organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2-Chloro­benz­yl)-1-(4-chloro­phen­yl)-7-hy­dr­oxy-2,3-di­hydro-1H-imidazo[1,2-a]pyrimidin-5-one

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, bDepartment of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University, ul. Staszica 6, 20-081 Lublin, Poland, and cInstitute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 42, POB 58, Poland
*Correspondence e-mail: darek.matosiuk@am.lublin.pl

(Received 22 September 2010; accepted 30 September 2010; online 9 October 2010)

The title compound, C19H15Cl2N3O2, was obtained by a one-step cyclo­condensation of 2-amino-1-(4-chloro­phen­yl)imidazoline with diethyl (2-chloro­benz­yl)malonate under basic conditions. In the crystalline state, the mol­ecule exists as the 7-hy­droxy-5-oxo tautomer. The dihedral angles between the fused imidazopyrimidine and aromatic chloro­phenyl and chloro­benzyl rings are 14.2 (1) and 70.7 (1)°, respectively. The conformation of the mol­ecule is influenced by the intra­molecular C—H⋯O and C—H⋯N hydrogen bonds, giving a nearly planar five-ring fused system [maximum deviation from the mean plane = 0.296 (2) Å]. In the crystal structure, strong inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis. These chains are further stabilized by weak C—H⋯Cl and ππ inter­actions [centroid–centroid distance = 3.6707 (12) Å].

Related literature

For background to dioxo derivatives of fused imidazoline ring systems, their biological activity and medical applications, see: Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al. (2002)[Matosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem. 37, 845-853.]; Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al. (2002[Matosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Lipkowski, J., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem. 37, 761-772.]). For the synthesis, see: Rządkowska et al. (2004[Rządkowska, M., Szacoń, E., Fidecka, S., Kędzierska, E. & Matosiuk, D. (2004). PL Patent Appl. No. 366 270.]). For a related structure, see: Wysocki et al. (2006[Wysocki, W., Matosiuk, D., Karczmarzyk, Z., Rządkowska, M. & Urbańczyk-Lipkowska, Z. (2006). Acta Cryst. E62, o2548-o2550.]). For structure inter­pretation tools, see: Allen et al. (1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For resonance-assisted hydrogen bonds, see: Gilli et al. (1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15Cl2N3O2

  • Mr = 388.24

  • Monoclinic, P 21 /c

  • a = 11.4521 (3) Å

  • b = 12.8287 (4) Å

  • c = 11.7255 (3) Å

  • β = 96.283 (2)°

  • V = 1712.31 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.58 mm−1

  • T = 296 K

  • 0.26 × 0.25 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.415, Tmax = 0.674

  • 12489 measured reflections

  • 3040 independent reflections

  • 2521 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.05

  • 3040 reflections

  • 280 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H122⋯O10 0.97 (2) 2.41 (2) 2.848 (2) 106.5 (17)
C26—H261⋯N6 0.90 (2) 2.36 (2) 2.918 (3) 120.3 (19)
O10—H101⋯O11i 0.85 (2) 1.80 (2) 2.6418 (18) 172 (3)
C33—H331⋯Cl27ii 0.93 (4) 2.81 (4) 3.534 (2) 135 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dioxo derivatives of fused imidazoline ring systems were found to have significant analgesic, opioid-like action but without typical narcotic analgesic side effects (Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al.., 2002; Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al., 2002). The X-ray analysis of the title compound, (I), was performed in order to confirm the synthesis pathway and identification of its tautomeric form in the solid state. The bond lengths, angles and planarity of the rings in the bicyclic imidazopyrimidine part of (I) are very similar to those observed in previously reported crystal structure of 6-(benzyl)-7-hydroxy-1-(2-methoxyphenyl)-2,3-dihydro-1H7H- imidazo[1,2-a]-pyrimidin-5-one (Wysocki et al. (2006). In the crystalline state, the molecule exists as 7-hydroxy-5-oxo tautomer, as evidenced by the C7—O10 [1.330 (2) Å], C9—O11 [1.242 (2) Å], C7—N6 [1.361 (2) Å], C2—N6 [1.305 (2) Å], C9—N3 [1.391 (2) Å] C2—N3 [1.358 (2) Å] bond lengths and the position of the H atom in the vicinity of O10 in difference electron-density map. The dihedral angles between the fused imidazopyrimidine and aromatic chlopophenyl and chlobobenzyl rings are 14.2 (1) and 70.7 (1)°, respectively. This conformation is influenced by the intramolecular C12—H122···O10 and C26—H261···N6 hydrogen bonds giving nearly co-planar five-ring fused system. In the crystal structure, strong intermolecular O10—H101···O11 resonance-assisted hydrogen bond (Gilli et al., 1989) links the molecules related by c-glide plane into chains along the c axis. Additionaly, molecules are joined in molecular chains parallel to [101] direction by a C33—H331···Cl27 hydrogen bond. Moreover, the guanidine π-electron system and phenyl ring, belonging to inversion-related molecules overlap with the shortest intermolecular contact C2···C23iii of 3.270 (3) and the angle between overlapping planes of 13.33 (11)° characteristic for π-π interactions [(iii) = 1 - x, 1 - y, 1 - z].

Related literature top

For background to dioxo derivatives of fused imidazoline ring systems, their biological activity and medical applications, see: Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al. (2002); Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al. (2002). For the synthesis, see: Rządkowska et al. (2004). For a related structure, see: Wysocki et al. (2006). For structure interpretation tools, see: Allen et al. (1995); Allen (2002); Bruno et al. (2002).

For related literature on ?, see: Gilli et al. (1989).

Experimental top

The title compound, C19H15Cl2N3O2 (I), was obtained by one-step cyclocondensation of 1-(4-chlorophenyl)-2-aminoimidazoline-2 with diethyl (2-chlorobenzyl)malonate under basic (sodium methoxide) conditions (Rządkowska et al., 2004). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a propan-2-ol solution.

Refinement top

All H atoms were located in difference Fourier maps and refined freely with Uiso(H) values of 1.5Ueq(N,C, O).

Structure description top

Dioxo derivatives of fused imidazoline ring systems were found to have significant analgesic, opioid-like action but without typical narcotic analgesic side effects (Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al.., 2002; Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al., 2002). The X-ray analysis of the title compound, (I), was performed in order to confirm the synthesis pathway and identification of its tautomeric form in the solid state. The bond lengths, angles and planarity of the rings in the bicyclic imidazopyrimidine part of (I) are very similar to those observed in previously reported crystal structure of 6-(benzyl)-7-hydroxy-1-(2-methoxyphenyl)-2,3-dihydro-1H7H- imidazo[1,2-a]-pyrimidin-5-one (Wysocki et al. (2006). In the crystalline state, the molecule exists as 7-hydroxy-5-oxo tautomer, as evidenced by the C7—O10 [1.330 (2) Å], C9—O11 [1.242 (2) Å], C7—N6 [1.361 (2) Å], C2—N6 [1.305 (2) Å], C9—N3 [1.391 (2) Å] C2—N3 [1.358 (2) Å] bond lengths and the position of the H atom in the vicinity of O10 in difference electron-density map. The dihedral angles between the fused imidazopyrimidine and aromatic chlopophenyl and chlobobenzyl rings are 14.2 (1) and 70.7 (1)°, respectively. This conformation is influenced by the intramolecular C12—H122···O10 and C26—H261···N6 hydrogen bonds giving nearly co-planar five-ring fused system. In the crystal structure, strong intermolecular O10—H101···O11 resonance-assisted hydrogen bond (Gilli et al., 1989) links the molecules related by c-glide plane into chains along the c axis. Additionaly, molecules are joined in molecular chains parallel to [101] direction by a C33—H331···Cl27 hydrogen bond. Moreover, the guanidine π-electron system and phenyl ring, belonging to inversion-related molecules overlap with the shortest intermolecular contact C2···C23iii of 3.270 (3) and the angle between overlapping planes of 13.33 (11)° characteristic for π-π interactions [(iii) = 1 - x, 1 - y, 1 - z].

For background to dioxo derivatives of fused imidazoline ring systems, their biological activity and medical applications, see: Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al. (2002); Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al. (2002). For the synthesis, see: Rządkowska et al. (2004). For a related structure, see: Wysocki et al. (2006). For structure interpretation tools, see: Allen et al. (1995); Allen (2002); Bruno et al. (2002).

For related literature on ?, see: Gilli et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Dashed lines indicate O—H···O hydrogen bonds and weak C—H···Cl intermolecular interactions.
6-(2-Chlorobenzyl)-1-(4-chlorophenyl)-7-hydroxy-2,3-dihydro-1H- imidazo[1,2-a]pyrimidin-5-one top
Crystal data top
C19H15Cl2N3O2F(000) = 800
Mr = 388.24Dx = 1.506 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3410 reflections
a = 11.4521 (3) Åθ = 3.9–66.7°
b = 12.8287 (4) ŵ = 3.58 mm1
c = 11.7255 (3) ÅT = 296 K
β = 96.283 (2)°Block, colourless
V = 1712.31 (8) Å30.26 × 0.25 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3040 independent reflections
Radiation source: fine-focus sealed tube2521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 67.8°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1312
Tmin = 0.415, Tmax = 0.674k = 158
12489 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.4965P]
where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H15Cl2N3O2V = 1712.31 (8) Å3
Mr = 388.24Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.4521 (3) ŵ = 3.58 mm1
b = 12.8287 (4) ÅT = 296 K
c = 11.7255 (3) Å0.26 × 0.25 × 0.11 mm
β = 96.283 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2521 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.674Rint = 0.042
12489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112All H-atom parameters refined
S = 1.05Δρmax = 0.28 e Å3
3040 reflectionsΔρmin = 0.29 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.57842(0.00033) m2 = -0.67971(0.00033) m3 = -0.45102(0.00053) D = -11.68389(0.00244) Atom d s d/s (d/s)**2 N1 * -0.0460 0.0016 - 28.384 805.647 C2 * 0.0029 0.0018 1.594 2.541 N3 * 0.0198 0.0015 13.215 174.625 C4 * -0.0357 0.0023 - 15.771 248.720 C5 * 0.0819 0.0023 36.135 1305.707 N6 * 0.0038 0.0015 2.558 6.543 C7 * 0.0139 0.0017 7.983 63.731 C8 * 0.0007 0.0018 0.384 0.147 C9 * -0.0243 0.0018 - 13.656 186.495 ============ Sum((d/s)**2) for starred atoms 2794.157 Chi-squared at 95% for 6 degrees of freedom: 12.60 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.71141(0.00065) m2 = -0.48107(0.00093) m3 = -0.51231(0.00073) D = -11.40891(0.00306) Atom d s d/s (d/s)**2 C21 * 0.0042 0.0018 2.264 5.124 C22 * -0.0048 0.0022 - 2.159 4.661 C23 * -0.0012 0.0023 - 0.496 0.246 C24 * 0.0051 0.0021 2.408 5.797 C25 * -0.0050 0.0024 - 2.037 4.149 C26 * -0.0018 0.0023 - 0.782 0.611 ============ Sum((d/s)**2) for starred atoms 20.589 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.47124(0.00082) m2 = 0.42681(0.00103) m3 = -0.77186(0.00062) D = -3.90575(0.01406) Atom d s d/s (d/s)**2 C31 * -0.0026 0.0019 - 1.391 1.935 C32 * 0.0016 0.0021 0.757 0.573 C33 * 0.0031 0.0027 1.149 1.321 C34 * -0.0079 0.0031 - 2.556 6.533 C35 * 0.0042 0.0031 1.328 1.764 C36 * 0.0021 0.0024 0.859 0.738 ============ Sum((d/s)**2) for starred atoms 12.865 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 14.18 (0.06) 165.82 (0.06) 1 3 70.69 (0.06) 109.31 (0.06) 2 3 58.31 (0.06) 121.69 (0.06)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54690 (14)0.58844 (13)0.65922 (13)0.0405 (4)
C20.45149 (16)0.63750 (14)0.69364 (15)0.0345 (4)
N30.42905 (13)0.59910 (12)0.79699 (12)0.0368 (4)
C40.5131 (2)0.51928 (18)0.84006 (18)0.0470 (5)
H410.560 (2)0.547 (2)0.910 (2)0.070*
H420.473 (2)0.454 (2)0.860 (2)0.070*
C50.5851 (2)0.50339 (18)0.73916 (18)0.0472 (5)
H510.670 (3)0.511 (2)0.762 (2)0.071*
H520.567 (2)0.430 (2)0.703 (2)0.071*
N60.39106 (13)0.71171 (12)0.63876 (12)0.0362 (4)
C70.30136 (15)0.75057 (14)0.69309 (14)0.0329 (4)
C80.27243 (16)0.71925 (14)0.79896 (15)0.0349 (4)
C90.34131 (16)0.63956 (14)0.85735 (14)0.0346 (4)
O100.24079 (12)0.82712 (10)0.63775 (11)0.0402 (3)
H1010.268 (2)0.844 (2)0.576 (2)0.060*
O110.33241 (12)0.60419 (10)0.95466 (10)0.0423 (3)
C120.17750 (17)0.77055 (15)0.85764 (17)0.0390 (4)
H1210.213 (2)0.7977 (18)0.933 (2)0.059*
H1220.150 (2)0.832 (2)0.814 (2)0.059*
C210.59787 (16)0.60289 (15)0.55615 (15)0.0384 (4)
C220.67539 (19)0.52838 (18)0.52397 (19)0.0500 (5)
H2210.691 (2)0.465 (2)0.568 (2)0.075*
C230.7284 (2)0.53957 (19)0.4242 (2)0.0534 (6)
H2310.777 (3)0.490 (2)0.404 (2)0.080*
C240.70459 (18)0.62511 (18)0.35695 (18)0.0499 (5)
C250.6293 (2)0.7008 (2)0.3878 (2)0.0568 (6)
H2510.617 (3)0.764 (2)0.342 (2)0.085*
C260.5754 (2)0.69008 (19)0.48719 (19)0.0511 (5)
H2610.529 (2)0.742 (2)0.507 (2)0.077*
Cl270.77155 (6)0.63967 (6)0.23211 (5)0.0784 (2)
C310.07284 (16)0.70368 (15)0.87807 (16)0.0389 (4)
C320.00662 (18)0.73742 (19)0.95069 (17)0.0489 (5)
C330.1022 (2)0.6786 (3)0.9736 (2)0.0669 (7)
H3310.152 (3)0.706 (3)1.024 (3)0.100*
C340.1203 (2)0.5828 (3)0.9241 (3)0.0747 (8)
H3410.183 (3)0.540 (3)0.942 (3)0.112*
C350.0442 (2)0.5470 (2)0.8503 (3)0.0742 (8)
H3510.054 (3)0.479 (3)0.814 (3)0.111*
C360.0516 (2)0.60699 (18)0.8281 (2)0.0541 (5)
H3610.103 (3)0.581 (2)0.779 (2)0.081*
Cl370.01144 (6)0.85933 (6)1.01526 (7)0.0825 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0425 (8)0.0461 (9)0.0342 (8)0.0134 (7)0.0110 (7)0.0067 (7)
C20.0374 (9)0.0386 (9)0.0281 (8)0.0033 (8)0.0064 (7)0.0001 (7)
N30.0419 (8)0.0412 (8)0.0283 (7)0.0055 (7)0.0082 (6)0.0041 (6)
C40.0524 (12)0.0506 (12)0.0387 (10)0.0142 (10)0.0088 (9)0.0098 (10)
C50.0523 (12)0.0496 (12)0.0405 (11)0.0157 (10)0.0089 (9)0.0103 (9)
N60.0395 (8)0.0411 (8)0.0296 (7)0.0070 (7)0.0107 (6)0.0026 (6)
C70.0364 (9)0.0338 (9)0.0293 (8)0.0012 (7)0.0071 (7)0.0003 (7)
C80.0391 (9)0.0364 (9)0.0305 (9)0.0004 (8)0.0100 (7)0.0008 (8)
C90.0397 (9)0.0368 (9)0.0284 (9)0.0036 (8)0.0082 (7)0.0026 (7)
O100.0456 (7)0.0434 (7)0.0335 (7)0.0109 (6)0.0129 (6)0.0068 (6)
O110.0570 (8)0.0452 (7)0.0265 (6)0.0006 (6)0.0127 (6)0.0035 (6)
C120.0436 (10)0.0387 (10)0.0370 (10)0.0016 (8)0.0145 (8)0.0005 (9)
C210.0363 (9)0.0467 (10)0.0334 (9)0.0055 (8)0.0092 (7)0.0008 (8)
C220.0525 (12)0.0496 (12)0.0506 (12)0.0134 (10)0.0173 (10)0.0013 (10)
C230.0525 (12)0.0555 (13)0.0557 (13)0.0110 (11)0.0212 (10)0.0078 (11)
C240.0458 (11)0.0655 (14)0.0408 (11)0.0029 (10)0.0162 (9)0.0037 (10)
C250.0606 (14)0.0656 (14)0.0476 (12)0.0159 (12)0.0211 (10)0.0134 (11)
C260.0538 (12)0.0584 (13)0.0447 (11)0.0178 (11)0.0210 (9)0.0086 (10)
Cl270.0858 (5)0.1015 (5)0.0555 (4)0.0106 (4)0.0425 (3)0.0026 (3)
C310.0380 (9)0.0458 (10)0.0335 (9)0.0007 (8)0.0067 (7)0.0036 (8)
C320.0413 (10)0.0673 (14)0.0395 (10)0.0036 (10)0.0105 (8)0.0005 (10)
C330.0432 (12)0.104 (2)0.0555 (14)0.0044 (13)0.0165 (10)0.0133 (15)
C340.0489 (13)0.092 (2)0.0832 (19)0.0194 (14)0.0082 (13)0.0247 (17)
C350.0642 (16)0.0622 (15)0.094 (2)0.0200 (13)0.0012 (15)0.0006 (15)
C360.0501 (12)0.0532 (13)0.0597 (14)0.0049 (10)0.0091 (10)0.0086 (11)
Cl370.0628 (4)0.0959 (5)0.0929 (5)0.0075 (3)0.0269 (3)0.0442 (4)
Geometric parameters (Å, º) top
N1—C21.360 (2)C21—C221.385 (3)
N1—C211.411 (2)C21—C261.388 (3)
N1—C51.473 (2)C22—C231.383 (3)
C2—N61.305 (2)C22—H2210.97 (3)
C2—N31.358 (2)C23—C241.362 (3)
N3—C91.391 (2)C23—H2310.90 (3)
N3—C41.458 (2)C24—C251.373 (3)
C4—C51.528 (3)C24—Cl271.735 (2)
C4—H410.99 (3)C25—C261.384 (3)
C4—H420.99 (3)C25—H2510.97 (3)
C5—H510.99 (3)C26—H2610.90 (3)
C5—H521.04 (3)C31—C361.382 (3)
N6—C71.361 (2)C31—C321.382 (3)
C7—O101.330 (2)C32—C331.381 (3)
C7—C81.379 (2)C32—Cl371.740 (2)
C8—C91.421 (3)C33—C341.364 (4)
C8—C121.501 (2)C33—H3310.93 (3)
C9—O111.242 (2)C34—C351.374 (4)
O10—H1010.85 (3)C34—H3410.95 (4)
C12—C311.514 (3)C35—C361.388 (3)
C12—H1211.00 (3)C35—H3510.97 (4)
C12—H1220.97 (3)C36—H3610.93 (3)
C2—N1—C21127.93 (15)H121—C12—H122105.4 (19)
C2—N1—C5110.25 (15)C22—C21—C26118.77 (18)
C21—N1—C5121.37 (15)C22—C21—N1118.71 (18)
N6—C2—N3124.25 (16)C26—C21—N1122.50 (17)
N6—C2—N1126.25 (16)C23—C22—C21120.8 (2)
N3—C2—N1109.48 (15)C23—C22—H221117.5 (16)
C2—N3—C9122.42 (15)C21—C22—H221121.6 (16)
C2—N3—C4112.43 (15)C24—C23—C22119.7 (2)
C9—N3—C4124.92 (15)C24—C23—H231120.6 (19)
N3—C4—C5102.55 (15)C22—C23—H231119.7 (19)
N3—C4—H41108.5 (15)C23—C24—C25120.6 (2)
C5—C4—H41113.2 (15)C23—C24—Cl27119.78 (17)
N3—C4—H42111.4 (15)C25—C24—Cl27119.62 (18)
C5—C4—H42112.2 (15)C24—C25—C26120.2 (2)
H41—C4—H42109 (2)C24—C25—H251120.1 (17)
N1—C5—C4104.26 (16)C26—C25—H251119.6 (17)
N1—C5—H51108.7 (16)C25—C26—C21120.0 (2)
C4—C5—H51112.1 (16)C25—C26—H261118.3 (18)
N1—C5—H52111.8 (14)C21—C26—H261121.7 (18)
C4—C5—H52109.6 (14)C36—C31—C32116.41 (19)
H51—C5—H52110 (2)C36—C31—C12123.18 (17)
C2—N6—C7115.03 (15)C32—C31—C12120.40 (18)
O10—C7—N6114.97 (15)C33—C32—C31122.6 (2)
O10—C7—C8119.37 (16)C33—C32—Cl37117.77 (19)
N6—C7—C8125.63 (16)C31—C32—Cl37119.65 (16)
C7—C8—C9117.90 (16)C34—C33—C32119.8 (2)
C7—C8—C12122.85 (17)C34—C33—H331122 (2)
C9—C8—C12119.12 (15)C32—C33—H331118 (2)
O11—C9—N3117.86 (16)C33—C34—C35119.5 (2)
O11—C9—C8127.47 (16)C33—C34—H341121 (2)
N3—C9—C8114.66 (15)C35—C34—H341120 (2)
C7—O10—H101113.1 (17)C34—C35—C36120.1 (3)
C8—C12—C31116.73 (16)C34—C35—H351122 (2)
C8—C12—H121108.5 (14)C36—C35—H351118 (2)
C31—C12—H121107.9 (14)C31—C36—C35121.7 (2)
C8—C12—H122109.0 (14)C31—C36—H361119.5 (19)
C31—C12—H122108.6 (14)C35—C36—H361118.8 (19)
C21—N1—C2—N63.2 (3)C7—C8—C12—C31116.6 (2)
C5—N1—C2—N6175.39 (19)C9—C8—C12—C3167.8 (2)
C21—N1—C2—N3178.28 (17)C2—N1—C21—C22164.0 (2)
C5—N1—C2—N36.0 (2)C5—N1—C21—C227.5 (3)
N6—C2—N3—C93.1 (3)C2—N1—C21—C2617.6 (3)
N1—C2—N3—C9175.46 (16)C5—N1—C21—C26171.0 (2)
N6—C2—N3—C4177.88 (19)C26—C21—C22—C230.9 (3)
N1—C2—N3—C40.7 (2)N1—C21—C22—C23179.4 (2)
C2—N3—C4—C56.7 (2)C21—C22—C23—C240.3 (4)
C9—N3—C4—C5178.73 (18)C22—C23—C24—C250.6 (4)
C2—N1—C5—C49.9 (2)C22—C23—C24—Cl27179.68 (18)
C21—N1—C5—C4177.28 (18)C23—C24—C25—C260.9 (4)
N3—C4—C5—N19.5 (2)Cl27—C24—C25—C26180.0 (2)
N3—C2—N6—C70.4 (3)C24—C25—C26—C210.4 (4)
N1—C2—N6—C7177.92 (18)C22—C21—C26—C250.6 (3)
C2—N6—C7—O10179.17 (15)N1—C21—C26—C25179.0 (2)
C2—N6—C7—C81.1 (3)C8—C12—C31—C3612.0 (3)
O10—C7—C8—C9178.03 (16)C8—C12—C31—C32167.16 (18)
N6—C7—C8—C90.1 (3)C36—C31—C32—C330.3 (3)
O10—C7—C8—C122.3 (3)C12—C31—C32—C33178.9 (2)
N6—C7—C8—C12175.65 (17)C36—C31—C32—Cl37178.73 (17)
C2—N3—C9—O11175.20 (17)C12—C31—C32—Cl372.1 (3)
C4—N3—C9—O111.1 (3)C31—C32—C33—C340.4 (4)
C2—N3—C9—C83.9 (2)Cl37—C32—C33—C34179.5 (2)
C4—N3—C9—C8178.01 (19)C32—C33—C34—C351.2 (4)
C7—C8—C9—O11176.67 (18)C33—C34—C35—C361.2 (4)
C12—C8—C9—O110.8 (3)C32—C31—C36—C350.3 (3)
C7—C8—C9—N32.4 (2)C12—C31—C36—C35178.9 (2)
C12—C8—C9—N3178.25 (16)C34—C35—C36—C310.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H122···O100.97 (2)2.41 (2)2.848 (2)106.5 (17)
C26—H261···N60.90 (2)2.36 (2)2.918 (3)120.3 (19)
O10—H101···O11i0.85 (2)1.80 (2)2.6418 (18)172 (3)
C33—H331···Cl27ii0.93 (4)2.81 (4)3.534 (2)135 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H15Cl2N3O2
Mr388.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4521 (3), 12.8287 (4), 11.7255 (3)
β (°) 96.283 (2)
V3)1712.31 (8)
Z4
Radiation typeCu Kα
µ (mm1)3.58
Crystal size (mm)0.26 × 0.25 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.415, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
12489, 3040, 2521
Rint0.042
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.05
No. of reflections3040
No. of parameters280
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H122···O100.97 (2)2.41 (2)2.848 (2)106.5 (17)
C26—H261···N60.90 (2)2.36 (2)2.918 (3)120.3 (19)
O10—H101···O11i0.85 (2)1.80 (2)2.6418 (18)172 (3)
C33—H331···Cl27ii0.93 (4)2.81 (4)3.534 (2)135 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationMatosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem. 37, 845–853.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMatosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Lipkowski, J., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem. 37, 761–772.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRządkowska, M., Szacoń, E., Fidecka, S., Kędzierska, E. & Matosiuk, D. (2004). PL Patent Appl. No. 366 270.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWysocki, W., Matosiuk, D., Karczmarzyk, Z., Rządkowska, M. & Urbańczyk-Lipkowska, Z. (2006). Acta Cryst. E62, o2548–o2550.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds