metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­bis­­(2,9-di­methyl-1,10-phen­an­throline)copper(II) bis­­(tetra­fluorido­borate)

aDepartment of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: wattonstp@ccsu.edu

(Received 7 October 2010; accepted 18 October 2010; online 23 October 2010)

The title compound, [Cu(CH3CN)(C12H12N2)2](BF4)2, crystallizes with two copper-containing cations and four tetra­fluoro­borate anions in the asymmetric unit. The structure represents a second crystal form of the salt, the first being an acetonitrile solvate [Watton (2009[Watton, S. P. (2009). Acta Cryst. E65, m585-m586.]). Acta Cryst. E65, m585–m586]. The complex cation has a distorted trigonal-bipyramidal geometry, whereas the previous structure exhibits a distorted square-pyramidal geometry. One of the four BF4 counter-ions is disordered, with a refined site occupancy of 0.8615 (17):0.1385 (17).

Related literature

For the acetonitrile solvate structure, see: Watton (2009[Watton, S. P. (2009). Acta Cryst. E65, m585-m586.]). For geometrical analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. R., Reedick, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1949-1956.]); Holmes (1984[Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.]); Watton (2010[Watton, S. P. (2010). Acta Cryst. E66, m1359.]). For electrochemical behaviour of similar complexes, see: James & Williams (1961[James, B. R. & Williams, R. J. P. (1961). J. Chem. Soc. pp. 2007-2019.]). For the characteristic colour of four-coordinate Cu(II) species, see: Miller et al. (1998[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1998). Inorg. Chem. 37, 2285-2290.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3N)(C12H12N2)2](BF4)2

  • Mr = 694.72

  • Monoclinic, P 21 /c

  • a = 14.7973 (3) Å

  • b = 18.5356 (3) Å

  • c = 22.5770 (4) Å

  • β = 105.2524 (18)°

  • V = 5974.23 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Sapphire 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.765, Tmax = 1.000

  • 40609 measured reflections

  • 19629 independent reflections

  • 13249 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.07

  • 19629 reflections

  • 855 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure was obtained as part of a study of how substituents at the 2- and 9- positions of the phenanthroline ligand affect the behavior of the copper complexes. The crystal was obtained during an attempt to prepare a larger amount of the previously reported complex (Watton, 2009), which differs from the current structure in that it contains two molecules of acetonitrile per cation in the crystal lattice, while the current form is unsolvated. The appearance of this new crystal form was unexpected, and it is not fully understood how the preparative conditions affect the particular crystal form that is obtained. This aspect of the chemistry is currently under study.

The two crystal forms of the cation differ significantly in their structures. There is substantial distortion from idealized geometry in both cases, as would be expected from the small bite-angle of the phen ligand. The previous compund is best described as having a distorted square pyramidal geometry at copper; the τ descriptor of Addison et al. (Addison, 1984), has a value of 0.24 (where τ = 0 for ideal square planar geometry and τ = 1 for trigonal bipyramidal),and the analysis of Holmes (Holmes, 1984) indicates that the structure is 73% along the Berry pseudorotation coordinate (D3h —> C2v —> C4v). By contrast, the current stucture is much closer to tbp (τ =. 63 and 0.72 for the two cations, 34.8% and 27.8% along pseudorotation coordinate). It is noted that a less sterically demanding ligand, 2-methylphenanthroline, affords a structure that is essentially tbp (τ = 0.9, 8.2%)(Watton, 2010). The distortions from idealized geometry in both crystal forms of [Cu(2,9-DMP)2]2+ are consistent with the observation that the 2,9-dimethyl substituents destabilize the 5-coordinate cupric form of the bis-phenanthroline complex with respect to the less sterically hindered 4-coordinate cuprous form, as manifested in the more favorable reduction potential of the dimethyl complex with respect to the unsubstituted analog (James, 1961). The steric strain results in quite different distortions within the two structures, however. Whereas the solvated structure exhibits substantial bowing of the phen ligands from the ideal planar geometry of an aromatic polycyclic ligand, no such bowing is observed in the present structure. In both cases, the copper ions lie out of the plane of the phenanthroline ligands, but the average deviation of the copper ions from the least-squares planes of the ligands is significantly greater (average = 0.55 (18) A) in the previous structure than it is in the current one (average = 0.29 (1) A). Apparently to offset these lesser distortions in the current structure, there is a significant deviation of the coordinated acetonitrile ligand from the expected linear geometry (Cu—N—C = 163.5°); the solvated structure showed far less distortion (Cu—N—C = 173.4 °). Interestingly, this apparent destabilization of the Cu-acetonitrile bond results in a difference in chemical properties for the two crystal forms: While the solvated crystals are stable for extended periods of time when removed from the mother liquor, the unsolvated crystals undergo what appears to be a rapid deliquescence, which is accompanied by a change in color from green to purple. Previous studies (Miller, 1998) have shown this color to be characteristic of the unusual four-coordinate Cu(II) species. Further study of this interesting behavior is in progress.

Related literature top

For the acetonitrile solvate structure, see: Watton (2009). For geometrical analysis, see: Addison et al. (1984); Holmes (1984); Watton (2010); James & Williams (1961). For the characteristic colour of four-coordinate Cu(II) species, see: Miller et al. (1998).

Structure description top

The structure was obtained as part of a study of how substituents at the 2- and 9- positions of the phenanthroline ligand affect the behavior of the copper complexes. The crystal was obtained during an attempt to prepare a larger amount of the previously reported complex (Watton, 2009), which differs from the current structure in that it contains two molecules of acetonitrile per cation in the crystal lattice, while the current form is unsolvated. The appearance of this new crystal form was unexpected, and it is not fully understood how the preparative conditions affect the particular crystal form that is obtained. This aspect of the chemistry is currently under study.

The two crystal forms of the cation differ significantly in their structures. There is substantial distortion from idealized geometry in both cases, as would be expected from the small bite-angle of the phen ligand. The previous compund is best described as having a distorted square pyramidal geometry at copper; the τ descriptor of Addison et al. (Addison, 1984), has a value of 0.24 (where τ = 0 for ideal square planar geometry and τ = 1 for trigonal bipyramidal),and the analysis of Holmes (Holmes, 1984) indicates that the structure is 73% along the Berry pseudorotation coordinate (D3h —> C2v —> C4v). By contrast, the current stucture is much closer to tbp (τ =. 63 and 0.72 for the two cations, 34.8% and 27.8% along pseudorotation coordinate). It is noted that a less sterically demanding ligand, 2-methylphenanthroline, affords a structure that is essentially tbp (τ = 0.9, 8.2%)(Watton, 2010). The distortions from idealized geometry in both crystal forms of [Cu(2,9-DMP)2]2+ are consistent with the observation that the 2,9-dimethyl substituents destabilize the 5-coordinate cupric form of the bis-phenanthroline complex with respect to the less sterically hindered 4-coordinate cuprous form, as manifested in the more favorable reduction potential of the dimethyl complex with respect to the unsubstituted analog (James, 1961). The steric strain results in quite different distortions within the two structures, however. Whereas the solvated structure exhibits substantial bowing of the phen ligands from the ideal planar geometry of an aromatic polycyclic ligand, no such bowing is observed in the present structure. In both cases, the copper ions lie out of the plane of the phenanthroline ligands, but the average deviation of the copper ions from the least-squares planes of the ligands is significantly greater (average = 0.55 (18) A) in the previous structure than it is in the current one (average = 0.29 (1) A). Apparently to offset these lesser distortions in the current structure, there is a significant deviation of the coordinated acetonitrile ligand from the expected linear geometry (Cu—N—C = 163.5°); the solvated structure showed far less distortion (Cu—N—C = 173.4 °). Interestingly, this apparent destabilization of the Cu-acetonitrile bond results in a difference in chemical properties for the two crystal forms: While the solvated crystals are stable for extended periods of time when removed from the mother liquor, the unsolvated crystals undergo what appears to be a rapid deliquescence, which is accompanied by a change in color from green to purple. Previous studies (Miller, 1998) have shown this color to be characteristic of the unusual four-coordinate Cu(II) species. Further study of this interesting behavior is in progress.

For the acetonitrile solvate structure, see: Watton (2009). For geometrical analysis, see: Addison et al. (1984); Holmes (1984); Watton (2010); James & Williams (1961). For the characteristic colour of four-coordinate Cu(II) species, see: Miller et al. (1998).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP of Cation 1 showing atom numbering scheme. Hydrogen atoms omitted for clarity and thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. ORTEP of Cation 2 showing atom numbering scheme. Hydrogen atoms omitted for clarity and thermal ellipsoids drawn at 50% probability level.
Acetonitrilebis(2,9-dimethyl-1,10-phenanthroline)copper(II) bis(tetrafluoridoborate) top
Crystal data top
[Cu(C2H3N)(C12H12N2)2](BF4)2F(000) = 2824
Mr = 694.72Dx = 1.545 Mg m3
Monoclinic, P21/cMelting point: 573 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.7973 (3) ÅCell parameters from 19467 reflections
b = 18.5356 (3) Åθ = 4.3–32.6°
c = 22.5770 (4) ŵ = 0.81 mm1
β = 105.2524 (18)°T = 293 K
V = 5974.23 (19) Å3Block, green
Z = 80.20 × 0.20 × 0.15 mm
Data collection top
Oxford Diffraction Sapphire 3
diffractometer
19629 independent reflections
Radiation source: fine-focus sealed tube13249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 32.7°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2119
Tmin = 0.765, Tmax = 1.000k = 2228
40609 measured reflectionsl = 3134
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.084P]
where P = (Fo2 + 2Fc2)/3
19629 reflections(Δ/σ)max = 0.002
855 parametersΔρmax = 1.06 e Å3
30 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Cu(C2H3N)(C12H12N2)2](BF4)2V = 5974.23 (19) Å3
Mr = 694.72Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.7973 (3) ŵ = 0.81 mm1
b = 18.5356 (3) ÅT = 293 K
c = 22.5770 (4) Å0.20 × 0.20 × 0.15 mm
β = 105.2524 (18)°
Data collection top
Oxford Diffraction Sapphire 3
diffractometer
19629 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
13249 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 1.000Rint = 0.026
40609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04630 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 1.06 e Å3
19629 reflectionsΔρmin = 0.88 e Å3
855 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.084941 (15)0.276621 (12)0.343942 (10)0.01537 (6)
N10.00314 (10)0.21950 (8)0.27929 (7)0.0154 (3)
N20.03933 (11)0.33834 (8)0.33783 (7)0.0162 (3)
N30.10759 (11)0.20701 (8)0.41990 (7)0.0171 (3)
N40.18867 (11)0.33074 (8)0.40062 (7)0.0169 (3)
N50.15524 (13)0.29072 (10)0.27572 (8)0.0279 (4)
C10.01772 (13)0.15984 (10)0.25236 (8)0.0183 (4)
C20.04581 (14)0.13204 (11)0.19916 (9)0.0219 (4)
H20.02980.09130.18010.026*
C30.13060 (14)0.16454 (11)0.17550 (9)0.0217 (4)
H30.17230.14580.14060.026*
C40.15453 (13)0.22663 (10)0.20424 (8)0.0182 (3)
C50.24262 (14)0.26302 (11)0.18386 (9)0.0229 (4)
H50.28660.24650.14910.028*
C60.26277 (14)0.32106 (11)0.21441 (9)0.0235 (4)
H60.32050.34380.20040.028*
C70.19627 (13)0.34786 (10)0.26804 (8)0.0187 (4)
C80.21440 (14)0.40614 (10)0.30333 (9)0.0215 (4)
H80.27230.42910.29250.026*
C90.14640 (14)0.42887 (10)0.35361 (9)0.0214 (4)
H90.15810.46760.37670.026*
C100.05858 (13)0.39375 (10)0.37051 (8)0.0180 (3)
C110.10760 (12)0.31515 (9)0.28789 (8)0.0154 (3)
C120.08763 (12)0.25267 (10)0.25616 (8)0.0151 (3)
C130.10864 (14)0.12258 (11)0.27908 (9)0.0222 (4)
H13A0.14070.14580.31680.033*
H13B0.14670.12490.25060.033*
H13C0.09710.07300.28710.033*
C140.01427 (14)0.41765 (11)0.42699 (9)0.0239 (4)
H14A0.04290.37610.44970.036*
H14B0.01480.44640.45220.036*
H14C0.06120.44570.41520.036*
C150.06095 (15)0.14918 (11)0.43189 (9)0.0229 (4)
C160.09939 (18)0.10427 (12)0.48283 (10)0.0308 (5)
H160.06680.06360.48960.037*
C170.18394 (18)0.12024 (12)0.52207 (9)0.0320 (5)
H170.20950.09000.55510.038*
C180.23232 (15)0.18202 (11)0.51279 (9)0.0248 (4)
C190.31869 (16)0.20535 (13)0.55351 (9)0.0303 (5)
H190.34670.17750.58770.036*
C200.35999 (15)0.26690 (13)0.54312 (9)0.0311 (5)
H200.41670.28040.56990.037*
C210.31817 (13)0.31238 (11)0.49134 (9)0.0237 (4)
C220.35496 (14)0.37909 (13)0.48009 (10)0.0293 (5)
H220.41110.39550.50570.035*
C230.30806 (15)0.41974 (12)0.43140 (11)0.0290 (5)
H230.33190.46450.42460.035*
C240.22373 (14)0.39501 (11)0.39107 (9)0.0228 (4)
C250.23381 (13)0.29031 (10)0.45008 (8)0.0182 (4)
C260.19076 (13)0.22427 (10)0.46050 (8)0.0184 (4)
C270.03382 (16)0.13256 (12)0.39053 (10)0.0299 (5)
H27A0.06690.17680.37760.045*
H27B0.06840.10370.41230.045*
H27C0.02680.10650.35520.045*
C280.17413 (17)0.43980 (12)0.33721 (11)0.0323 (5)
H28A0.20480.43470.30490.048*
H28B0.17540.48950.34930.048*
H28C0.11030.42390.32290.048*
C290.17157 (15)0.30088 (12)0.22990 (10)0.0259 (4)
C300.19169 (18)0.31546 (13)0.17158 (10)0.0340 (5)
H30A0.15360.35490.15160.051*
H30B0.17810.27330.14600.051*
H30C0.25660.32780.17850.051*
Cu20.389985 (16)0.691709 (13)0.105797 (10)0.01934 (6)
N60.40860 (12)0.80441 (10)0.10026 (7)0.0220 (3)
N70.27073 (11)0.71383 (9)0.04267 (7)0.0196 (3)
N80.47331 (11)0.63926 (9)0.05485 (7)0.0179 (3)
N90.49699 (12)0.66233 (9)0.17556 (7)0.0220 (3)
N100.30781 (12)0.63636 (10)0.15327 (9)0.0301 (4)
C310.47989 (15)0.84849 (12)0.12578 (9)0.0258 (4)
C320.46991 (17)0.92389 (13)0.12152 (10)0.0329 (5)
H320.51950.95340.14140.040*
C330.38771 (17)0.95422 (12)0.08832 (10)0.0312 (5)
H330.38131.00410.08580.037*
C340.31299 (16)0.90937 (11)0.05798 (9)0.0250 (4)
C350.22656 (17)0.93593 (12)0.01946 (10)0.0291 (5)
H350.21770.98540.01410.035*
C360.15750 (16)0.89042 (12)0.00933 (9)0.0281 (4)
H360.10190.90900.03400.034*
C370.16900 (14)0.81373 (11)0.00228 (9)0.0237 (4)
C380.10079 (15)0.76359 (13)0.03216 (10)0.0291 (5)
H380.04350.77950.05670.035*
C390.11933 (15)0.69138 (12)0.02494 (10)0.0281 (4)
H390.07470.65810.04500.034*
C400.20568 (14)0.66717 (11)0.01275 (9)0.0231 (4)
C410.25367 (14)0.78642 (10)0.03519 (9)0.0201 (4)
C420.32663 (14)0.83454 (11)0.06588 (9)0.0209 (4)
C430.57260 (16)0.81640 (14)0.15865 (11)0.0346 (5)
H43A0.57150.80300.19950.052*
H43B0.62130.85120.16060.052*
H43C0.58440.77440.13690.052*
C440.22558 (15)0.58754 (11)0.01864 (11)0.0288 (5)
H44A0.29170.58000.03480.043*
H44B0.20500.56520.02100.043*
H44C0.19280.56660.04590.043*
C450.46565 (14)0.63376 (11)0.00539 (9)0.0214 (4)
C460.52727 (15)0.59019 (11)0.02811 (9)0.0244 (4)
H460.51920.58580.07020.029*
C470.59841 (15)0.55459 (11)0.01151 (10)0.0258 (4)
H470.63910.52610.00350.031*
C480.61049 (13)0.56075 (10)0.07503 (10)0.0217 (4)
C490.68461 (14)0.52621 (11)0.11996 (11)0.0281 (5)
H490.72670.49670.10720.034*
C500.69392 (14)0.53596 (11)0.18022 (11)0.0300 (5)
H500.74170.51210.20850.036*
C510.63208 (14)0.58223 (11)0.20202 (10)0.0251 (4)
C520.64206 (16)0.59802 (12)0.26422 (10)0.0325 (5)
H520.68960.57650.29430.039*
C530.58196 (18)0.64482 (13)0.28023 (10)0.0344 (5)
H530.58930.65570.32140.041*
C540.50824 (16)0.67732 (12)0.23509 (9)0.0279 (5)
C550.55759 (13)0.61575 (10)0.15911 (9)0.0195 (4)
C560.54592 (13)0.60427 (10)0.09476 (9)0.0179 (3)
C570.39157 (16)0.67533 (13)0.05023 (9)0.0297 (5)
H57A0.33450.64790.06060.045*
H57B0.41160.68440.08670.045*
H57C0.38100.72040.03220.045*
C580.44347 (19)0.72961 (14)0.25291 (11)0.0375 (6)
H58A0.40540.75250.21680.056*
H58B0.47930.76550.27970.056*
H58C0.40400.70450.27370.056*
C590.27828 (14)0.59525 (12)0.18046 (10)0.0264 (4)
C600.24070 (17)0.54244 (13)0.21520 (11)0.0338 (5)
H60A0.17940.52790.19190.051*
H60B0.23670.56340.25330.051*
H60C0.28120.50110.22340.051*
B10.14194 (16)0.37274 (12)0.59292 (10)0.0216 (4)
F10.12278 (9)0.31320 (6)0.55422 (6)0.0299 (3)
F20.15876 (12)0.35016 (8)0.65311 (6)0.0456 (4)
F30.06508 (11)0.41852 (8)0.58040 (8)0.0512 (4)
F40.22077 (11)0.40904 (8)0.58686 (8)0.0469 (4)
B20.39281 (17)0.60964 (13)0.40230 (11)0.0255 (5)
F50.33071 (12)0.57495 (9)0.35454 (8)0.0605 (5)
F60.44297 (10)0.55965 (8)0.44397 (8)0.0523 (5)
F70.33939 (13)0.65099 (9)0.43110 (7)0.0565 (5)
F80.44967 (13)0.65558 (14)0.38094 (8)0.0811 (7)
B30.98516 (18)0.44247 (14)0.15311 (12)0.0312 (5)
F91.02798 (10)0.48400 (8)0.20389 (6)0.0405 (3)
F100.98237 (12)0.37088 (8)0.16878 (8)0.0501 (4)
F110.89527 (11)0.46847 (9)0.12734 (8)0.0576 (5)
F121.03623 (13)0.44934 (8)0.10927 (7)0.0522 (4)
B40.4382 (2)0.44043 (18)0.18722 (13)0.0285 (7)0.8615 (17)
F130.52285 (13)0.41538 (11)0.17988 (8)0.0520 (5)0.8615 (17)
F140.45417 (14)0.49308 (11)0.23150 (9)0.0548 (5)0.8615 (17)
F150.39075 (18)0.38431 (14)0.20358 (14)0.0916 (10)0.8615 (17)
F160.38341 (16)0.46846 (12)0.13232 (8)0.0597 (6)0.8615 (17)
B4A0.4575 (11)0.4282 (10)0.2016 (7)0.0285 (7)0.1385 (17)
F13A0.5483 (7)0.4392 (7)0.2375 (5)0.0520 (5)0.1385 (17)
F14A0.4001 (8)0.4306 (7)0.2415 (5)0.0548 (5)0.1385 (17)
F15A0.4589 (11)0.3639 (7)0.1725 (7)0.0916 (10)0.1385 (17)
F16A0.4292 (10)0.4821 (8)0.1576 (5)0.0597 (6)0.1385 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01123 (10)0.01830 (11)0.01463 (10)0.00064 (8)0.00004 (7)0.00094 (8)
N10.0135 (7)0.0177 (7)0.0147 (6)0.0018 (6)0.0031 (5)0.0010 (6)
N20.0138 (7)0.0181 (7)0.0157 (7)0.0008 (6)0.0020 (5)0.0006 (6)
N30.0175 (7)0.0187 (7)0.0154 (7)0.0014 (6)0.0051 (6)0.0006 (6)
N40.0131 (7)0.0185 (7)0.0180 (7)0.0015 (6)0.0025 (6)0.0015 (6)
N50.0222 (9)0.0385 (10)0.0216 (8)0.0094 (7)0.0032 (7)0.0013 (7)
C10.0174 (9)0.0192 (9)0.0190 (8)0.0002 (7)0.0059 (7)0.0015 (7)
C20.0228 (10)0.0211 (9)0.0216 (9)0.0002 (8)0.0055 (7)0.0038 (7)
C30.0211 (9)0.0232 (9)0.0185 (8)0.0040 (8)0.0010 (7)0.0031 (7)
C40.0171 (8)0.0190 (9)0.0161 (8)0.0003 (7)0.0000 (6)0.0002 (7)
C50.0179 (9)0.0242 (10)0.0209 (9)0.0012 (7)0.0052 (7)0.0003 (7)
C60.0148 (9)0.0249 (10)0.0253 (9)0.0033 (7)0.0043 (7)0.0021 (8)
C70.0145 (8)0.0187 (9)0.0210 (8)0.0019 (7)0.0014 (7)0.0032 (7)
C80.0171 (9)0.0198 (9)0.0261 (9)0.0052 (7)0.0032 (7)0.0024 (8)
C90.0231 (9)0.0183 (9)0.0226 (9)0.0044 (8)0.0055 (7)0.0014 (7)
C100.0184 (9)0.0172 (8)0.0173 (8)0.0003 (7)0.0027 (7)0.0010 (7)
C110.0133 (8)0.0167 (8)0.0148 (7)0.0001 (6)0.0009 (6)0.0017 (6)
C120.0135 (8)0.0157 (8)0.0149 (7)0.0000 (6)0.0015 (6)0.0018 (6)
C130.0187 (9)0.0243 (10)0.0241 (9)0.0067 (8)0.0063 (7)0.0003 (8)
C140.0226 (10)0.0245 (10)0.0220 (9)0.0023 (8)0.0010 (7)0.0059 (8)
C150.0299 (11)0.0206 (9)0.0220 (9)0.0009 (8)0.0135 (8)0.0007 (7)
C160.0479 (14)0.0213 (10)0.0282 (10)0.0020 (10)0.0190 (10)0.0039 (8)
C170.0522 (15)0.0266 (11)0.0191 (9)0.0173 (10)0.0125 (9)0.0055 (8)
C180.0311 (11)0.0277 (10)0.0145 (8)0.0160 (9)0.0044 (7)0.0007 (7)
C190.0315 (11)0.0378 (12)0.0171 (9)0.0219 (10)0.0016 (8)0.0026 (8)
C200.0185 (10)0.0506 (14)0.0188 (9)0.0160 (9)0.0045 (7)0.0125 (9)
C210.0145 (9)0.0343 (11)0.0208 (9)0.0048 (8)0.0018 (7)0.0129 (8)
C220.0152 (9)0.0424 (13)0.0299 (10)0.0038 (9)0.0049 (8)0.0180 (10)
C230.0230 (10)0.0279 (11)0.0398 (12)0.0114 (9)0.0147 (9)0.0133 (9)
C240.0197 (9)0.0236 (9)0.0274 (10)0.0028 (8)0.0102 (8)0.0038 (8)
C250.0144 (8)0.0228 (9)0.0167 (8)0.0045 (7)0.0027 (6)0.0066 (7)
C260.0181 (9)0.0205 (9)0.0155 (8)0.0074 (7)0.0025 (6)0.0022 (7)
C270.0331 (12)0.0303 (11)0.0296 (10)0.0131 (9)0.0144 (9)0.0023 (9)
C280.0337 (12)0.0231 (10)0.0419 (13)0.0039 (9)0.0132 (10)0.0066 (9)
C290.0227 (10)0.0299 (10)0.0244 (9)0.0084 (8)0.0052 (8)0.0034 (8)
C300.0423 (14)0.0395 (13)0.0254 (10)0.0071 (11)0.0180 (10)0.0009 (9)
Cu20.01406 (11)0.02553 (13)0.01898 (11)0.00282 (9)0.00535 (8)0.00247 (9)
N60.0189 (8)0.0301 (9)0.0178 (7)0.0011 (7)0.0060 (6)0.0043 (7)
N70.0153 (7)0.0230 (8)0.0218 (7)0.0026 (6)0.0075 (6)0.0013 (6)
N80.0126 (7)0.0236 (8)0.0174 (7)0.0002 (6)0.0038 (6)0.0034 (6)
N90.0208 (8)0.0271 (8)0.0179 (7)0.0022 (7)0.0046 (6)0.0041 (7)
N100.0184 (8)0.0386 (10)0.0336 (10)0.0034 (8)0.0074 (7)0.0125 (8)
C310.0241 (10)0.0348 (11)0.0190 (9)0.0086 (9)0.0065 (8)0.0044 (8)
C320.0379 (13)0.0366 (12)0.0248 (10)0.0145 (10)0.0090 (9)0.0012 (9)
C330.0428 (13)0.0244 (10)0.0286 (10)0.0071 (10)0.0134 (10)0.0024 (9)
C340.0315 (11)0.0248 (10)0.0213 (9)0.0007 (8)0.0119 (8)0.0035 (8)
C350.0360 (12)0.0264 (10)0.0273 (10)0.0088 (9)0.0122 (9)0.0078 (9)
C360.0277 (11)0.0328 (11)0.0243 (9)0.0118 (9)0.0077 (8)0.0073 (9)
C370.0202 (9)0.0310 (11)0.0206 (9)0.0074 (8)0.0064 (7)0.0032 (8)
C380.0173 (9)0.0431 (13)0.0251 (10)0.0065 (9)0.0024 (8)0.0010 (9)
C390.0175 (9)0.0361 (12)0.0294 (10)0.0003 (9)0.0037 (8)0.0063 (9)
C400.0169 (9)0.0265 (10)0.0277 (10)0.0010 (8)0.0091 (7)0.0040 (8)
C410.0182 (9)0.0231 (9)0.0204 (8)0.0037 (7)0.0077 (7)0.0013 (7)
C420.0207 (9)0.0255 (9)0.0177 (8)0.0013 (8)0.0072 (7)0.0027 (7)
C430.0228 (11)0.0468 (14)0.0307 (11)0.0119 (10)0.0008 (9)0.0114 (10)
C440.0233 (10)0.0240 (10)0.0401 (12)0.0014 (8)0.0105 (9)0.0064 (9)
C450.0177 (9)0.0257 (10)0.0214 (9)0.0038 (7)0.0064 (7)0.0022 (8)
C460.0281 (11)0.0238 (10)0.0256 (9)0.0064 (8)0.0149 (8)0.0022 (8)
C470.0244 (10)0.0202 (9)0.0389 (11)0.0034 (8)0.0192 (9)0.0026 (9)
C480.0131 (8)0.0173 (9)0.0360 (11)0.0020 (7)0.0090 (8)0.0017 (8)
C490.0139 (9)0.0216 (10)0.0482 (13)0.0013 (7)0.0069 (9)0.0050 (9)
C500.0128 (9)0.0232 (10)0.0478 (13)0.0012 (7)0.0029 (8)0.0110 (9)
C510.0166 (9)0.0235 (10)0.0305 (10)0.0066 (8)0.0021 (8)0.0083 (8)
C520.0300 (12)0.0310 (11)0.0270 (10)0.0095 (9)0.0093 (9)0.0090 (9)
C530.0420 (14)0.0385 (13)0.0176 (9)0.0142 (11)0.0012 (9)0.0019 (9)
C540.0333 (12)0.0307 (11)0.0203 (9)0.0087 (9)0.0082 (8)0.0011 (8)
C550.0133 (8)0.0227 (9)0.0208 (8)0.0042 (7)0.0013 (7)0.0039 (7)
C560.0115 (8)0.0193 (8)0.0228 (8)0.0024 (7)0.0043 (7)0.0023 (7)
C570.0268 (11)0.0416 (13)0.0195 (9)0.0035 (9)0.0042 (8)0.0065 (9)
C580.0497 (15)0.0414 (13)0.0269 (11)0.0018 (12)0.0201 (11)0.0033 (10)
C590.0161 (9)0.0357 (11)0.0272 (10)0.0022 (8)0.0051 (8)0.0062 (9)
C600.0294 (12)0.0408 (13)0.0340 (11)0.0063 (10)0.0132 (9)0.0082 (10)
B10.0192 (10)0.0226 (10)0.0212 (10)0.0004 (8)0.0023 (8)0.0028 (8)
F10.0321 (7)0.0260 (6)0.0290 (6)0.0022 (5)0.0038 (5)0.0085 (5)
F20.0631 (10)0.0495 (9)0.0227 (6)0.0056 (8)0.0088 (7)0.0003 (6)
F30.0365 (8)0.0397 (8)0.0613 (10)0.0185 (7)0.0156 (7)0.0226 (7)
F40.0479 (9)0.0371 (8)0.0653 (10)0.0168 (7)0.0318 (8)0.0054 (7)
B20.0199 (11)0.0285 (12)0.0270 (11)0.0070 (9)0.0044 (9)0.0062 (9)
F50.0423 (9)0.0589 (10)0.0617 (11)0.0101 (8)0.0191 (8)0.0202 (9)
F60.0285 (8)0.0289 (7)0.0799 (12)0.0035 (6)0.0205 (8)0.0045 (7)
F70.0745 (12)0.0604 (10)0.0370 (8)0.0303 (9)0.0188 (8)0.0061 (8)
F80.0508 (11)0.1460 (19)0.0461 (10)0.0541 (12)0.0120 (8)0.0185 (11)
B30.0258 (12)0.0322 (13)0.0323 (12)0.0063 (10)0.0019 (10)0.0033 (11)
F90.0326 (8)0.0498 (8)0.0341 (7)0.0024 (6)0.0000 (6)0.0082 (6)
F100.0499 (10)0.0353 (8)0.0658 (11)0.0008 (7)0.0165 (8)0.0064 (8)
F110.0312 (8)0.0655 (11)0.0608 (10)0.0144 (8)0.0152 (7)0.0131 (9)
F120.0736 (12)0.0443 (9)0.0484 (9)0.0118 (8)0.0331 (9)0.0023 (7)
B40.0280 (16)0.0347 (17)0.0206 (15)0.0020 (13)0.0024 (12)0.0024 (13)
F130.0415 (11)0.0712 (13)0.0447 (10)0.0222 (10)0.0139 (8)0.0047 (9)
F140.0473 (11)0.0650 (12)0.0449 (10)0.0035 (9)0.0004 (9)0.0260 (9)
F150.0612 (16)0.0842 (17)0.120 (2)0.0425 (14)0.0068 (15)0.0368 (17)
F160.0703 (15)0.0779 (14)0.0236 (9)0.0466 (12)0.0008 (9)0.0059 (9)
B4A0.0280 (16)0.0347 (17)0.0206 (15)0.0020 (13)0.0024 (12)0.0024 (13)
F13A0.0415 (11)0.0712 (13)0.0447 (10)0.0222 (10)0.0139 (8)0.0047 (9)
F14A0.0473 (11)0.0650 (12)0.0449 (10)0.0035 (9)0.0004 (9)0.0260 (9)
F15A0.0612 (16)0.0842 (17)0.120 (2)0.0425 (14)0.0068 (15)0.0368 (17)
F16A0.0703 (15)0.0779 (14)0.0236 (9)0.0466 (12)0.0008 (9)0.0059 (9)
Geometric parameters (Å, º) top
Cu1—N11.9872 (15)N8—C561.370 (2)
Cu1—N41.9915 (15)N9—C541.339 (3)
Cu1—N52.0895 (19)N9—C551.365 (3)
Cu1—N32.1013 (15)N10—C591.136 (3)
Cu1—N22.1391 (16)C31—C321.406 (3)
N1—C11.337 (2)C31—C431.500 (3)
N1—C121.368 (2)C32—C331.370 (3)
N2—C101.338 (2)C32—H320.9300
N2—C111.370 (2)C33—C341.409 (3)
N3—C151.341 (3)C33—H330.9300
N3—C261.365 (2)C34—C421.406 (3)
N4—C241.339 (3)C34—C351.431 (3)
N4—C251.365 (2)C35—C361.352 (3)
N5—C291.138 (3)C35—H350.9300
C1—C21.413 (3)C36—C371.435 (3)
C1—C131.491 (3)C36—H360.9300
C2—C31.367 (3)C37—C381.407 (3)
C2—H20.9300C37—C411.408 (3)
C3—C41.411 (3)C38—C391.367 (3)
C3—H30.9300C38—H380.9300
C4—C121.406 (2)C39—C401.409 (3)
C4—C51.432 (3)C39—H390.9300
C5—C61.353 (3)C40—C441.504 (3)
C5—H50.9300C41—C421.431 (3)
C6—C71.433 (3)C43—H43A0.9600
C6—H60.9300C43—H43B0.9600
C7—C111.407 (2)C43—H43C0.9600
C7—C81.409 (3)C44—H44A0.9600
C8—C91.370 (3)C44—H44B0.9600
C8—H80.9300C44—H44C0.9600
C9—C101.413 (3)C45—C461.412 (3)
C9—H90.9300C45—C571.495 (3)
C10—C141.504 (3)C46—C471.359 (3)
C11—C121.433 (3)C46—H460.9300
C13—H13A0.9600C47—C481.402 (3)
C13—H13B0.9600C47—H470.9300
C13—H13C0.9600C48—C561.409 (3)
C14—H14A0.9600C48—C491.434 (3)
C14—H14B0.9600C49—C501.343 (3)
C14—H14C0.9600C49—H490.9300
C15—C161.412 (3)C50—C511.432 (3)
C15—C271.498 (3)C50—H500.9300
C16—C171.362 (3)C51—C521.404 (3)
C16—H160.9300C51—C551.406 (3)
C17—C181.395 (3)C52—C531.358 (4)
C17—H170.9300C52—H520.9300
C18—C261.415 (3)C53—C541.417 (3)
C18—C191.431 (3)C53—H530.9300
C19—C201.344 (4)C54—C581.491 (3)
C19—H190.9300C55—C561.433 (3)
C20—C211.442 (3)C57—H57A0.9600
C20—H200.9300C57—H57B0.9600
C21—C221.401 (3)C57—H57C0.9600
C21—C251.408 (3)C58—H58A0.9600
C22—C231.363 (3)C58—H58B0.9600
C22—H220.9300C58—H58C0.9600
C23—C241.414 (3)C59—C601.453 (3)
C23—H230.9300C60—H60A0.9600
C24—C281.495 (3)C60—H60B0.9600
C25—C261.428 (3)C60—H60C0.9600
C27—H27A0.9600B1—F21.381 (3)
C27—H27B0.9600B1—F41.384 (3)
C27—H27C0.9600B1—F31.387 (3)
C28—H28A0.9600B1—F11.390 (2)
C28—H28B0.9600B2—F81.371 (3)
C28—H28C0.9600B2—F51.378 (3)
C29—C301.450 (3)B2—F71.380 (3)
C30—H30A0.9600B2—F61.388 (3)
C30—H30B0.9600B3—F101.377 (3)
C30—H30C0.9600B3—F91.388 (3)
Cu2—N91.9931 (16)B3—F111.390 (3)
Cu2—N71.9976 (16)B3—F121.400 (3)
Cu2—N102.0894 (19)B4—F151.359 (4)
Cu2—N62.1150 (18)B4—F141.372 (4)
Cu2—N82.1295 (16)B4—F131.386 (4)
N6—C311.339 (3)B4—F161.391 (3)
N6—C421.375 (2)B4A—F15A1.364 (15)
N7—C401.337 (3)B4A—F13A1.391 (14)
N7—C411.371 (2)B4A—F16A1.392 (14)
N8—C451.339 (2)B4A—F14A1.392 (15)
N1—Cu1—N4170.39 (6)C41—N7—Cu2112.88 (13)
N1—Cu1—N583.26 (6)C45—N8—C56118.32 (17)
N4—Cu1—N587.80 (7)C45—N8—Cu2132.63 (13)
N1—Cu1—N3101.85 (6)C56—N8—Cu2109.03 (12)
N4—Cu1—N381.63 (6)C54—N9—C55119.16 (18)
N5—Cu1—N3132.45 (7)C54—N9—Cu2126.84 (15)
N1—Cu1—N281.43 (6)C55—N9—Cu2113.58 (12)
N4—Cu1—N2106.03 (6)C59—N10—Cu2164.90 (18)
N5—Cu1—N2118.15 (7)N6—C31—C32121.4 (2)
N3—Cu1—N2109.32 (6)N6—C31—C43119.0 (2)
C1—N1—C12119.70 (15)C32—C31—C43119.6 (2)
C1—N1—Cu1126.13 (13)C33—C32—C31120.5 (2)
C12—N1—Cu1113.46 (12)C33—C32—H32119.8
C10—N2—C11118.46 (16)C31—C32—H32119.8
C10—N2—Cu1132.76 (12)C32—C33—C34119.6 (2)
C11—N2—Cu1108.70 (12)C32—C33—H33120.2
C15—N3—C26118.22 (16)C34—C33—H33120.2
C15—N3—Cu1132.51 (13)C42—C34—C33116.9 (2)
C26—N3—Cu1109.04 (12)C42—C34—C35119.5 (2)
C24—N4—C25119.56 (16)C33—C34—C35123.6 (2)
C24—N4—Cu1127.61 (13)C36—C35—C34121.2 (2)
C25—N4—Cu1112.19 (12)C36—C35—H35119.4
C29—N5—Cu1163.05 (18)C34—C35—H35119.4
N1—C1—C2120.44 (17)C35—C36—C37120.8 (2)
N1—C1—C13119.39 (16)C35—C36—H36119.6
C2—C1—C13120.17 (17)C37—C36—H36119.6
C3—C2—C1120.55 (18)C38—C37—C41117.60 (19)
C3—C2—H2119.7C38—C37—C36123.49 (19)
C1—C2—H2119.7C41—C37—C36118.90 (19)
C2—C3—C4119.67 (17)C39—C38—C37119.55 (19)
C2—C3—H3120.2C39—C38—H38120.2
C4—C3—H3120.2C37—C38—H38120.2
C12—C4—C3117.16 (17)C38—C39—C40120.4 (2)
C12—C4—C5119.21 (17)C38—C39—H39119.8
C3—C4—C5123.62 (17)C40—C39—H39119.8
C6—C5—C4120.99 (17)N7—C40—C39121.12 (19)
C6—C5—H5119.5N7—C40—C44119.46 (18)
C4—C5—H5119.5C39—C40—C44119.42 (19)
C5—C6—C7120.79 (18)N7—C41—C37122.17 (18)
C5—C6—H6119.6N7—C41—C42117.45 (17)
C7—C6—H6119.6C37—C41—C42120.36 (18)
C11—C7—C8116.77 (17)N6—C42—C34123.25 (19)
C11—C7—C6119.68 (17)N6—C42—C41117.48 (18)
C8—C7—C6123.55 (17)C34—C42—C41119.24 (18)
C9—C8—C7119.77 (18)C31—C43—H43A109.5
C9—C8—H8120.1C31—C43—H43B109.5
C7—C8—H8120.1H43A—C43—H43B109.5
C8—C9—C10120.32 (18)C31—C43—H43C109.5
C8—C9—H9119.8H43A—C43—H43C109.5
C10—C9—H9119.8H43B—C43—H43C109.5
N2—C10—C9121.24 (17)C40—C44—H44A109.5
N2—C10—C14118.98 (17)C40—C44—H44B109.5
C9—C10—C14119.76 (17)H44A—C44—H44B109.5
N2—C11—C7123.42 (17)C40—C44—H44C109.5
N2—C11—C12117.43 (16)H44A—C44—H44C109.5
C7—C11—C12119.11 (16)H44B—C44—H44C109.5
N1—C12—C4122.45 (16)N8—C45—C46121.50 (18)
N1—C12—C11117.41 (15)N8—C45—C57119.98 (18)
C4—C12—C11120.12 (16)C46—C45—C57118.51 (18)
C1—C13—H13A109.5C47—C46—C45120.06 (19)
C1—C13—H13B109.5C47—C46—H46120.0
H13A—C13—H13B109.5C45—C46—H46120.0
C1—C13—H13C109.5C46—C47—C48120.11 (19)
H13A—C13—H13C109.5C46—C47—H47119.9
H13B—C13—H13C109.5C48—C47—H47119.9
C10—C14—H14A109.5C47—C48—C56117.08 (18)
C10—C14—H14B109.5C47—C48—C49123.72 (19)
H14A—C14—H14B109.5C56—C48—C49119.20 (19)
C10—C14—H14C109.5C50—C49—C48120.8 (2)
H14A—C14—H14C109.5C50—C49—H49119.6
H14B—C14—H14C109.5C48—C49—H49119.6
N3—C15—C16121.1 (2)C49—C50—C51121.59 (19)
N3—C15—C27119.07 (18)C49—C50—H50119.2
C16—C15—C27119.79 (19)C51—C50—H50119.2
C17—C16—C15120.4 (2)C52—C51—C55117.0 (2)
C17—C16—H16119.8C52—C51—C50124.0 (2)
C15—C16—H16119.8C55—C51—C50118.93 (19)
C16—C17—C18120.03 (19)C53—C52—C51119.7 (2)
C16—C17—H17120.0C53—C52—H52120.1
C18—C17—H17120.0C51—C52—H52120.1
C17—C18—C26116.87 (19)C52—C53—C54121.0 (2)
C17—C18—C19123.94 (19)C52—C53—H53119.5
C26—C18—C19119.2 (2)C54—C53—H53119.5
C20—C19—C18120.98 (19)N9—C54—C53120.2 (2)
C20—C19—H19119.5N9—C54—C58119.1 (2)
C18—C19—H19119.5C53—C54—C58120.7 (2)
C19—C20—C21121.33 (19)N9—C55—C51122.96 (18)
C19—C20—H20119.3N9—C55—C56117.21 (16)
C21—C20—H20119.3C51—C55—C56119.76 (18)
C22—C21—C25117.11 (19)N8—C56—C48122.85 (17)
C22—C21—C20123.96 (19)N8—C56—C55117.45 (17)
C25—C21—C20118.9 (2)C48—C56—C55119.64 (17)
C23—C22—C21119.65 (19)C45—C57—H57A109.5
C23—C22—H22120.2C45—C57—H57B109.5
C21—C22—H22120.2H57A—C57—H57B109.5
C22—C23—C24121.1 (2)C45—C57—H57C109.5
C22—C23—H23119.5H57A—C57—H57C109.5
C24—C23—H23119.5H57B—C57—H57C109.5
N4—C24—C23119.89 (19)C54—C58—H58A109.5
N4—C24—C28119.77 (18)C54—C58—H58B109.5
C23—C24—C28120.33 (19)H58A—C58—H58B109.5
N4—C25—C21122.67 (18)C54—C58—H58C109.5
N4—C25—C26117.53 (16)H58A—C58—H58C109.5
C21—C25—C26119.77 (17)H58B—C58—H58C109.5
N3—C26—C18123.20 (18)N10—C59—C60179.8 (3)
N3—C26—C25116.92 (16)C59—C60—H60A109.5
C18—C26—C25119.80 (18)C59—C60—H60B109.5
C15—C27—H27A109.5H60A—C60—H60B109.5
C15—C27—H27B109.5C59—C60—H60C109.5
H27A—C27—H27B109.5H60A—C60—H60C109.5
C15—C27—H27C109.5H60B—C60—H60C109.5
H27A—C27—H27C109.5F2—B1—F4107.83 (18)
H27B—C27—H27C109.5F2—B1—F3108.17 (19)
C24—C28—H28A109.5F4—B1—F3110.45 (19)
C24—C28—H28B109.5F2—B1—F1109.42 (18)
H28A—C28—H28B109.5F4—B1—F1111.20 (18)
C24—C28—H28C109.5F3—B1—F1109.69 (17)
H28A—C28—H28C109.5F8—B2—F5111.0 (2)
H28B—C28—H28C109.5F8—B2—F7107.5 (2)
N5—C29—C30178.7 (3)F5—B2—F7106.3 (2)
C29—C30—H30A109.5F8—B2—F6112.6 (2)
C29—C30—H30B109.5F5—B2—F6110.27 (19)
H30A—C30—H30B109.5F7—B2—F6108.77 (19)
C29—C30—H30C109.5F10—B3—F9111.1 (2)
H30A—C30—H30C109.5F10—B3—F11110.6 (2)
H30B—C30—H30C109.5F9—B3—F11109.4 (2)
N9—Cu2—N7171.49 (7)F10—B3—F12109.1 (2)
N9—Cu2—N1084.78 (7)F9—B3—F12108.6 (2)
N7—Cu2—N1086.72 (7)F11—B3—F12107.9 (2)
N9—Cu2—N6103.17 (7)F15—B4—F14110.4 (3)
N7—Cu2—N681.92 (6)F15—B4—F13108.9 (3)
N10—Cu2—N6128.15 (7)F14—B4—F13109.7 (2)
N9—Cu2—N881.35 (6)F15—B4—F16107.8 (3)
N7—Cu2—N8103.69 (6)F14—B4—F16109.4 (3)
N10—Cu2—N8123.42 (7)F13—B4—F16110.6 (2)
N6—Cu2—N8108.43 (6)F15A—B4A—F13A105.9 (13)
C31—N6—C42118.24 (18)F15A—B4A—F16A108.9 (13)
C31—N6—Cu2132.65 (14)F13A—B4A—F16A112.0 (14)
C42—N6—Cu2108.99 (13)F15A—B4A—F14A115.4 (15)
C40—N7—C41119.19 (17)F13A—B4A—F14A106.1 (12)
C40—N7—Cu2127.65 (14)F16A—B4A—F14A108.5 (13)

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)(C12H12N2)2](BF4)2
Mr694.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.7973 (3), 18.5356 (3), 22.5770 (4)
β (°) 105.2524 (18)
V3)5974.23 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Sapphire 3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.765, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
40609, 19629, 13249
Rint0.026
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.07
No. of reflections19629
No. of parameters855
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.88

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

References

First citationAddison, A. W., Rao, T. R., Reedick, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1949–1956.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235.  CrossRef CAS Web of Science Google Scholar
First citationJames, B. R. & Williams, R. J. P. (1961). J. Chem. Soc. pp. 2007–2019.  CrossRef Web of Science Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1998). Inorg. Chem. 37, 2285-2290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatton, S. P. (2009). Acta Cryst. E65, m585–m586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatton, S. P. (2010). Acta Cryst. E66, m1359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds