organic compounds
2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title molecular salt, C8H13N2O+·C7H3N2O7−·H2O, the pyrimidinium cation is essentially planar, with a maximum deviation of 0.009 (1) Å. The cation undergoes an enol–keto during the crystallization. In the crystal, the ion pairs and water molecules are connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intramolecular O—H⋯O hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) ring motif.
Related literature
For applications of pyrimidine derivaties, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997). For a related structure, see: Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810042571/fj2355sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042571/fj2355Isup2.hkl
A hot methanol solution (20 ml) of 2-isopropyl-4-hydroxy-6-methylpyrimidine (46 mg, Aldrich) and 3,5-dinitrosalicylic acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow blocks of (I) appeared after a few days.
Atoms H1N3, H1N4, H2W1 and H1W1 were located from a difference Fourier map and were refined freely [N–H = 0.90 (2)– 0.91 (2) Å and O–H = 0.82–0.85 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C,O). A rotating group model was used for the methyl group.
Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. Since our aim is to study some interesting hydrogen bonding interactions, the of the title compound is presented here.
The
of (I) (Fig 1), contains a 2-isopropyl-6-methyl pyrimidinium-4(3H)-one cation, a 3,5-dinitrosalicylate anion and a water molecule. In the cation, the proton transfer from the hydroxyl group of the anion to the N4 atom leads to a slight increase in the C8—N4—C11 angle to 124.54 (12)°, compared to 116.83 (8)° in (Hemamalini & Fun, 2010). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 177.02 (13)°]. The Pyrimidine ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom N4. The bond lengths (Allen et al., 1987) and angles are normal. The cation undergoes an enol-keto during the crystallization. Similar was also observed in the of 2-Isopropyl-6-methylpyrimidinium-4(3H)-one (Hemamalini & Fun, 2010).In the crystals structure (Fig. 2), the ion pairs and water molecules are connected via N3—H1N3···O6, N4—H1N4···O1W, O1W—H2W1···O1, O1W—H1W1···O3, C9—H9A···O5, C12—H12A···O7, C14—H14B···O4 and C15—H15C···O3 hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intramolecular O7—H7···O1 hydrogen bond in the 3,5-dinitrosalicylate anion which generates an S(6) (Bernstein et al., 1995) ring motif.
For applications of pyrimidine derivaties, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997). For a related structure, see: Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in the interactions have been omitted for clarity. |
C8H13N2O+·C7H3N2O7−·H2O | Z = 2 |
Mr = 398.33 | F(000) = 416 |
Triclinic, P1 | Dx = 1.497 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6691 (3) Å | Cell parameters from 6994 reflections |
b = 11.3831 (4) Å | θ = 2.4–31.6° |
c = 12.2900 (5) Å | µ = 0.13 mm−1 |
α = 89.727 (2)° | T = 100 K |
β = 76.771 (2)° | Block, yellow |
γ = 76.930 (2)° | 0.52 × 0.13 × 0.10 mm |
V = 883.62 (6) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 4061 independent reflections |
Radiation source: fine-focus sealed tube | 3279 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.937, Tmax = 0.987 | k = −14→12 |
17014 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0477P)2 + 0.3946P] where P = (Fo2 + 2Fc2)/3 |
4061 reflections | (Δ/σ)max < 0.001 |
273 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C8H13N2O+·C7H3N2O7−·H2O | γ = 76.930 (2)° |
Mr = 398.33 | V = 883.62 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6691 (3) Å | Mo Kα radiation |
b = 11.3831 (4) Å | µ = 0.13 mm−1 |
c = 12.2900 (5) Å | T = 100 K |
α = 89.727 (2)° | 0.52 × 0.13 × 0.10 mm |
β = 76.771 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4061 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3279 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.987 | Rint = 0.030 |
17014 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.53 e Å−3 |
4061 reflections | Δρmin = −0.30 e Å−3 |
273 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.30537 (18) | −0.17099 (10) | 0.14974 (9) | 0.0223 (2) | |
O2 | 0.5667 (2) | −0.35714 (10) | 0.01344 (10) | 0.0310 (3) | |
O3 | 0.4865 (2) | −0.36692 (10) | −0.14689 (10) | 0.0308 (3) | |
O4 | 0.36257 (17) | −0.00307 (10) | −0.33888 (9) | 0.0231 (3) | |
O5 | 0.23770 (18) | 0.16989 (10) | −0.24573 (9) | 0.0251 (3) | |
O6 | 0.07237 (17) | 0.19149 (9) | 0.16326 (9) | 0.0200 (2) | |
O7 | 0.14505 (18) | 0.02269 (10) | 0.25242 (9) | 0.0213 (2) | |
H7 | 0.1960 | −0.0493 | 0.2360 | 0.032* | |
O8 | 0.31892 (18) | 0.38518 (9) | 0.41955 (9) | 0.0220 (2) | |
N1 | 0.30166 (19) | 0.05932 (11) | −0.25097 (10) | 0.0182 (3) | |
N2 | 0.4862 (2) | −0.31082 (11) | −0.06121 (11) | 0.0206 (3) | |
N3 | 0.11901 (19) | 0.64262 (11) | 0.66450 (10) | 0.0148 (3) | |
N4 | 0.23843 (18) | 0.58272 (10) | 0.47925 (10) | 0.0144 (3) | |
C1 | 0.3103 (2) | −0.11927 (13) | 0.05577 (12) | 0.0151 (3) | |
C2 | 0.3897 (2) | −0.18173 (13) | −0.05146 (12) | 0.0156 (3) | |
C3 | 0.3840 (2) | −0.12442 (13) | −0.15046 (12) | 0.0158 (3) | |
H3A | 0.4330 | −0.1682 | −0.2188 | 0.019* | |
C4 | 0.3044 (2) | −0.00117 (13) | −0.14625 (12) | 0.0153 (3) | |
C5 | 0.2283 (2) | 0.06623 (13) | −0.04535 (12) | 0.0150 (3) | |
H5A | 0.1774 | 0.1494 | −0.0446 | 0.018* | |
C6 | 0.2289 (2) | 0.00879 (13) | 0.05385 (12) | 0.0139 (3) | |
C7 | 0.1427 (2) | 0.08136 (13) | 0.16144 (12) | 0.0157 (3) | |
C8 | 0.2598 (2) | 0.45827 (13) | 0.49893 (12) | 0.0158 (3) | |
C9 | 0.2071 (2) | 0.43350 (13) | 0.61585 (12) | 0.0159 (3) | |
H9A | 0.2214 | 0.3538 | 0.6364 | 0.019* | |
C10 | 0.1374 (2) | 0.52333 (13) | 0.69601 (12) | 0.0159 (3) | |
C11 | 0.1694 (2) | 0.67070 (13) | 0.55878 (12) | 0.0142 (3) | |
C12 | 0.1447 (2) | 0.80024 (12) | 0.52940 (12) | 0.0151 (3) | |
H12A | 0.1079 | 0.8501 | 0.5990 | 0.018* | |
C13 | −0.0376 (2) | 0.83580 (14) | 0.47027 (14) | 0.0221 (3) | |
H13A | −0.1654 | 0.8227 | 0.5181 | 0.033* | |
H13B | −0.0048 | 0.7874 | 0.4020 | 0.033* | |
H13C | −0.0568 | 0.9195 | 0.4537 | 0.033* | |
C14 | 0.3510 (2) | 0.82287 (13) | 0.45724 (13) | 0.0192 (3) | |
H14A | 0.4628 | 0.7980 | 0.4955 | 0.029* | |
H14B | 0.3331 | 0.9073 | 0.4438 | 0.029* | |
H14C | 0.3864 | 0.7774 | 0.3871 | 0.029* | |
C15 | 0.0772 (3) | 0.50606 (14) | 0.81836 (13) | 0.0215 (3) | |
H15A | 0.0965 | 0.4214 | 0.8310 | 0.032* | |
H15B | −0.0686 | 0.5459 | 0.8474 | 0.032* | |
H15C | 0.1647 | 0.5398 | 0.8555 | 0.032* | |
O1W | 0.3284 (2) | 0.60970 (11) | 0.25362 (10) | 0.0271 (3) | |
H1N3 | 0.066 (3) | 0.7030 (18) | 0.7187 (16) | 0.028 (5)* | |
H1N4 | 0.271 (3) | 0.5992 (18) | 0.4063 (17) | 0.032 (5)* | |
H2W1 | 0.339 (3) | 0.667 (2) | 0.2096 (17) | 0.035 (5)* | |
H1W1 | 0.377 (4) | 0.544 (2) | 0.2154 (19) | 0.044 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0296 (6) | 0.0173 (5) | 0.0173 (5) | −0.0039 (5) | −0.0015 (4) | 0.0032 (4) |
O2 | 0.0424 (7) | 0.0207 (6) | 0.0229 (6) | 0.0050 (5) | −0.0056 (5) | 0.0036 (5) |
O3 | 0.0487 (8) | 0.0171 (6) | 0.0231 (6) | −0.0034 (5) | −0.0054 (5) | −0.0076 (5) |
O4 | 0.0289 (6) | 0.0268 (6) | 0.0137 (5) | −0.0082 (5) | −0.0031 (4) | −0.0002 (5) |
O5 | 0.0344 (6) | 0.0173 (6) | 0.0230 (6) | −0.0043 (5) | −0.0075 (5) | 0.0060 (5) |
O6 | 0.0244 (6) | 0.0138 (5) | 0.0183 (5) | −0.0014 (4) | −0.0006 (4) | −0.0027 (4) |
O7 | 0.0287 (6) | 0.0153 (5) | 0.0149 (5) | −0.0002 (5) | 0.0004 (4) | −0.0004 (4) |
O8 | 0.0323 (6) | 0.0137 (5) | 0.0175 (6) | −0.0029 (5) | −0.0031 (5) | −0.0019 (4) |
N1 | 0.0184 (6) | 0.0198 (7) | 0.0179 (7) | −0.0074 (5) | −0.0047 (5) | 0.0035 (5) |
N2 | 0.0240 (7) | 0.0153 (6) | 0.0186 (7) | −0.0035 (5) | 0.0018 (5) | 0.0001 (5) |
N3 | 0.0166 (6) | 0.0122 (6) | 0.0140 (6) | −0.0024 (5) | −0.0017 (5) | −0.0006 (5) |
N4 | 0.0171 (6) | 0.0116 (6) | 0.0130 (6) | −0.0026 (5) | −0.0013 (5) | 0.0010 (5) |
C1 | 0.0136 (7) | 0.0169 (7) | 0.0151 (7) | −0.0059 (5) | −0.0014 (5) | 0.0016 (6) |
C2 | 0.0161 (7) | 0.0122 (7) | 0.0174 (7) | −0.0032 (5) | −0.0020 (5) | −0.0006 (5) |
C3 | 0.0166 (7) | 0.0179 (7) | 0.0137 (7) | −0.0072 (6) | −0.0016 (5) | −0.0019 (6) |
C4 | 0.0152 (7) | 0.0195 (7) | 0.0130 (7) | −0.0076 (6) | −0.0032 (5) | 0.0034 (6) |
C5 | 0.0132 (7) | 0.0135 (7) | 0.0186 (7) | −0.0046 (5) | −0.0028 (5) | 0.0008 (6) |
C6 | 0.0116 (6) | 0.0149 (7) | 0.0151 (7) | −0.0043 (5) | −0.0014 (5) | −0.0007 (5) |
C7 | 0.0134 (7) | 0.0169 (7) | 0.0159 (7) | −0.0047 (5) | −0.0003 (5) | −0.0009 (6) |
C8 | 0.0156 (7) | 0.0132 (7) | 0.0182 (7) | −0.0028 (5) | −0.0035 (5) | 0.0004 (6) |
C9 | 0.0178 (7) | 0.0112 (7) | 0.0181 (7) | −0.0030 (5) | −0.0036 (6) | 0.0036 (6) |
C10 | 0.0147 (7) | 0.0157 (7) | 0.0175 (7) | −0.0039 (6) | −0.0041 (5) | 0.0033 (6) |
C11 | 0.0117 (6) | 0.0143 (7) | 0.0163 (7) | −0.0028 (5) | −0.0027 (5) | −0.0001 (5) |
C12 | 0.0183 (7) | 0.0105 (7) | 0.0154 (7) | −0.0033 (5) | −0.0019 (5) | −0.0001 (5) |
C13 | 0.0222 (8) | 0.0136 (7) | 0.0319 (9) | −0.0033 (6) | −0.0099 (7) | 0.0055 (6) |
C14 | 0.0203 (7) | 0.0138 (7) | 0.0221 (8) | −0.0051 (6) | −0.0008 (6) | 0.0007 (6) |
C15 | 0.0267 (8) | 0.0189 (8) | 0.0176 (8) | −0.0048 (6) | −0.0031 (6) | 0.0021 (6) |
O1W | 0.0475 (8) | 0.0128 (6) | 0.0158 (6) | −0.0038 (5) | −0.0005 (5) | 0.0009 (5) |
O1—C1 | 1.2909 (17) | C5—C6 | 1.3811 (19) |
O2—N2 | 1.2250 (17) | C5—H5A | 0.9300 |
O3—N2 | 1.2334 (17) | C6—C7 | 1.486 (2) |
O4—N1 | 1.2299 (16) | C8—C9 | 1.441 (2) |
O5—N1 | 1.2311 (16) | C9—C10 | 1.348 (2) |
O6—C7 | 1.2335 (17) | C9—H9A | 0.9300 |
O7—C7 | 1.3010 (17) | C10—C15 | 1.489 (2) |
O7—H7 | 0.8200 | C11—C12 | 1.4981 (19) |
O8—C8 | 1.2177 (18) | C12—C14 | 1.5314 (19) |
N1—C4 | 1.4586 (18) | C12—C13 | 1.533 (2) |
N2—C2 | 1.4581 (18) | C12—H12A | 0.9800 |
N3—C11 | 1.3221 (18) | C13—H13A | 0.9600 |
N3—C10 | 1.3965 (18) | C13—H13B | 0.9600 |
N3—H1N3 | 0.91 (2) | C13—H13C | 0.9600 |
N4—C11 | 1.3285 (19) | C14—H14A | 0.9600 |
N4—C8 | 1.4166 (18) | C14—H14B | 0.9600 |
N4—H1N4 | 0.90 (2) | C14—H14C | 0.9600 |
C1—C2 | 1.429 (2) | C15—H15A | 0.9600 |
C1—C6 | 1.438 (2) | C15—H15B | 0.9600 |
C2—C3 | 1.382 (2) | C15—H15C | 0.9600 |
C3—C4 | 1.380 (2) | O1W—H2W1 | 0.85 (2) |
C3—H3A | 0.9300 | O1W—H1W1 | 0.84 (2) |
C4—C5 | 1.389 (2) | ||
C7—O7—H7 | 109.5 | N4—C8—C9 | 113.61 (12) |
O4—N1—O5 | 124.05 (12) | C10—C9—C8 | 121.41 (13) |
O4—N1—C4 | 118.14 (12) | C10—C9—H9A | 119.3 |
O5—N1—C4 | 117.81 (12) | C8—C9—H9A | 119.3 |
O2—N2—O3 | 123.54 (13) | C9—C10—N3 | 118.94 (13) |
O2—N2—C2 | 119.12 (12) | C9—C10—C15 | 124.98 (13) |
O3—N2—C2 | 117.31 (12) | N3—C10—C15 | 116.08 (13) |
C11—N3—C10 | 122.35 (13) | N3—C11—N4 | 119.11 (13) |
C11—N3—H1N3 | 119.1 (12) | N3—C11—C12 | 120.22 (13) |
C10—N3—H1N3 | 118.5 (12) | N4—C11—C12 | 120.66 (12) |
C11—N4—C8 | 124.54 (12) | C11—C12—C14 | 111.37 (12) |
C11—N4—H1N4 | 121.1 (12) | C11—C12—C13 | 109.34 (11) |
C8—N4—H1N4 | 114.3 (12) | C14—C12—C13 | 111.33 (12) |
O1—C1—C2 | 124.18 (13) | C11—C12—H12A | 108.2 |
O1—C1—C6 | 120.48 (13) | C14—C12—H12A | 108.2 |
C2—C1—C6 | 115.33 (12) | C13—C12—H12A | 108.2 |
C3—C2—C1 | 122.73 (13) | C12—C13—H13A | 109.5 |
C3—C2—N2 | 116.52 (13) | C12—C13—H13B | 109.5 |
C1—C2—N2 | 120.74 (12) | H13A—C13—H13B | 109.5 |
C4—C3—C2 | 118.90 (13) | C12—C13—H13C | 109.5 |
C4—C3—H3A | 120.5 | H13A—C13—H13C | 109.5 |
C2—C3—H3A | 120.5 | H13B—C13—H13C | 109.5 |
C3—C4—C5 | 121.76 (13) | C12—C14—H14A | 109.5 |
C3—C4—N1 | 118.76 (13) | C12—C14—H14B | 109.5 |
C5—C4—N1 | 119.48 (13) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 119.48 (13) | C12—C14—H14C | 109.5 |
C6—C5—H5A | 120.3 | H14A—C14—H14C | 109.5 |
C4—C5—H5A | 120.3 | H14B—C14—H14C | 109.5 |
C5—C6—C1 | 121.77 (13) | C10—C15—H15A | 109.5 |
C5—C6—C7 | 119.05 (13) | C10—C15—H15B | 109.5 |
C1—C6—C7 | 119.18 (12) | H15A—C15—H15B | 109.5 |
O6—C7—O7 | 122.30 (13) | C10—C15—H15C | 109.5 |
O6—C7—C6 | 121.12 (13) | H15A—C15—H15C | 109.5 |
O7—C7—C6 | 116.58 (12) | H15B—C15—H15C | 109.5 |
O8—C8—N4 | 119.20 (13) | H2W1—O1W—H1W1 | 108 (2) |
O8—C8—C9 | 127.19 (13) | ||
O1—C1—C2—C3 | 177.02 (13) | O1—C1—C6—C7 | 1.1 (2) |
C6—C1—C2—C3 | −1.7 (2) | C2—C1—C6—C7 | 179.94 (12) |
O1—C1—C2—N2 | −4.3 (2) | C5—C6—C7—O6 | −0.5 (2) |
C6—C1—C2—N2 | 176.93 (12) | C1—C6—C7—O6 | 179.66 (13) |
O2—N2—C2—C3 | 153.14 (14) | C5—C6—C7—O7 | 179.34 (12) |
O3—N2—C2—C3 | −24.99 (19) | C1—C6—C7—O7 | −0.53 (19) |
O2—N2—C2—C1 | −25.6 (2) | C11—N4—C8—O8 | 177.87 (13) |
O3—N2—C2—C1 | 156.26 (13) | C11—N4—C8—C9 | −2.37 (19) |
C1—C2—C3—C4 | 2.0 (2) | O8—C8—C9—C10 | −178.07 (15) |
N2—C2—C3—C4 | −176.69 (12) | N4—C8—C9—C10 | 2.18 (19) |
C2—C3—C4—C5 | −0.6 (2) | C8—C9—C10—N3 | −0.8 (2) |
C2—C3—C4—N1 | 179.06 (12) | C8—C9—C10—C15 | 179.28 (13) |
O4—N1—C4—C3 | 2.98 (19) | C11—N3—C10—C9 | −0.6 (2) |
O5—N1—C4—C3 | −177.24 (13) | C11—N3—C10—C15 | 179.26 (13) |
O4—N1—C4—C5 | −177.33 (12) | C10—N3—C11—N4 | 0.5 (2) |
O5—N1—C4—C5 | 2.45 (19) | C10—N3—C11—C12 | 179.41 (12) |
C3—C4—C5—C6 | −1.0 (2) | C8—N4—C11—N3 | 1.1 (2) |
N1—C4—C5—C6 | 179.34 (12) | C8—N4—C11—C12 | −177.78 (12) |
C4—C5—C6—C1 | 1.2 (2) | N3—C11—C12—C14 | 126.27 (14) |
C4—C5—C6—C7 | −178.63 (12) | N4—C11—C12—C14 | −54.87 (17) |
O1—C1—C6—C5 | −178.73 (13) | N3—C11—C12—C13 | −110.27 (15) |
C2—C1—C6—C5 | 0.07 (19) | N4—C11—C12—C13 | 68.59 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O6i | 0.91 (2) | 1.817 (19) | 2.7180 (16) | 170 (2) |
N4—H1N4···O1W | 0.90 (2) | 1.84 (2) | 2.7309 (17) | 171 (2) |
O1W—H2W1···O1ii | 0.85 (2) | 1.97 (2) | 2.7878 (16) | 162 (2) |
O1W—H1W1···O3iii | 0.84 (2) | 2.11 (2) | 2.9381 (17) | 170 (2) |
O7—H7···O1 | 0.82 | 1.67 | 2.4370 (16) | 156 |
C9—H9A···O5iv | 0.93 | 2.54 | 3.4312 (18) | 161 |
C12—H12A···O7i | 0.98 | 2.41 | 3.3023 (18) | 152 |
C14—H14B···O4v | 0.96 | 2.60 | 3.2318 (19) | 124 |
C15—H15C···O3vi | 0.96 | 2.60 | 3.471 (2) | 152 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y, −z; (iv) x, y, z+1; (v) −x+1, −y+1, −z; (vi) x, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H13N2O+·C7H3N2O7−·H2O |
Mr | 398.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.6691 (3), 11.3831 (4), 12.2900 (5) |
α, β, γ (°) | 89.727 (2), 76.771 (2), 76.930 (2) |
V (Å3) | 883.62 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.52 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.937, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17014, 4061, 3279 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.105, 1.03 |
No. of reflections | 4061 |
No. of parameters | 273 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.30 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O6i | 0.91 (2) | 1.817 (19) | 2.7180 (16) | 170 (2) |
N4—H1N4···O1W | 0.90 (2) | 1.84 (2) | 2.7309 (17) | 171 (2) |
O1W—H2W1···O1ii | 0.85 (2) | 1.97 (2) | 2.7878 (16) | 162 (2) |
O1W—H1W1···O3iii | 0.84 (2) | 2.11 (2) | 2.9381 (17) | 170 (2) |
O7—H7···O1 | 0.82 | 1.67 | 2.4370 (16) | 156 |
C9—H9A···O5iv | 0.93 | 2.54 | 3.4312 (18) | 161 |
C12—H12A···O7i | 0.98 | 2.41 | 3.3023 (18) | 152 |
C14—H14B···O4v | 0.96 | 2.60 | 3.2318 (19) | 124 |
C15—H15C···O3vi | 0.96 | 2.60 | 3.471 (2) | 152 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y, −z; (iv) x, y, z+1; (v) −x+1, −y+1, −z; (vi) x, y+1, z+1. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman. Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit of (I) (Fig 1), contains a 2-isopropyl-6-methyl pyrimidinium-4(3H)-one cation, a 3,5-dinitrosalicylate anion and a water molecule. In the cation, the proton transfer from the hydroxyl group of the anion to the N4 atom leads to a slight increase in the C8—N4—C11 angle to 124.54 (12)°, compared to 116.83 (8)° in (Hemamalini & Fun, 2010). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 177.02 (13)°]. The Pyrimidine ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom N4. The bond lengths (Allen et al., 1987) and angles are normal. The cation undergoes an enol-keto tautomerism during the crystallization. Similar tautomerism was also observed in the crystal structure of 2-Isopropyl-6-methylpyrimidinium-4(3H)-one (Hemamalini & Fun, 2010).
In the crystals structure (Fig. 2), the ion pairs and water molecules are connected via N3—H1N3···O6, N4—H1N4···O1W, O1W—H2W1···O1, O1W—H1W1···O3, C9—H9A···O5, C12—H12A···O7, C14—H14B···O4 and C15—H15C···O3 hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intramolecular O7—H7···O1 hydrogen bond in the 3,5-dinitrosalicylate anion which generates an S(6) (Bernstein et al., 1995) ring motif.