organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzo­thia­zol-2-yl­sulfanyl)­acetic acid

aSchool of Basic Science, East China Jiaotong University, Nanchang 330013, People's Republic of China, and bZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: fhcgdfz@yahoo.cn

(Received 18 September 2010; accepted 15 October 2010; online 23 October 2010)

In the title compound, C9H7NO2S2, the benzine ring is essentially co-planar with the thia­zole ring, making a dihedral angle of 0.36 (7)°. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds between the carb­oxy group and the thia­zole N atom into chains along [10[\overline1]]. The chains are assembled into a supermolecular layer structure by thia­zole ring S⋯S contacts [3.5679 (7) Å].

Related literature

For the structure of tris­(2-hy­droxy­eth­yl)ammonium 3-benzo­thia­zole-2-thiol­ate, see: Zhu et al. (2009[Zhu, J.-Q., Fang, H.-C., Chen, B.-Y., Feng, M.-S. & Li, J.-N. (2009). Acta Cryst. E65, o1640.]). For S⋯S contacts in similar compounds, see: Dai et al. (1997[Dai, J., Munakata, M., Kuroda-Sowa, T., Suenaga, Y., Wu, L. P. & Yamamoto, M. (1997). Inorg. Chim. Acta, 258, 65-69.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7NO2S2

  • Mr = 225.28

  • Monoclinic, P 21 /c

  • a = 6.0374 (5) Å

  • b = 19.2450 (17) Å

  • c = 8.1250 (7) Å

  • β = 90.419 (1)°

  • V = 944.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.914

  • 4800 measured reflections

  • 1695 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.04

  • 1695 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.89 2.686 (2) 165
Symmetry code: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, tris(2-hydroxyethyl)ammonium 3-benzothiazole-2-thiolate, see: Zhu et al. (2009). For S···S contacts in similar compounds, see: Dai et al. (1997).

Experimental top

A solution of benzothiazole-2-thiol (167.2 mg, 1.00 mmol) and K2CO3 (207.0 mg, 1.50 mmol) in CH3OH (15 ml) was slowly added to a solution of 2-chloroacetic acid (113.4 mg, 1.20 mmol) in CH3OH (10 ml). The resultant solution was stirred and refluxed for 20 h and then filtered. Colorless crystals suitable for X-ray diffraction were obtained in about a week by slow diffusion of diethyl ether into a dilute solution of the title compound in methanol. yield: ca 82.3% (based on benzothiazole-2-thiol).

Refinement top

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically. All of H atoms were placed in idealized positions (C—H = 0.93 or 0.97 Å, O—H = 0.82 Å), forced to ride on the atom to which they are bonded, and were included in the refinement in the riding-model approximation. Uiso values were set equal to 1.5Ueq(parent atom) for carboxylic H atom and to 1.2Ueq(parent atom)for all other H atoms.

Structure description top

For a related structure, tris(2-hydroxyethyl)ammonium 3-benzothiazole-2-thiolate, see: Zhu et al. (2009). For S···S contacts in similar compounds, see: Dai et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Two-dimensional supramolecular layer which is connected by O—H···N [O···N 2.686 (2) Å, H···N 1.89 Å, O—H···N 165.3°, symmetry code: x + 1, -y + 3/2,z + 1/2] hydrogen bonds and S···S [S···S 3.568 Å, symmetry code: 1-x, 1-y, 1-z] contacts.
2-(Benzothiazol-2-ylsulfanyl)acetic acid top
Crystal data top
C9H7NO2S2F(000) = 464
Mr = 225.28Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2101 reflections
a = 6.0374 (5) Åθ = 2.7–27.5°
b = 19.2450 (17) ŵ = 0.53 mm1
c = 8.1250 (7) ÅT = 296 K
β = 90.419 (1)°Block, pink
V = 944.02 (14) Å30.23 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 47
Tmin = 0.885, Tmax = 0.914k = 2223
4800 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2852P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H7NO2S2V = 944.02 (14) Å3
Mr = 225.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0374 (5) ŵ = 0.53 mm1
b = 19.2450 (17) ÅT = 296 K
c = 8.1250 (7) Å0.23 × 0.21 × 0.17 mm
β = 90.419 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1439 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.914Rint = 0.021
4800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
1695 reflectionsΔρmin = 0.16 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5666 (3)0.77360 (10)0.5938 (3)0.0446 (5)
C20.4631 (3)0.70448 (10)0.5538 (3)0.0424 (5)
H2A0.42890.67980.65460.051*
H2B0.56540.67640.49060.051*
C30.1497 (3)0.63490 (9)0.3747 (2)0.0367 (4)
C40.0451 (3)0.55193 (10)0.2515 (2)0.0371 (4)
C50.1331 (3)0.51163 (10)0.3081 (2)0.0391 (4)
C60.1436 (4)0.44073 (10)0.2773 (3)0.0509 (5)
H60.26240.41430.31540.061*
C70.0259 (4)0.41063 (11)0.1894 (3)0.0556 (6)
H70.02230.36320.16770.067*
C80.2024 (4)0.45021 (12)0.1327 (3)0.0531 (6)
H80.31540.42870.07320.064*
C90.2144 (3)0.52022 (11)0.1620 (2)0.0458 (5)
H90.33370.54610.12280.055*
N10.0309 (3)0.62213 (8)0.2909 (2)0.0396 (4)
O10.7348 (3)0.76603 (7)0.6956 (2)0.0557 (4)
H10.79110.80410.71400.084*
O20.5039 (3)0.82751 (8)0.5396 (2)0.0736 (5)
S10.21328 (9)0.71923 (3)0.43642 (7)0.04900 (19)
S20.31920 (8)0.56396 (2)0.41411 (7)0.04382 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (11)0.0378 (11)0.0528 (12)0.0004 (9)0.0105 (10)0.0021 (9)
C20.0413 (11)0.0343 (10)0.0515 (12)0.0031 (8)0.0147 (9)0.0004 (8)
C30.0340 (10)0.0336 (10)0.0422 (11)0.0021 (8)0.0077 (8)0.0014 (8)
C40.0402 (10)0.0332 (10)0.0378 (10)0.0017 (8)0.0033 (8)0.0011 (8)
C50.0420 (11)0.0354 (10)0.0398 (10)0.0014 (8)0.0068 (9)0.0023 (8)
C60.0621 (14)0.0344 (11)0.0560 (13)0.0066 (9)0.0087 (11)0.0005 (9)
C70.0772 (16)0.0335 (11)0.0562 (13)0.0083 (11)0.0032 (12)0.0042 (10)
C80.0589 (14)0.0514 (13)0.0489 (12)0.0166 (11)0.0080 (10)0.0046 (10)
C90.0410 (11)0.0495 (12)0.0468 (12)0.0027 (9)0.0099 (9)0.0009 (9)
N10.0387 (9)0.0344 (8)0.0455 (9)0.0022 (7)0.0121 (7)0.0010 (7)
O10.0507 (9)0.0409 (8)0.0751 (11)0.0069 (7)0.0270 (8)0.0023 (7)
O20.0777 (12)0.0336 (9)0.1090 (14)0.0015 (8)0.0464 (10)0.0066 (8)
S10.0454 (3)0.0309 (3)0.0703 (4)0.0053 (2)0.0231 (3)0.0041 (2)
S20.0415 (3)0.0336 (3)0.0560 (3)0.00667 (19)0.0177 (2)0.0010 (2)
Geometric parameters (Å, º) top
C1—O21.188 (2)C4—C51.401 (3)
C1—O11.313 (2)C5—C61.389 (3)
C1—C21.504 (3)C5—S21.7332 (19)
C2—S11.8012 (19)C6—C71.372 (3)
C2—H2A0.9700C6—H60.9300
C2—H2B0.9700C7—C81.386 (3)
C3—N11.304 (2)C7—H70.9300
C3—S21.7345 (18)C8—C91.370 (3)
C3—S11.7407 (18)C8—H80.9300
C4—N11.391 (2)C9—H90.9300
C4—C91.391 (3)O1—H10.8200
O2—C1—O1124.99 (19)C4—C5—S2109.55 (14)
O2—C1—C2124.15 (19)C7—C6—C5118.3 (2)
O1—C1—C2110.86 (17)C7—C6—H6120.9
C1—C2—S1108.66 (14)C5—C6—H6120.9
C1—C2—H2A110.0C6—C7—C8120.7 (2)
S1—C2—H2A110.0C6—C7—H7119.7
C1—C2—H2B110.0C8—C7—H7119.7
S1—C2—H2B110.0C9—C8—C7121.6 (2)
H2A—C2—H2B108.3C9—C8—H8119.2
N1—C3—S2115.97 (14)C7—C8—H8119.2
N1—C3—S1120.51 (14)C8—C9—C4118.9 (2)
S2—C3—S1123.51 (11)C8—C9—H9120.6
N1—C4—C9126.16 (18)C4—C9—H9120.6
N1—C4—C5114.61 (16)C3—N1—C4110.65 (15)
C9—C4—C5119.22 (18)C1—O1—H1109.5
C6—C5—C4121.37 (18)C3—S1—C2100.82 (9)
C6—C5—S2129.08 (16)C5—S2—C389.21 (9)
O2—C1—C2—S17.7 (3)C5—C4—C9—C80.4 (3)
O1—C1—C2—S1172.54 (15)S2—C3—N1—C40.0 (2)
N1—C4—C5—C6179.50 (19)S1—C3—N1—C4178.49 (14)
C9—C4—C5—C60.3 (3)C9—C4—N1—C3179.45 (19)
N1—C4—C5—S20.5 (2)C5—C4—N1—C30.3 (2)
C9—C4—C5—S2179.69 (15)N1—C3—S1—C2176.73 (16)
C4—C5—C6—C70.0 (3)S2—C3—S1—C24.87 (16)
S2—C5—C6—C7179.96 (17)C1—C2—S1—C3170.23 (15)
C5—C6—C7—C80.2 (3)C6—C5—S2—C3179.6 (2)
C6—C7—C8—C90.1 (4)C4—C5—S2—C30.40 (15)
C7—C8—C9—C40.2 (3)N1—C3—S2—C50.25 (16)
N1—C4—C9—C8179.49 (19)S1—C3—S2—C5178.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.892.686 (2)165
Symmetry code: (i) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H7NO2S2
Mr225.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.0374 (5), 19.2450 (17), 8.1250 (7)
β (°) 90.419 (1)
V3)944.02 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.23 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
4800, 1695, 1439
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections1695
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.892.686 (2)165.3
Symmetry code: (i) x+1, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J., Munakata, M., Kuroda-Sowa, T., Suenaga, Y., Wu, L. P. & Yamamoto, M. (1997). Inorg. Chim. Acta, 258, 65–69.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J.-Q., Fang, H.-C., Chen, B.-Y., Feng, M.-S. & Li, J.-N. (2009). Acta Cryst. E65, o1640.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds