organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2′-Bis(pyridin-2-yl­methyl­­idene)pyridine-2,6-dicarbohydrazide di­methyl­formamide monosolvate

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 7 September 2010; accepted 1 October 2010; online 9 October 2010)

In the crystal of the title compound, C22H22N8O3, the dicarbohydrazide mol­ecules are linked into a chain along [010] by C—H⋯N inter­actions involving the pyridyl N atoms and aromatic C—H groups. The DMF mol­ecule is hydrogen bonded with the amide N—H via N—H⋯O inter­actions. C—H⋯O inter­actions also occur.

Related literature

For the biological properties of Schiff base ligands, see: Bedia et al. (2006[Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For related structures, see: Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N8O3

  • Mr = 446.48

  • Monoclinic, P 21 /c

  • a = 10.0944 (9) Å

  • b = 24.639 (2) Å

  • c = 9.6552 (8) Å

  • β = 110.826 (2)°

  • V = 2244.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.36 × 0.31 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.984

  • 11220 measured reflections

  • 3945 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.03

  • 3945 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 2.29 3.015 (3) 142
N5—H5⋯O3 0.86 2.26 3.045 (3) 152
N2—H2⋯O3 0.86 2.29 3.015 (3) 142
N5—H5⋯O3 0.86 2.26 3.045 (3) 152
C22—H22A⋯O2i 0.96 2.59 3.469 (4) 152
C12—H12⋯O1ii 0.93 2.68 3.534 (3) 153
C11—H11⋯N4iii 0.93 2.62 3.402 (4) 142
C3—H3⋯N4iv 0.93 2.68 3.585 (3) 165
C5—H5A⋯N7iv 0.93 2.64 3.520 (4) 158
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: SMART (Siemens, 2007[Siemens (2007). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 2007[Siemens (2007). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases containing pyridine ring have received considerable attention during the last decades, mainly because their steric and electronic properties can be easily adapted by choosing the right amine and aldehyde precursors(Bedia et al., 2006).

We report here the crystal structure of the title new Schiff base compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Alhadi et al., 2008). Meanwhile, the structure unit of (I), contains one N'2,N'6-bis(pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide molecule and one N,N-dimethylformamide solvate molecule. In molecule N'2,N'6-bis (pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide, the centre pyridine ring and the pyridine rings (n4/c9/c10/c11/c12/c13),(n1/c2/c3/c4/c5/c6) form the dihedral angles of 9.13 (15)°, 4.35 (17)°, respectively, which mean the atoms of the molecule N'2,N'6-bis (pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide are almost coplanar.

Moreover, the crystal surpermolecular structure was built from the connections of weak intermolecular N—H···O, C—H···O and C—H···N as shown in table 1.

Related literature top

For the biological properties of Schiff base ligands, see: Bedia et al. (2006). For related structures, see: Alhadi et al. (2008); Nie (2008).

Experimental top

Pyridine-2,6-dicarbohydrazide (6 mmol) in DMF (20 ml) was added to pyridine-2-aldehyde (12 mmol). The mixture was refluxed with stirring for 6 h. A red precipitate was then obtained. Red crystals suitable for X-ray diffraction analysis formed after one week on slow evaporation of DMF solution at room temperature. Elemental analysis: calculated for C22H22N8O3: C 59.18, H 4.97, N 25.10%; found: C 59.28, H 4.82, N 25.21%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U-1.5eq(C) (C,N).

Structure description top

Schiff bases containing pyridine ring have received considerable attention during the last decades, mainly because their steric and electronic properties can be easily adapted by choosing the right amine and aldehyde precursors(Bedia et al., 2006).

We report here the crystal structure of the title new Schiff base compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Alhadi et al., 2008). Meanwhile, the structure unit of (I), contains one N'2,N'6-bis(pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide molecule and one N,N-dimethylformamide solvate molecule. In molecule N'2,N'6-bis (pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide, the centre pyridine ring and the pyridine rings (n4/c9/c10/c11/c12/c13),(n1/c2/c3/c4/c5/c6) form the dihedral angles of 9.13 (15)°, 4.35 (17)°, respectively, which mean the atoms of the molecule N'2,N'6-bis (pyridin-2-ylmethylene)pyridine-2,6-dicarbohydrazide are almost coplanar.

Moreover, the crystal surpermolecular structure was built from the connections of weak intermolecular N—H···O, C—H···O and C—H···N as shown in table 1.

For the biological properties of Schiff base ligands, see: Bedia et al. (2006). For related structures, see: Alhadi et al. (2008); Nie (2008).

Computing details top

Data collection: SMART (Siemens, 2007); cell refinement: SAINT (Siemens, 2007); data reduction: SAINT (Siemens, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis.
N2,N2'-Bis(pyridin-2-ylmethylidene)pyridine-2,6- dicarbohydrazide dimethylformamide monosolvate top
Crystal data top
C19H15N7O2·C3H7NOF(000) = 936
Mr = 446.48Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2269 reflections
a = 10.0944 (9) Åθ = 2.3–22.5°
b = 24.639 (2) ŵ = 0.09 mm1
c = 9.6552 (8) ÅT = 298 K
β = 110.826 (2)°Block, red
V = 2244.5 (3) Å30.36 × 0.31 × 0.17 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3945 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.967, Tmax = 0.984k = 2529
11220 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.8005P]
where P = (Fo2 + 2Fc2)/3
3945 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H15N7O2·C3H7NOV = 2244.5 (3) Å3
Mr = 446.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0944 (9) ŵ = 0.09 mm1
b = 24.639 (2) ÅT = 298 K
c = 9.6552 (8) Å0.36 × 0.31 × 0.17 mm
β = 110.826 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3945 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2291 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.984Rint = 0.040
11220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3945 reflectionsΔρmin = 0.17 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0532 (2)0.06010 (8)0.6046 (2)0.0399 (5)
N20.8597 (2)0.13178 (8)0.4467 (2)0.0478 (6)
H20.84370.10640.50000.057*
N30.7529 (2)0.16653 (8)0.3698 (2)0.0468 (6)
N40.3891 (2)0.17800 (9)0.3134 (3)0.0544 (6)
N50.9686 (2)0.00721 (8)0.7745 (2)0.0453 (5)
H50.91870.01930.72460.054*
N60.9148 (2)0.04071 (8)0.8553 (2)0.0446 (5)
N70.5832 (2)0.05299 (9)0.8981 (3)0.0593 (7)
N80.8324 (2)0.16209 (9)0.8702 (2)0.0538 (6)
O11.02185 (19)0.17371 (7)0.3714 (2)0.0590 (5)
O21.1763 (2)0.05273 (8)0.8419 (2)0.0643 (6)
O30.7810 (2)0.09334 (7)0.7038 (2)0.0647 (6)
C10.9891 (3)0.13729 (10)0.4390 (3)0.0435 (6)
C21.0946 (3)0.09502 (9)0.5217 (3)0.0397 (6)
C31.2263 (3)0.09326 (10)0.5094 (3)0.0483 (7)
H31.25120.11820.45060.058*
C41.3202 (3)0.05384 (11)0.5861 (3)0.0564 (8)
H41.40970.05160.57940.068*
C51.2802 (3)0.01771 (11)0.6728 (3)0.0524 (7)
H5A1.34220.00920.72560.063*
C61.1465 (3)0.02221 (9)0.6800 (3)0.0405 (6)
C71.1003 (3)0.01612 (10)0.7739 (3)0.0431 (6)
C80.6315 (3)0.15664 (10)0.3761 (3)0.0489 (7)
H80.61940.12720.43080.059*
C90.5108 (3)0.19145 (10)0.2974 (3)0.0454 (7)
C100.5215 (3)0.23516 (11)0.2119 (3)0.0607 (8)
H100.60810.24380.20360.073*
C110.4044 (4)0.26539 (12)0.1401 (3)0.0659 (9)
H110.41000.29500.08280.079*
C120.2779 (3)0.25150 (12)0.1535 (3)0.0621 (8)
H120.19580.27110.10440.075*
C130.2757 (3)0.20829 (12)0.2407 (3)0.0614 (8)
H130.18990.19930.25020.074*
C140.7866 (3)0.03185 (10)0.8425 (3)0.0466 (7)
H140.73610.00400.78150.056*
C150.7184 (3)0.06509 (10)0.9230 (3)0.0429 (6)
C160.7895 (3)0.10600 (10)1.0182 (3)0.0495 (7)
H160.88460.11281.03470.059*
C170.7184 (3)0.13655 (11)1.0882 (3)0.0573 (8)
H170.76370.16471.15130.069*
C180.5798 (3)0.12467 (12)1.0632 (3)0.0619 (8)
H180.52860.14461.10890.074*
C190.5177 (3)0.08291 (13)0.9697 (4)0.0680 (9)
H190.42370.07480.95500.082*
C200.7886 (3)0.11313 (12)0.8238 (3)0.0567 (8)
H200.76070.09120.88700.068*
C210.8856 (4)0.19753 (12)0.7832 (4)0.0753 (10)
H21A0.98330.18920.80160.113*
H21B0.87760.23460.81010.113*
H21C0.83140.19240.67990.113*
C220.8389 (4)0.18074 (14)1.0149 (4)0.0905 (12)
H22A0.80910.15211.06460.136*
H22B0.77740.21151.00350.136*
H22C0.93440.19101.07240.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (12)0.0380 (11)0.0372 (12)0.0013 (10)0.0111 (10)0.0001 (10)
N20.0479 (14)0.0483 (13)0.0485 (14)0.0057 (11)0.0187 (12)0.0119 (11)
N30.0480 (14)0.0495 (13)0.0416 (14)0.0077 (11)0.0145 (11)0.0060 (11)
N40.0495 (14)0.0638 (15)0.0505 (15)0.0082 (12)0.0186 (12)0.0115 (12)
N50.0477 (13)0.0416 (12)0.0483 (14)0.0007 (10)0.0192 (11)0.0087 (10)
N60.0494 (14)0.0399 (12)0.0470 (14)0.0032 (10)0.0203 (12)0.0024 (10)
N70.0485 (15)0.0632 (15)0.0695 (18)0.0088 (12)0.0250 (13)0.0170 (13)
N80.0674 (16)0.0472 (14)0.0459 (15)0.0036 (12)0.0189 (13)0.0027 (12)
O10.0569 (12)0.0580 (12)0.0641 (14)0.0013 (9)0.0240 (11)0.0191 (10)
O20.0577 (13)0.0570 (12)0.0801 (16)0.0126 (10)0.0268 (12)0.0261 (11)
O30.0962 (16)0.0493 (11)0.0570 (14)0.0045 (11)0.0377 (13)0.0016 (10)
C10.0471 (16)0.0466 (16)0.0365 (16)0.0029 (13)0.0144 (13)0.0008 (13)
C20.0436 (15)0.0393 (14)0.0345 (15)0.0028 (12)0.0118 (12)0.0021 (12)
C30.0510 (17)0.0504 (16)0.0463 (17)0.0022 (13)0.0207 (14)0.0058 (13)
C40.0468 (17)0.0632 (18)0.064 (2)0.0018 (15)0.0250 (16)0.0072 (16)
C50.0450 (16)0.0546 (17)0.0570 (19)0.0076 (13)0.0173 (15)0.0065 (15)
C60.0443 (15)0.0358 (14)0.0386 (16)0.0006 (12)0.0113 (13)0.0014 (12)
C70.0447 (16)0.0377 (14)0.0448 (17)0.0009 (12)0.0134 (14)0.0009 (12)
C80.0548 (18)0.0493 (16)0.0440 (17)0.0065 (14)0.0194 (14)0.0116 (13)
C90.0484 (16)0.0496 (16)0.0381 (16)0.0049 (13)0.0152 (14)0.0029 (13)
C100.063 (2)0.0606 (19)0.062 (2)0.0068 (16)0.0265 (17)0.0139 (16)
C110.081 (2)0.0568 (19)0.057 (2)0.0143 (17)0.0205 (18)0.0143 (15)
C120.061 (2)0.067 (2)0.051 (2)0.0235 (17)0.0111 (16)0.0045 (16)
C130.0514 (18)0.075 (2)0.058 (2)0.0107 (16)0.0188 (16)0.0044 (17)
C140.0503 (17)0.0375 (14)0.0518 (18)0.0025 (13)0.0179 (14)0.0038 (13)
C150.0437 (16)0.0384 (14)0.0444 (16)0.0019 (12)0.0128 (13)0.0015 (12)
C160.0457 (16)0.0472 (16)0.0559 (18)0.0020 (13)0.0183 (14)0.0030 (14)
C170.061 (2)0.0515 (17)0.057 (2)0.0003 (15)0.0191 (16)0.0122 (15)
C180.059 (2)0.0658 (19)0.065 (2)0.0070 (16)0.0279 (17)0.0115 (17)
C190.0472 (18)0.082 (2)0.078 (2)0.0073 (16)0.0266 (17)0.0209 (19)
C200.072 (2)0.0517 (18)0.053 (2)0.0035 (15)0.0305 (17)0.0106 (15)
C210.094 (3)0.0557 (19)0.086 (3)0.0023 (17)0.044 (2)0.0063 (18)
C220.132 (3)0.083 (2)0.053 (2)0.004 (2)0.030 (2)0.0114 (18)
Geometric parameters (Å, º) top
N1—C21.339 (3)C6—C71.494 (3)
N1—C61.342 (3)C8—C91.463 (3)
N2—C11.342 (3)C8—H80.9300
N2—N31.370 (3)C9—C101.384 (3)
N2—H20.8600C10—C111.360 (4)
N3—C81.272 (3)C10—H100.9300
N4—C91.333 (3)C11—C121.372 (4)
N4—C131.338 (3)C11—H110.9300
N5—C71.349 (3)C12—C131.362 (4)
N5—N61.373 (3)C12—H120.9300
N5—H50.8600C13—H130.9300
N6—C141.275 (3)C14—C151.459 (3)
N7—C151.332 (3)C14—H140.9300
N7—C191.336 (3)C15—C161.381 (3)
N8—C201.308 (3)C16—C171.373 (3)
N8—C211.441 (3)C16—H160.9300
N8—C221.450 (4)C17—C181.364 (4)
O1—C11.222 (3)C17—H170.9300
O2—C71.215 (3)C18—C191.365 (4)
O3—C201.234 (3)C18—H180.9300
C1—C21.500 (3)C19—H190.9300
C2—C31.377 (3)C20—H200.9300
C3—C41.375 (3)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.378 (4)C21—H21C0.9600
C4—H40.9300C22—H22A0.9600
C5—C61.380 (3)C22—H22B0.9600
C5—H5A0.9300C22—H22C0.9600
C2—N1—C6117.6 (2)C9—C10—H10120.3
C1—N2—N3120.0 (2)C10—C11—C12119.0 (3)
C1—N2—H2120.0C10—C11—H11120.5
N3—N2—H2120.0C12—C11—H11120.5
C8—N3—N2116.1 (2)C13—C12—C11118.3 (3)
C9—N4—C13116.9 (2)C13—C12—H12120.9
C7—N5—N6119.6 (2)C11—C12—H12120.9
C7—N5—H5120.2N4—C13—C12124.2 (3)
N6—N5—H5120.2N4—C13—H13117.9
C14—N6—N5115.8 (2)C12—C13—H13117.9
C15—N7—C19116.5 (2)N6—C14—C15120.5 (2)
C20—N8—C21120.6 (2)N6—C14—H14119.8
C20—N8—C22121.1 (3)C15—C14—H14119.8
C21—N8—C22118.1 (3)N7—C15—C16122.7 (2)
O1—C1—N2123.9 (2)N7—C15—C14115.1 (2)
O1—C1—C2121.2 (2)C16—C15—C14122.2 (2)
N2—C1—C2114.9 (2)C17—C16—C15119.2 (2)
N1—C2—C3123.1 (2)C17—C16—H16120.4
N1—C2—C1116.8 (2)C15—C16—H16120.4
C3—C2—C1120.0 (2)C18—C17—C16118.6 (3)
C4—C3—C2118.6 (2)C18—C17—H17120.7
C4—C3—H3120.7C16—C17—H17120.7
C2—C3—H3120.7C17—C18—C19118.7 (3)
C3—C4—C5119.2 (2)C17—C18—H18120.7
C3—C4—H4120.4C19—C18—H18120.7
C5—C4—H4120.4N7—C19—C18124.3 (3)
C4—C5—C6118.8 (3)N7—C19—H19117.9
C4—C5—H5A120.6C18—C19—H19117.9
C6—C5—H5A120.6O3—C20—N8125.9 (3)
N1—C6—C5122.6 (2)O3—C20—H20117.0
N1—C6—C7117.3 (2)N8—C20—H20117.0
C5—C6—C7120.1 (2)N8—C21—H21A109.5
O2—C7—N5123.5 (2)N8—C21—H21B109.5
O2—C7—C6121.6 (2)H21A—C21—H21B109.5
N5—C7—C6114.9 (2)N8—C21—H21C109.5
N3—C8—C9120.1 (2)H21A—C21—H21C109.5
N3—C8—H8119.9H21B—C21—H21C109.5
C9—C8—H8119.9N8—C22—H22A109.5
N4—C9—C10122.2 (2)N8—C22—H22B109.5
N4—C9—C8115.2 (2)H22A—C22—H22B109.5
C10—C9—C8122.6 (2)N8—C22—H22C109.5
C11—C10—C9119.5 (3)H22A—C22—H22C109.5
C11—C10—H10120.3H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.293.015 (3)142
N5—H5···O30.862.263.045 (3)152
N2—H2···O30.862.293.015 (3)142
N5—H5···O30.862.263.045 (3)152
C22—H22A···O2i0.962.593.469 (4)152
C12—H12···O1ii0.932.683.534 (3)153
C11—H11···N4iii0.932.623.402 (4)142
C3—H3···N4iv0.932.683.585 (3)165
C5—H5A···N7iv0.932.643.520 (4)158
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H15N7O2·C3H7NO
Mr446.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.0944 (9), 24.639 (2), 9.6552 (8)
β (°) 110.826 (2)
V3)2244.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.31 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11220, 3945, 2291
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.03
No. of reflections3945
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Siemens, 2007), SAINT (Siemens, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.293.015 (3)141.5
N5—H5···O30.862.263.045 (3)152.0
N2—H2···O30.862.293.015 (3)141.5
N5—H5···O30.862.263.045 (3)152.0
C22—H22A···O2i0.962.593.469 (4)151.5
C12—H12···O1ii0.932.683.534 (3)152.9
C11—H11···N4iii0.932.623.402 (4)142.2
C3—H3···N4iv0.932.683.585 (3)165.1
C5—H5A···N7iv0.932.643.520 (4)157.9
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the financial support of the Foundation of Binzhou University (Nos. BZXYLG200609, BZXYQNLG2005013).

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (2007). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds