organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Hy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide

aJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Department of Chemistry, Yancheng Teachers University, Yancheng 224002, People's Republic of China
*Correspondence e-mail: xpzhougroup@163.com

(Received 18 October 2010; accepted 25 October 2010; online 31 October 2010)

The title mol­ecule, C14H11N3O4, is approximately planar, with an inter­planar angle between the two benzene rings of 5.8 (2)°. In the crystal, four mol­ecules are linked by an R44(12) motif with pairs of strong O—H⋯O and N—H⋯O hydrogen bonds. The motif is situated about the crystallographic centres of symmetry and it is composed of two pairs of parallel mol­ecules. This quadruplet of mol­ecules is further extended by symmetry-equivalent hydrogen bonds to form layers parallel to the (10[\overline{1}]) plane. In addition to the hydrogen bonds, there is also a weak ππ inter­action between the benzene rings.

Related literature

For medical applications of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Zhang et al. (2010[Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289-293.]). For related structures, see: Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]); Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.]). For background to hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]). For hydrogen-bonding motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used to analyse the ππ inter­actions.

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, P 21 /n

  • a = 9.987 (3) Å

  • b = 8.967 (3) Å

  • c = 15.108 (4) Å

  • β = 106.560 (3)°

  • V = 1296.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.989

  • 6579 measured reflections

  • 2768 independent reflections

  • 1787 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.03

  • 2768 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (2) 2.11 (2) 2.931 (2) 149.3 (16)
O1—H1⋯O2ii 0.85 (2) 1.82 (2) 2.6573 (17) 167 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Overview of ππ ring inter­actions in the structure

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.

Centroid–centroid Distance (Å) Symmetry code
Cg1–Cg2 3.6803 (16) 1 − x, −y, 1 − z

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few months, a number of hydrazone compounds have been reported for their medical applications (Ajani et al., 2010; Angelusiu et al., 2010; Zhang et al., 2010). Recent structure analyses of some members of this family of compounds have also been reported (Ahmad et al., 2010; Huang & Wu, 2010; Ji & Lu, 2010; Khaledi et al., 2010; Singh & Singh, 2010; Zhou & Yang, 2010). In this paper, we report the structure of the new hydrazone compound, N'-(3-hydroxybenzylidene)-4-nitrobenzohydrazide.

The title molecule is shown in Fig. 1. The molecule is approximately planar, with the interplanar angle between the two benzene rings equal to 5.8 (2)°. The bond lengths and angles are comparable with the hydrazone compounds cited above.

Four title molecules are linked by the motif R44(12) (Etter et al., 1990) with pairs of strong O—H···O and strong N—H···O hydrogen bonds (Desiraju & Steiner, 1999). For the hydrogen bonds, see Table 1. The motif R44(12) is situated about the crystallographic centres of symmetry with the Wyckoff position 2c for the present setting. This motif is composed of two pairs of parallel molecules. This quadruplet of the title molecules is further extended by the symmetry equivalent H-bonds into the layers parallel to the planes (101). In addition to the hydrogen bonds there is also a weak π-electron ring–π-electron ring interaction (Table 2) between the benzene rings in the structure (Spek, 2009).

Related literature top

For medical applications of hydrazones, see: Ajani et al. (2010); Angelusiu et al. (2010); Zhang et al. (2010). For related structures, see: Ahmad et al. (2010); Huang & Wu (2010); Ji & Lu (2010); Khaledi et al. (2010); Singh & Singh (2010); Zhou & Yang (2010). For background to hydrogen bonds, see: Desiraju & Steiner (1999). For hydrogen-bonding motifs, see: Etter et al. (1990). PLATON (Spek, 2009) was used to analyse the ππ interactions. [Note added references - please check added text]

Experimental top

4-Nitrobenzohydrazide (0.181 g, 1 mmol) and 3-hydroxybenzaldehyde (0.122 g, 1 mmol) were mixed in 50 ml of methanol at room temperature. The mixture was stirred at room temperature for 30 min to give a yellow solution of the product. After keeping the above solution in air for 5 d, yellow block-shaped crystals with average size of 0.1 mm × 0.2 mm × 0.2 mm developed.

Refinement top

All the H atoms were discernible in the difference electron density maps. However, the aryl H atoms were positioned into idealized positions and refined in riding atom approximation. The used constraints: C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C). The positional parameters of the H atoms H1 and H2 involved in the strong hydrogen bonds were refined freely, however, with the constraints of the displacement parameters Uiso(H) = 1.5Ueq(O or N).

Structure description top

In the last few months, a number of hydrazone compounds have been reported for their medical applications (Ajani et al., 2010; Angelusiu et al., 2010; Zhang et al., 2010). Recent structure analyses of some members of this family of compounds have also been reported (Ahmad et al., 2010; Huang & Wu, 2010; Ji & Lu, 2010; Khaledi et al., 2010; Singh & Singh, 2010; Zhou & Yang, 2010). In this paper, we report the structure of the new hydrazone compound, N'-(3-hydroxybenzylidene)-4-nitrobenzohydrazide.

The title molecule is shown in Fig. 1. The molecule is approximately planar, with the interplanar angle between the two benzene rings equal to 5.8 (2)°. The bond lengths and angles are comparable with the hydrazone compounds cited above.

Four title molecules are linked by the motif R44(12) (Etter et al., 1990) with pairs of strong O—H···O and strong N—H···O hydrogen bonds (Desiraju & Steiner, 1999). For the hydrogen bonds, see Table 1. The motif R44(12) is situated about the crystallographic centres of symmetry with the Wyckoff position 2c for the present setting. This motif is composed of two pairs of parallel molecules. This quadruplet of the title molecules is further extended by the symmetry equivalent H-bonds into the layers parallel to the planes (101). In addition to the hydrogen bonds there is also a weak π-electron ring–π-electron ring interaction (Table 2) between the benzene rings in the structure (Spek, 2009).

For medical applications of hydrazones, see: Ajani et al. (2010); Angelusiu et al. (2010); Zhang et al. (2010). For related structures, see: Ahmad et al. (2010); Huang & Wu (2010); Ji & Lu (2010); Khaledi et al. (2010); Singh & Singh (2010); Zhou & Yang (2010). For background to hydrogen bonds, see: Desiraju & Steiner (1999). For hydrogen-bonding motifs, see: Etter et al. (1990). PLATON (Spek, 2009) was used to analyse the ππ interactions. [Note added references - please check added text]

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing 30% probability displacement ellipsoids and the atomic numbering scheme.
[Figure 2] Fig. 2. A quadruplet of the title molecules forming the motif R44(12). Intermolecular interactions are drawn as dashed lines. N (blue), O (red), C (grey), H (green).
N'-(3-Hydroxybenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1436 reflections
a = 9.987 (3) Åθ = 2.7–26.3°
b = 8.967 (3) ŵ = 0.11 mm1
c = 15.108 (4) ÅT = 298 K
β = 106.560 (3)°Block, yellow
V = 1296.8 (6) Å30.13 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.986, Tmax = 0.989k = 1110
6579 measured reflectionsl = 1816
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.0632P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2768 reflectionsΔρmax = 0.21 e Å3
197 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 constraintsExtinction coefficient: 0.0088 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H11N3O4V = 1296.8 (6) Å3
Mr = 285.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.987 (3) ŵ = 0.11 mm1
b = 8.967 (3) ÅT = 298 K
c = 15.108 (4) Å0.13 × 0.10 × 0.10 mm
β = 106.560 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1787 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.989Rint = 0.028
6579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
2768 reflectionsΔρmin = 0.17 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00619 (14)0.30350 (16)0.94081 (9)0.0406 (4)
N20.12358 (14)0.36267 (16)1.00310 (10)0.0398 (4)
N30.69398 (17)0.6801 (2)1.24192 (14)0.0589 (5)
O10.42069 (13)0.13866 (16)0.68671 (8)0.0555 (4)
H10.493 (2)0.089 (2)0.6608 (16)0.083*
O20.16825 (12)0.52109 (15)0.89819 (8)0.0533 (4)
O30.76141 (18)0.7733 (2)1.21577 (13)0.0993 (6)
O40.72752 (16)0.62850 (19)1.31937 (12)0.0842 (6)
C10.18157 (16)0.12789 (18)0.91821 (11)0.0359 (4)
C20.24225 (16)0.16628 (19)0.82649 (11)0.0372 (4)
H2A0.20250.24050.79920.045*
C30.36203 (17)0.0939 (2)0.77569 (11)0.0385 (4)
C40.42103 (19)0.0178 (2)0.81556 (13)0.0452 (5)
H40.50050.06750.78100.054*
C50.3613 (2)0.0546 (2)0.90643 (14)0.0502 (5)
H50.40150.12900.93340.060*
C60.24222 (18)0.0171 (2)0.95848 (13)0.0449 (5)
H60.20290.00861.02010.054*
C70.05675 (17)0.20413 (19)0.97439 (12)0.0393 (4)
H70.02220.17941.03650.047*
C80.19947 (16)0.4687 (2)0.97659 (12)0.0369 (4)
C90.32783 (16)0.52089 (18)1.04872 (11)0.0341 (4)
C100.39976 (17)0.64059 (19)1.02656 (12)0.0400 (4)
H100.36760.68550.96890.048*
C110.51947 (18)0.6937 (2)1.09002 (13)0.0438 (5)
H110.56810.77421.07560.053*
C120.56488 (16)0.62500 (19)1.17461 (12)0.0410 (5)
C130.49633 (17)0.50675 (19)1.19882 (12)0.0437 (5)
H130.52920.46241.25660.052*
C140.37696 (16)0.45478 (19)1.13512 (11)0.0407 (5)
H140.32890.37451.15030.049*
H20.1392 (19)0.341 (2)1.0640 (14)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0314 (7)0.0502 (9)0.0331 (8)0.0010 (7)0.0021 (6)0.0075 (7)
N20.0340 (7)0.0487 (9)0.0295 (8)0.0019 (7)0.0027 (6)0.0017 (7)
N30.0419 (9)0.0546 (11)0.0707 (13)0.0056 (8)0.0008 (9)0.0167 (10)
O10.0436 (8)0.0827 (11)0.0308 (7)0.0161 (7)0.0046 (6)0.0000 (7)
O20.0411 (7)0.0761 (10)0.0353 (8)0.0012 (6)0.0006 (6)0.0098 (7)
O30.0719 (11)0.1000 (14)0.1113 (15)0.0481 (10)0.0023 (10)0.0048 (11)
O40.0703 (10)0.0935 (13)0.0634 (11)0.0126 (9)0.0219 (8)0.0066 (10)
C10.0327 (9)0.0371 (10)0.0347 (10)0.0047 (7)0.0042 (7)0.0060 (8)
C20.0333 (9)0.0449 (10)0.0321 (10)0.0018 (7)0.0074 (7)0.0039 (8)
C30.0331 (9)0.0494 (11)0.0302 (10)0.0001 (8)0.0047 (7)0.0067 (8)
C40.0407 (10)0.0486 (11)0.0429 (11)0.0097 (8)0.0064 (8)0.0084 (9)
C50.0558 (12)0.0425 (11)0.0509 (12)0.0084 (9)0.0127 (10)0.0050 (9)
C60.0484 (11)0.0450 (11)0.0354 (11)0.0057 (8)0.0022 (8)0.0026 (8)
C70.0366 (9)0.0434 (10)0.0307 (10)0.0063 (8)0.0021 (7)0.0041 (8)
C80.0303 (9)0.0443 (10)0.0332 (10)0.0097 (8)0.0041 (7)0.0018 (8)
C90.0273 (8)0.0381 (9)0.0347 (10)0.0087 (7)0.0053 (7)0.0034 (7)
C100.0402 (9)0.0441 (11)0.0367 (10)0.0056 (8)0.0126 (8)0.0024 (8)
C110.0412 (10)0.0405 (10)0.0523 (12)0.0033 (8)0.0174 (9)0.0041 (9)
C120.0285 (9)0.0428 (10)0.0464 (11)0.0023 (8)0.0021 (8)0.0098 (9)
C130.0379 (10)0.0454 (11)0.0395 (11)0.0037 (8)0.0027 (8)0.0022 (8)
C140.0342 (9)0.0404 (10)0.0406 (11)0.0016 (7)0.0002 (8)0.0027 (8)
Geometric parameters (Å, º) top
N1—C71.276 (2)C4—H40.9300
N1—N21.3830 (18)C5—C61.383 (3)
N2—C81.346 (2)C5—H50.9300
N2—H20.91 (2)C6—H60.9300
N3—O31.208 (2)C7—H70.9300
N3—O41.213 (2)C8—C91.501 (2)
N3—C121.481 (2)C9—C101.385 (2)
O1—C31.365 (2)C9—C141.390 (2)
O1—H10.85 (2)C10—C111.386 (2)
O2—C81.229 (2)C10—H100.9300
C1—C21.388 (2)C11—C121.374 (2)
C1—C61.391 (2)C11—H110.9300
C1—C71.462 (2)C12—C131.367 (2)
C2—C31.385 (2)C13—C141.382 (2)
C2—H2A0.9300C13—H130.9300
C3—C41.384 (2)C14—H140.9300
C4—C51.372 (3)
C7—N1—N2114.55 (14)C1—C6—H6120.2
C8—N2—N1120.57 (14)N1—C7—C1122.05 (16)
C8—N2—H2120.2 (12)N1—C7—H7119.0
N1—N2—H2118.3 (12)C1—C7—H7119.0
O3—N3—O4123.56 (18)O2—C8—N2123.16 (15)
O3—N3—C12117.62 (19)O2—C8—C9120.68 (16)
O4—N3—C12118.81 (18)N2—C8—C9116.16 (15)
C3—O1—H1111.7 (16)C10—C9—C14119.29 (15)
C2—C1—C6119.55 (15)C10—C9—C8117.42 (15)
C2—C1—C7121.39 (16)C14—C9—C8123.29 (16)
C6—C1—C7119.04 (15)C9—C10—C11120.24 (16)
C3—C2—C1119.96 (17)C9—C10—H10119.9
C3—C2—H2A120.0C11—C10—H10119.9
C1—C2—H2A120.0C12—C11—C10118.70 (17)
O1—C3—C4121.66 (15)C12—C11—H11120.7
O1—C3—C2117.95 (16)C10—C11—H11120.7
C4—C3—C2120.37 (16)C13—C12—C11122.60 (15)
C5—C4—C3119.48 (16)C13—C12—N3118.64 (17)
C5—C4—H4120.3C11—C12—N3118.75 (17)
C3—C4—H4120.3C12—C13—C14118.26 (16)
C4—C5—C6120.98 (18)C12—C13—H13120.9
C4—C5—H5119.5C14—C13—H13120.9
C6—C5—H5119.5C13—C14—C9120.91 (17)
C5—C6—C1119.64 (17)C13—C14—H14119.5
C5—C6—H6120.2C9—C14—H14119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (2)2.11 (2)2.931 (2)149.3 (16)
O1—H1···O2ii0.85 (2)1.82 (2)2.6573 (17)167 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.987 (3), 8.967 (3), 15.108 (4)
β (°) 106.560 (3)
V3)1296.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.986, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6579, 2768, 1787
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.03
No. of reflections2768
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (2)2.11 (2)2.931 (2)149.3 (16)
O1—H1···O2ii0.85 (2)1.82 (2)2.6573 (17)167 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+3/2.
Overview of ππ ring interactions in the structure top
Centroid–centroid*Distance (Å)Symmetry code
Cg1–Cg23.6803 (16)1 - x, -y, 1 - z
* Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.
 

Acknowledgements

The authors acknowledge the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection for open financial support (project No. JLCBE07026).

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds