metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­bis­­(2-methyl-1,10-phenanthroline)copper(II) tetra­fluoridoborate

aDepartment of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: wattonstp@ccsu.edu

(Received 16 September 2010; accepted 28 September 2010; online 2 October 2010)

In the title compound, [Cu(CH3CN)(C13H10N2)2](BF4)2, the fivefold-coordinate CuII atom is located on a twofold rotation axis, imposing twofold symmetry to the complete cation. The structure exhibits disorder of the anion, which was successfully refined using a two-site model with 0.810 (3):0.190 (3) occupancy. The methyl group of the acetonitrile ligand is likewise disordered, here about the twofold rotation axis in a 1:1 ratio.

Related literature

For related structures, see: Watton (2009[Watton, S. P. (2009). Acta Cryst. E65, m585-m586.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3N)(C13H10N2)2](BF4)2

  • Mr = 666.67

  • Monoclinic, C 2/c

  • a = 25.0665 (11) Å

  • b = 8.8120 (1) Å

  • c = 16.8419 (14) Å

  • β = 131.824 (8)°

  • V = 2772.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Sapphire 3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.784, Tmax = 1

  • 30296 measured reflections

  • 5578 independent reflections

  • 4442 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.08

  • 5578 reflections

  • 219 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure represents the first example of a copper coordination complex containing the 2-methyl phenanthroline ligand, and is part of a continuing study of the structural influence of substitutuents at the proximal positions of the phenanthroline ligand. The structure exhibits 2-fold rotational symmetry at the copper center, with the copper atom and ligated acetonitrile ligand being located on a twofold axis of the unit cell. The methyl groups on the phenanthroline ligand are located close to the N atom of the acetonitrile ligand, and steric interactions between the atoms are most likely responsible for the observed increase in reduction potential for the 2-methyl phenanthroline complex relative to the unsubstituted analog (James, 1961). Nevertheless, the complex does not exhibit the substantial distortion of the copper coordination sphere observed in the analogous 2,9-dimethyl complex (ref, Watton 2009). The BF4- counterions exhibit a two-site disorder, refinement of which indicated an approximately 81:19% occupancy of the two sites.

Related literature top

For related structures, see: James & Williams (1961); Watton (2009).

Experimental top

Crystals were grown by vapor diffusion of ether into an acetonitrile solution prepared by addition of 0.041 g (0.20 mmol, ~ 2.1 equivalents) of ligand to 0.024 g (ca 0.1 mmol, ~ 1 equivalent) of Cu(BF4)2.xH2O. Yield ~40%. (It should be noted that since the composition of Cu(BF4)2.xH2O is not well defined, the relative amounts of Cu- and ligand, as well as the overall yield of the reaction are correspondingly uncertain).

Structure description top

The structure represents the first example of a copper coordination complex containing the 2-methyl phenanthroline ligand, and is part of a continuing study of the structural influence of substitutuents at the proximal positions of the phenanthroline ligand. The structure exhibits 2-fold rotational symmetry at the copper center, with the copper atom and ligated acetonitrile ligand being located on a twofold axis of the unit cell. The methyl groups on the phenanthroline ligand are located close to the N atom of the acetonitrile ligand, and steric interactions between the atoms are most likely responsible for the observed increase in reduction potential for the 2-methyl phenanthroline complex relative to the unsubstituted analog (James, 1961). Nevertheless, the complex does not exhibit the substantial distortion of the copper coordination sphere observed in the analogous 2,9-dimethyl complex (ref, Watton 2009). The BF4- counterions exhibit a two-site disorder, refinement of which indicated an approximately 81:19% occupancy of the two sites.

For related structures, see: James & Williams (1961); Watton (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot indicating atom labeling scheme. Labels with an "a" suffix indicate symmetry equivalents of the corresponding atom numbers. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity. The model for anion disorder is indicated and "b" suffixes correspond to lower-occupancy (19%) positions.
[Figure 2] Fig. 2. The preparation of the title compound and the structure of the cation.
Acetonitrilebis(2-methyl-1,10-phenanthroline)copper(II) tetrafluoridoborate top
Crystal data top
[Cu(C2H3N)(C13H10N2)2](BF4)2F(000) = 1348
Mr = 666.67Dx = 1.597 Mg m3
Monoclinic, C2/cMelting point: 573 K
Hall symbol: -C2ycMo Kα radiation, λ = 0.71073 Å
a = 25.0665 (11) ÅCell parameters from 18534 reflections
b = 8.8120 (1) Åθ = 3.8–34.6°
c = 16.8419 (14) ŵ = 0.87 mm1
β = 131.824 (8)°T = 293 K
V = 2772.2 (3) Å3Block, green
Z = 40.25 × 0.2 × 0.15 mm
Data collection top
Oxford Diffraction Sapphire 3 CCD
diffractometer
5578 independent reflections
Radiation source: fine-focus sealed tube4442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 34.7°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 3940
Tmin = 0.784, Tmax = 1k = 1413
30296 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2 + 2.765P]
where P = (Fo2 + 2Fc2)/3
5578 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 1.07 e Å3
6 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Cu(C2H3N)(C13H10N2)2](BF4)2V = 2772.2 (3) Å3
Mr = 666.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.0665 (11) ŵ = 0.87 mm1
b = 8.8120 (1) ÅT = 293 K
c = 16.8419 (14) Å0.25 × 0.2 × 0.15 mm
β = 131.824 (8)°
Data collection top
Oxford Diffraction Sapphire 3 CCD
diffractometer
5578 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4442 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 1Rint = 0.016
30296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 1.07 e Å3
5578 reflectionsΔρmin = 0.81 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.13529 (8)1.05662 (18)0.79172 (12)0.0273 (3)
C20.17740 (9)1.0448 (2)0.76412 (15)0.0338 (3)
H20.22071.09670.80410.041*
C30.15571 (9)0.9591 (2)0.68020 (15)0.0338 (3)
H30.18440.95030.66380.041*
C40.08932 (8)0.88348 (17)0.61807 (13)0.0268 (3)
C50.06222 (10)0.7871 (2)0.52973 (15)0.0335 (3)
H50.08940.77210.51110.040*
C60.00201 (10)0.7173 (2)0.47264 (14)0.0325 (3)
H60.01810.65430.41620.039*
C70.04559 (8)0.73991 (17)0.49864 (12)0.0257 (3)
C80.11375 (9)0.6737 (2)0.44131 (13)0.0332 (3)
H80.13220.60850.38470.040*
C90.15234 (9)0.7061 (2)0.46972 (14)0.0340 (3)
H90.19750.66370.43220.041*
C100.12360 (8)0.80361 (17)0.55573 (12)0.0267 (3)
H100.15060.82530.57400.032*
C110.02038 (7)0.83494 (15)0.58437 (10)0.0198 (2)
C120.04852 (7)0.90451 (15)0.64633 (11)0.0205 (2)
C130.16252 (10)1.1435 (2)0.88823 (14)0.0377 (4)
H13A0.16051.25020.87480.057*
H13B0.21121.11480.94710.057*
H13C0.13351.12170.90500.057*
C140.00001.3587 (2)0.75000.0282 (4)
C150.00001.5232 (3)0.75000.0525 (9)
H15A0.04431.55950.72790.079*0.50
H15B0.00511.55950.70160.079*0.50
H15C0.03921.55950.82050.079*0.50
Cu10.00000.99458 (2)0.75000.01924 (7)
N10.07141 (6)0.98891 (12)0.73210 (10)0.0208 (2)
N20.05911 (6)0.86627 (13)0.61224 (9)0.0207 (2)
N30.00001.2302 (2)0.75000.0303 (4)
B10.18636 (13)0.4493 (3)0.30558 (19)0.0314 (4)0.810 (3)
F10.19869 (8)0.38867 (18)0.24324 (13)0.0455 (4)0.810 (3)
F20.1938 (6)0.3381 (6)0.3661 (9)0.1162 (15)0.810 (3)
F30.2324 (2)0.5670 (4)0.3570 (3)0.0722 (10)0.810 (3)
F40.1172 (3)0.5089 (5)0.2417 (3)0.0696 (13)0.810 (3)
B1B0.1736 (6)0.4482 (13)0.3248 (8)0.0314 (4)0.190 (3)
F1B0.1694 (4)0.4945 (7)0.4000 (6)0.0455 (4)0.190 (3)
F2B0.193 (3)0.306 (3)0.363 (4)0.1162 (15)0.190 (3)
F3B0.2359 (10)0.532 (2)0.3811 (16)0.0722 (10)0.190 (3)
F4B0.1126 (13)0.463 (3)0.2259 (18)0.0696 (13)0.190 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0216 (6)0.0254 (6)0.0285 (7)0.0038 (5)0.0140 (5)0.0041 (5)
C20.0228 (6)0.0349 (8)0.0405 (9)0.0028 (6)0.0198 (6)0.0081 (7)
C30.0280 (7)0.0370 (8)0.0432 (9)0.0026 (6)0.0265 (7)0.0097 (7)
C40.0284 (6)0.0272 (6)0.0321 (7)0.0056 (5)0.0233 (6)0.0083 (5)
C50.0408 (8)0.0371 (8)0.0385 (8)0.0077 (7)0.0331 (8)0.0055 (7)
C60.0425 (9)0.0337 (8)0.0309 (7)0.0045 (6)0.0284 (7)0.0005 (6)
C70.0298 (6)0.0244 (6)0.0234 (6)0.0008 (5)0.0179 (6)0.0015 (5)
C80.0348 (8)0.0312 (7)0.0282 (7)0.0057 (6)0.0188 (6)0.0093 (6)
C90.0271 (7)0.0333 (8)0.0340 (8)0.0096 (6)0.0173 (6)0.0112 (6)
C100.0222 (6)0.0266 (6)0.0303 (7)0.0040 (5)0.0171 (6)0.0049 (5)
C110.0214 (5)0.0176 (5)0.0208 (5)0.0013 (4)0.0143 (5)0.0014 (4)
C120.0208 (5)0.0194 (5)0.0230 (6)0.0018 (4)0.0153 (5)0.0041 (4)
C130.0314 (8)0.0371 (8)0.0319 (8)0.0150 (7)0.0158 (7)0.0063 (6)
C140.0373 (11)0.0202 (8)0.0382 (11)0.0000.0298 (10)0.000
C150.068 (2)0.0182 (10)0.100 (3)0.0000.068 (2)0.000
Cu10.01965 (11)0.01729 (11)0.02048 (11)0.0000.01326 (9)0.000
N10.0189 (5)0.0198 (5)0.0218 (5)0.0012 (4)0.0128 (4)0.0020 (4)
N20.0198 (5)0.0192 (5)0.0235 (5)0.0016 (4)0.0146 (4)0.0016 (4)
N30.0415 (10)0.0213 (8)0.0366 (10)0.0000.0296 (9)0.000
B10.0278 (10)0.0394 (11)0.0316 (10)0.0043 (8)0.0217 (8)0.0098 (9)
F10.0439 (7)0.0483 (8)0.0544 (9)0.0133 (6)0.0370 (7)0.0170 (6)
F20.1160 (18)0.129 (3)0.153 (2)0.061 (3)0.1105 (19)0.109 (3)
F30.0757 (12)0.081 (2)0.098 (2)0.0216 (14)0.0735 (16)0.0299 (17)
F40.0408 (10)0.124 (4)0.0501 (17)0.040 (2)0.0330 (13)0.0346 (19)
B1B0.0278 (10)0.0394 (11)0.0316 (10)0.0043 (8)0.0217 (8)0.0098 (9)
F1B0.0439 (7)0.0483 (8)0.0544 (9)0.0133 (6)0.0370 (7)0.0170 (6)
F2B0.1160 (18)0.129 (3)0.153 (2)0.061 (3)0.1105 (19)0.109 (3)
F3B0.0757 (12)0.081 (2)0.098 (2)0.0216 (14)0.0735 (16)0.0299 (17)
F4B0.0408 (10)0.124 (4)0.0501 (17)0.040 (2)0.0330 (13)0.0346 (19)
Geometric parameters (Å, º) top
C1—N11.3356 (18)C12—N11.3652 (18)
C1—C21.413 (2)C13—H13A0.9600
C1—C131.488 (2)C13—H13B0.9600
C2—C31.356 (3)C13—H13C0.9600
C2—H20.9300C14—N31.133 (3)
C3—C41.409 (2)C14—C151.449 (3)
C3—H30.9300C15—H15A0.9600
C4—C121.3985 (19)C15—H15B0.9600
C4—C51.431 (2)C15—H15C0.9600
C5—C61.353 (3)Cu1—N1i2.0042 (12)
C5—H50.9300Cu1—N12.0043 (12)
C6—C71.436 (2)Cu1—N22.0669 (12)
C6—H60.9300Cu1—N2i2.0669 (12)
C7—C111.4030 (19)Cu1—N32.0759 (19)
C7—C81.411 (2)B1—F21.334 (6)
C8—C91.365 (3)B1—F31.351 (4)
C8—H80.9300B1—F11.384 (3)
C9—C101.401 (2)B1—F41.397 (5)
C9—H90.9300B1B—F4B1.32 (3)
C10—N21.3312 (18)B1B—F2B1.344 (16)
C10—H100.9300B1B—F3B1.381 (15)
C11—N21.3589 (17)B1B—F1B1.399 (11)
C11—C121.4297 (18)
N1—C1—C2120.27 (15)C1—C13—H13C109.5
N1—C1—C13119.85 (14)H13A—C13—H13C109.5
C2—C1—C13119.87 (14)H13B—C13—H13C109.5
C3—C2—C1121.05 (15)N3—C14—C15180.000 (3)
C3—C2—H2119.5C14—C15—H15A109.5
C1—C2—H2119.5C14—C15—H15B109.5
C2—C3—C4119.43 (15)H15A—C15—H15B109.5
C2—C3—H3120.3C14—C15—H15C109.5
C4—C3—H3120.3H15A—C15—H15C109.5
C12—C4—C3117.02 (15)H15B—C15—H15C109.5
C12—C4—C5118.98 (14)N1i—Cu1—N1177.15 (6)
C3—C4—C5124.00 (14)N1i—Cu1—N296.41 (5)
C6—C5—C4121.56 (14)N1—Cu1—N282.02 (5)
C6—C5—H5119.2N1i—Cu1—N2i82.02 (5)
C4—C5—H5119.2N1—Cu1—N2i96.41 (5)
C5—C6—C7120.47 (15)N2—Cu1—N2i113.67 (7)
C5—C6—H6119.8N1i—Cu1—N391.43 (3)
C7—C6—H6119.8N1—Cu1—N391.43 (3)
C11—C7—C8117.39 (13)N2—Cu1—N3123.16 (3)
C11—C7—C6118.96 (14)N2i—Cu1—N3123.16 (3)
C8—C7—C6123.65 (14)C1—N1—C12119.08 (13)
C9—C8—C7119.42 (14)C1—N1—Cu1128.24 (11)
C9—C8—H8120.3C12—N1—Cu1112.67 (9)
C7—C8—H8120.3C10—N2—C11118.39 (12)
C8—C9—C10119.64 (15)C10—N2—Cu1130.48 (10)
C8—C9—H9120.2C11—N2—Cu1110.88 (9)
C10—C9—H9120.2C14—N3—Cu1180.000 (1)
N2—C10—C9122.38 (14)F2—B1—F3116.7 (6)
N2—C10—H10118.8F2—B1—F1107.9 (5)
C9—C10—H10118.8F3—B1—F1104.8 (2)
N2—C11—C7122.78 (13)F2—B1—F4109.5 (5)
N2—C11—C12117.02 (12)F3—B1—F4107.2 (3)
C7—C11—C12120.20 (12)F1—B1—F4110.5 (2)
N1—C12—C4123.06 (13)F4B—B1B—F2B116 (3)
N1—C12—C11117.17 (11)F4B—B1B—F3B130.2 (18)
C4—C12—C11119.77 (13)F2B—B1B—F3B107 (2)
C1—C13—H13A109.5F4B—B1B—F1B113.1 (12)
C1—C13—H13B109.5F2B—B1B—F1B94 (2)
H13A—C13—H13B109.5F3B—B1B—F1B87.4 (9)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)(C13H10N2)2](BF4)2
Mr666.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.0665 (11), 8.8120 (1), 16.8419 (14)
β (°) 131.824 (8)
V3)2772.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.25 × 0.2 × 0.15
Data collection
DiffractometerOxford Diffraction Sapphire 3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.784, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
30296, 5578, 4442
Rint0.016
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.08
No. of reflections5578
No. of parameters219
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.81

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks Dr Guy Crundwell (CCSU) for assistance with resolving the disorder present in the structure.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatton, S. P. (2009). Acta Cryst. E65, m585–m586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds