wang, H.-M., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o1888–o1890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444. Web of Science CrossRef CAS Google Scholar
Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties, such as antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor (Mitchell et al., 1950; Levine et al., 1963), antileukemie (Montgomery et al., 1962), hypersusceptibility inhibitor and acesodyne activities (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).
In recent years, Zhao's group succeeded in synthesizing the derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanates (Zhao, Xie et al., 2005). As a continuation of the quest for new biologically active derivatives of 8-azaguanine, the title compound, (I), was obtained from beta-ethoxycarbonyl iminophosphorane with aliphatic isocyanate, and structurally characterized.
In the title compound, C14H15N5O2, the whole molecule but the terminal C atoms of the isopropyl group is located in a mirror plane and is then perfectly planar (Fig. 1). The bond lengths and angles in the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). the triazolopyrimidine ring system is perfectly coplanar (Chen & Shi, 2006; Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Wang et al., 2006; Xiao & Shi, 2007; Zeng et al., 2009).
The molecules are packed along the b axis with weak slippest π–π interaction between the pyrimidin and the phenyl rings of symmetry related molecules (Centroid to centroid distance= 3.746 (1)Å, interplanar distance= 3.399 Å with a slippage of 1.574 Å).