organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-6-methyl-4-oxo-3,4-di­hydro­pyrimidin-1-ium 2-carb­­oxy-4,6-di­nitro­phenolate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 October 2010; accepted 20 October 2010; online 30 October 2010)

In the title mol­ecular salt, C8H13N2O+·C7H3N2O7·H2O, the pyrimidinium cation is essentially planar, with a maximum deviation of 0.009 (1) Å. The cation undergoes an enol–keto tautomerism during the crystallization. In the crystal, the ion pairs and water mol­ecules are connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intra­molecular O—H⋯O hydrogen bond in the 3,5-dinitro­salicylate anion, which generates an S(6) ring motif.

Related literature

For applications of pyrimidine derivaties, see: Condon et al. (1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]); Maeno et al. (1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]); Gilchrist (1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]). For a related structure, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2459.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13N2O+·C7H3N2O7·H2O

  • Mr = 398.33

  • Triclinic, [P \overline 1]

  • a = 6.6691 (3) Å

  • b = 11.3831 (4) Å

  • c = 12.2900 (5) Å

  • α = 89.727 (2)°

  • β = 76.771 (2)°

  • γ = 76.930 (2)°

  • V = 883.62 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.52 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.987

  • 17014 measured reflections

  • 4061 independent reflections

  • 3279 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.03

  • 4061 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O6i 0.91 (2) 1.817 (19) 2.7180 (16) 170 (2)
N4—H1N4⋯O1W 0.90 (2) 1.84 (2) 2.7309 (17) 171 (2)
O1W—H2W1⋯O1ii 0.85 (2) 1.97 (2) 2.7878 (16) 162 (2)
O1W—H1W1⋯O3iii 0.84 (2) 2.11 (2) 2.9381 (17) 170 (2)
O7—H7⋯O1 0.82 1.67 2.4370 (16) 156
C9—H9A⋯O5iv 0.93 2.54 3.4312 (18) 161
C12—H12A⋯O7i 0.98 2.41 3.3023 (18) 152
C14—H14B⋯O4v 0.96 2.60 3.2318 (19) 124
C15—H15C⋯O3vi 0.96 2.60 3.471 (2) 152
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y, -z; (iv) x, y, z+1; (v) -x+1, -y+1, -z; (vi) x, y+1, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of (I) (Fig 1), contains a 2-isopropyl-6-methyl pyrimidinium-4(3H)-one cation, a 3,5-dinitrosalicylate anion and a water molecule. In the cation, the proton transfer from the hydroxyl group of the anion to the N4 atom leads to a slight increase in the C8—N4—C11 angle to 124.54 (12)°, compared to 116.83 (8)° in (Hemamalini & Fun, 2010). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 177.02 (13)°]. The Pyrimidine ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom N4. The bond lengths (Allen et al., 1987) and angles are normal. The cation undergoes an enol-keto tautomerism during the crystallization. Similar tautomerism was also observed in the crystal structure of 2-Isopropyl-6-methylpyrimidinium-4(3H)-one (Hemamalini & Fun, 2010).

In the crystals structure (Fig. 2), the ion pairs and water molecules are connected via N3—H1N3···O6, N4—H1N4···O1W, O1W—H2W1···O1, O1W—H1W1···O3, C9—H9A···O5, C12—H12A···O7, C14—H14B···O4 and C15—H15C···O3 hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intramolecular O7—H7···O1 hydrogen bond in the 3,5-dinitrosalicylate anion which generates an S(6) (Bernstein et al., 1995) ring motif.

Related literature top

For applications of pyrimidine derivaties, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997). For a related structure, see: Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-isopropyl-4-hydroxy-6-methylpyrimidine (46 mg, Aldrich) and 3,5-dinitrosalicylic acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow blocks of (I) appeared after a few days.

Refinement top

Atoms H1N3, H1N4, H2W1 and H1W1 were located from a difference Fourier map and were refined freely [N–H = 0.90 (2)– 0.91 (2) Å and O–H = 0.82–0.85 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C,O). A rotating group model was used for the methyl group.

Structure description top

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely-used anti-AIDS drug (Gilchrist, 1997). The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of (I) (Fig 1), contains a 2-isopropyl-6-methyl pyrimidinium-4(3H)-one cation, a 3,5-dinitrosalicylate anion and a water molecule. In the cation, the proton transfer from the hydroxyl group of the anion to the N4 atom leads to a slight increase in the C8—N4—C11 angle to 124.54 (12)°, compared to 116.83 (8)° in (Hemamalini & Fun, 2010). The phenol oxygen atoms are bent slightly away from the mean plane of the benzene ring [torsion angle O1-C7-C8-C9 = 177.02 (13)°]. The Pyrimidine ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom N4. The bond lengths (Allen et al., 1987) and angles are normal. The cation undergoes an enol-keto tautomerism during the crystallization. Similar tautomerism was also observed in the crystal structure of 2-Isopropyl-6-methylpyrimidinium-4(3H)-one (Hemamalini & Fun, 2010).

In the crystals structure (Fig. 2), the ion pairs and water molecules are connected via N3—H1N3···O6, N4—H1N4···O1W, O1W—H2W1···O1, O1W—H1W1···O3, C9—H9A···O5, C12—H12A···O7, C14—H14B···O4 and C15—H15C···O3 hydrogen bonds, forming two-dimensional networks parallel to the bc plane. There is an intramolecular O7—H7···O1 hydrogen bond in the 3,5-dinitrosalicylate anion which generates an S(6) (Bernstein et al., 1995) ring motif.

For applications of pyrimidine derivaties, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997). For a related structure, see: Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in the interactions have been omitted for clarity.
2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate top
Crystal data top
C8H13N2O+·C7H3N2O7·H2OZ = 2
Mr = 398.33F(000) = 416
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6691 (3) ÅCell parameters from 6994 reflections
b = 11.3831 (4) Åθ = 2.4–31.6°
c = 12.2900 (5) ŵ = 0.13 mm1
α = 89.727 (2)°T = 100 K
β = 76.771 (2)°Block, yellow
γ = 76.930 (2)°0.52 × 0.13 × 0.10 mm
V = 883.62 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.937, Tmax = 0.987k = 1412
17014 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
4061 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C8H13N2O+·C7H3N2O7·H2Oγ = 76.930 (2)°
Mr = 398.33V = 883.62 (6) Å3
Triclinic, P1Z = 2
a = 6.6691 (3) ÅMo Kα radiation
b = 11.3831 (4) ŵ = 0.13 mm1
c = 12.2900 (5) ÅT = 100 K
α = 89.727 (2)°0.52 × 0.13 × 0.10 mm
β = 76.771 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3279 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.987Rint = 0.030
17014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
4061 reflectionsΔρmin = 0.30 e Å3
273 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30537 (18)0.17099 (10)0.14974 (9)0.0223 (2)
O20.5667 (2)0.35714 (10)0.01344 (10)0.0310 (3)
O30.4865 (2)0.36692 (10)0.14689 (10)0.0308 (3)
O40.36257 (17)0.00307 (10)0.33888 (9)0.0231 (3)
O50.23770 (18)0.16989 (10)0.24573 (9)0.0251 (3)
O60.07237 (17)0.19149 (9)0.16326 (9)0.0200 (2)
O70.14505 (18)0.02269 (10)0.25242 (9)0.0213 (2)
H70.19600.04930.23600.032*
O80.31892 (18)0.38518 (9)0.41955 (9)0.0220 (2)
N10.30166 (19)0.05932 (11)0.25097 (10)0.0182 (3)
N20.4862 (2)0.31082 (11)0.06121 (11)0.0206 (3)
N30.11901 (19)0.64262 (11)0.66450 (10)0.0148 (3)
N40.23843 (18)0.58272 (10)0.47925 (10)0.0144 (3)
C10.3103 (2)0.11927 (13)0.05577 (12)0.0151 (3)
C20.3897 (2)0.18173 (13)0.05146 (12)0.0156 (3)
C30.3840 (2)0.12442 (13)0.15046 (12)0.0158 (3)
H3A0.43300.16820.21880.019*
C40.3044 (2)0.00117 (13)0.14625 (12)0.0153 (3)
C50.2283 (2)0.06623 (13)0.04535 (12)0.0150 (3)
H5A0.17740.14940.04460.018*
C60.2289 (2)0.00879 (13)0.05385 (12)0.0139 (3)
C70.1427 (2)0.08136 (13)0.16144 (12)0.0157 (3)
C80.2598 (2)0.45827 (13)0.49893 (12)0.0158 (3)
C90.2071 (2)0.43350 (13)0.61585 (12)0.0159 (3)
H9A0.22140.35380.63640.019*
C100.1374 (2)0.52333 (13)0.69601 (12)0.0159 (3)
C110.1694 (2)0.67070 (13)0.55878 (12)0.0142 (3)
C120.1447 (2)0.80024 (12)0.52940 (12)0.0151 (3)
H12A0.10790.85010.59900.018*
C130.0376 (2)0.83580 (14)0.47027 (14)0.0221 (3)
H13A0.16540.82270.51810.033*
H13B0.00480.78740.40200.033*
H13C0.05680.91950.45370.033*
C140.3510 (2)0.82287 (13)0.45724 (13)0.0192 (3)
H14A0.46280.79800.49550.029*
H14B0.33310.90730.44380.029*
H14C0.38640.77740.38710.029*
C150.0772 (3)0.50606 (14)0.81836 (13)0.0215 (3)
H15A0.09650.42140.83100.032*
H15B0.06860.54590.84740.032*
H15C0.16470.53980.85550.032*
O1W0.3284 (2)0.60970 (11)0.25362 (10)0.0271 (3)
H1N30.066 (3)0.7030 (18)0.7187 (16)0.028 (5)*
H1N40.271 (3)0.5992 (18)0.4063 (17)0.032 (5)*
H2W10.339 (3)0.667 (2)0.2096 (17)0.035 (5)*
H1W10.377 (4)0.544 (2)0.2154 (19)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0296 (6)0.0173 (5)0.0173 (5)0.0039 (5)0.0015 (4)0.0032 (4)
O20.0424 (7)0.0207 (6)0.0229 (6)0.0050 (5)0.0056 (5)0.0036 (5)
O30.0487 (8)0.0171 (6)0.0231 (6)0.0034 (5)0.0054 (5)0.0076 (5)
O40.0289 (6)0.0268 (6)0.0137 (5)0.0082 (5)0.0031 (4)0.0002 (5)
O50.0344 (6)0.0173 (6)0.0230 (6)0.0043 (5)0.0075 (5)0.0060 (5)
O60.0244 (6)0.0138 (5)0.0183 (5)0.0014 (4)0.0006 (4)0.0027 (4)
O70.0287 (6)0.0153 (5)0.0149 (5)0.0002 (5)0.0004 (4)0.0004 (4)
O80.0323 (6)0.0137 (5)0.0175 (6)0.0029 (5)0.0031 (5)0.0019 (4)
N10.0184 (6)0.0198 (7)0.0179 (7)0.0074 (5)0.0047 (5)0.0035 (5)
N20.0240 (7)0.0153 (6)0.0186 (7)0.0035 (5)0.0018 (5)0.0001 (5)
N30.0166 (6)0.0122 (6)0.0140 (6)0.0024 (5)0.0017 (5)0.0006 (5)
N40.0171 (6)0.0116 (6)0.0130 (6)0.0026 (5)0.0013 (5)0.0010 (5)
C10.0136 (7)0.0169 (7)0.0151 (7)0.0059 (5)0.0014 (5)0.0016 (6)
C20.0161 (7)0.0122 (7)0.0174 (7)0.0032 (5)0.0020 (5)0.0006 (5)
C30.0166 (7)0.0179 (7)0.0137 (7)0.0072 (6)0.0016 (5)0.0019 (6)
C40.0152 (7)0.0195 (7)0.0130 (7)0.0076 (6)0.0032 (5)0.0034 (6)
C50.0132 (7)0.0135 (7)0.0186 (7)0.0046 (5)0.0028 (5)0.0008 (6)
C60.0116 (6)0.0149 (7)0.0151 (7)0.0043 (5)0.0014 (5)0.0007 (5)
C70.0134 (7)0.0169 (7)0.0159 (7)0.0047 (5)0.0003 (5)0.0009 (6)
C80.0156 (7)0.0132 (7)0.0182 (7)0.0028 (5)0.0035 (5)0.0004 (6)
C90.0178 (7)0.0112 (7)0.0181 (7)0.0030 (5)0.0036 (6)0.0036 (6)
C100.0147 (7)0.0157 (7)0.0175 (7)0.0039 (6)0.0041 (5)0.0033 (6)
C110.0117 (6)0.0143 (7)0.0163 (7)0.0028 (5)0.0027 (5)0.0001 (5)
C120.0183 (7)0.0105 (7)0.0154 (7)0.0033 (5)0.0019 (5)0.0001 (5)
C130.0222 (8)0.0136 (7)0.0319 (9)0.0033 (6)0.0099 (7)0.0055 (6)
C140.0203 (7)0.0138 (7)0.0221 (8)0.0051 (6)0.0008 (6)0.0007 (6)
C150.0267 (8)0.0189 (8)0.0176 (8)0.0048 (6)0.0031 (6)0.0021 (6)
O1W0.0475 (8)0.0128 (6)0.0158 (6)0.0038 (5)0.0005 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1—C11.2909 (17)C5—C61.3811 (19)
O2—N21.2250 (17)C5—H5A0.9300
O3—N21.2334 (17)C6—C71.486 (2)
O4—N11.2299 (16)C8—C91.441 (2)
O5—N11.2311 (16)C9—C101.348 (2)
O6—C71.2335 (17)C9—H9A0.9300
O7—C71.3010 (17)C10—C151.489 (2)
O7—H70.8200C11—C121.4981 (19)
O8—C81.2177 (18)C12—C141.5314 (19)
N1—C41.4586 (18)C12—C131.533 (2)
N2—C21.4581 (18)C12—H12A0.9800
N3—C111.3221 (18)C13—H13A0.9600
N3—C101.3965 (18)C13—H13B0.9600
N3—H1N30.91 (2)C13—H13C0.9600
N4—C111.3285 (19)C14—H14A0.9600
N4—C81.4166 (18)C14—H14B0.9600
N4—H1N40.90 (2)C14—H14C0.9600
C1—C21.429 (2)C15—H15A0.9600
C1—C61.438 (2)C15—H15B0.9600
C2—C31.382 (2)C15—H15C0.9600
C3—C41.380 (2)O1W—H2W10.85 (2)
C3—H3A0.9300O1W—H1W10.84 (2)
C4—C51.389 (2)
C7—O7—H7109.5N4—C8—C9113.61 (12)
O4—N1—O5124.05 (12)C10—C9—C8121.41 (13)
O4—N1—C4118.14 (12)C10—C9—H9A119.3
O5—N1—C4117.81 (12)C8—C9—H9A119.3
O2—N2—O3123.54 (13)C9—C10—N3118.94 (13)
O2—N2—C2119.12 (12)C9—C10—C15124.98 (13)
O3—N2—C2117.31 (12)N3—C10—C15116.08 (13)
C11—N3—C10122.35 (13)N3—C11—N4119.11 (13)
C11—N3—H1N3119.1 (12)N3—C11—C12120.22 (13)
C10—N3—H1N3118.5 (12)N4—C11—C12120.66 (12)
C11—N4—C8124.54 (12)C11—C12—C14111.37 (12)
C11—N4—H1N4121.1 (12)C11—C12—C13109.34 (11)
C8—N4—H1N4114.3 (12)C14—C12—C13111.33 (12)
O1—C1—C2124.18 (13)C11—C12—H12A108.2
O1—C1—C6120.48 (13)C14—C12—H12A108.2
C2—C1—C6115.33 (12)C13—C12—H12A108.2
C3—C2—C1122.73 (13)C12—C13—H13A109.5
C3—C2—N2116.52 (13)C12—C13—H13B109.5
C1—C2—N2120.74 (12)H13A—C13—H13B109.5
C4—C3—C2118.90 (13)C12—C13—H13C109.5
C4—C3—H3A120.5H13A—C13—H13C109.5
C2—C3—H3A120.5H13B—C13—H13C109.5
C3—C4—C5121.76 (13)C12—C14—H14A109.5
C3—C4—N1118.76 (13)C12—C14—H14B109.5
C5—C4—N1119.48 (13)H14A—C14—H14B109.5
C6—C5—C4119.48 (13)C12—C14—H14C109.5
C6—C5—H5A120.3H14A—C14—H14C109.5
C4—C5—H5A120.3H14B—C14—H14C109.5
C5—C6—C1121.77 (13)C10—C15—H15A109.5
C5—C6—C7119.05 (13)C10—C15—H15B109.5
C1—C6—C7119.18 (12)H15A—C15—H15B109.5
O6—C7—O7122.30 (13)C10—C15—H15C109.5
O6—C7—C6121.12 (13)H15A—C15—H15C109.5
O7—C7—C6116.58 (12)H15B—C15—H15C109.5
O8—C8—N4119.20 (13)H2W1—O1W—H1W1108 (2)
O8—C8—C9127.19 (13)
O1—C1—C2—C3177.02 (13)O1—C1—C6—C71.1 (2)
C6—C1—C2—C31.7 (2)C2—C1—C6—C7179.94 (12)
O1—C1—C2—N24.3 (2)C5—C6—C7—O60.5 (2)
C6—C1—C2—N2176.93 (12)C1—C6—C7—O6179.66 (13)
O2—N2—C2—C3153.14 (14)C5—C6—C7—O7179.34 (12)
O3—N2—C2—C324.99 (19)C1—C6—C7—O70.53 (19)
O2—N2—C2—C125.6 (2)C11—N4—C8—O8177.87 (13)
O3—N2—C2—C1156.26 (13)C11—N4—C8—C92.37 (19)
C1—C2—C3—C42.0 (2)O8—C8—C9—C10178.07 (15)
N2—C2—C3—C4176.69 (12)N4—C8—C9—C102.18 (19)
C2—C3—C4—C50.6 (2)C8—C9—C10—N30.8 (2)
C2—C3—C4—N1179.06 (12)C8—C9—C10—C15179.28 (13)
O4—N1—C4—C32.98 (19)C11—N3—C10—C90.6 (2)
O5—N1—C4—C3177.24 (13)C11—N3—C10—C15179.26 (13)
O4—N1—C4—C5177.33 (12)C10—N3—C11—N40.5 (2)
O5—N1—C4—C52.45 (19)C10—N3—C11—C12179.41 (12)
C3—C4—C5—C61.0 (2)C8—N4—C11—N31.1 (2)
N1—C4—C5—C6179.34 (12)C8—N4—C11—C12177.78 (12)
C4—C5—C6—C11.2 (2)N3—C11—C12—C14126.27 (14)
C4—C5—C6—C7178.63 (12)N4—C11—C12—C1454.87 (17)
O1—C1—C6—C5178.73 (13)N3—C11—C12—C13110.27 (15)
C2—C1—C6—C50.07 (19)N4—C11—C12—C1368.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O6i0.91 (2)1.817 (19)2.7180 (16)170 (2)
N4—H1N4···O1W0.90 (2)1.84 (2)2.7309 (17)171 (2)
O1W—H2W1···O1ii0.85 (2)1.97 (2)2.7878 (16)162 (2)
O1W—H1W1···O3iii0.84 (2)2.11 (2)2.9381 (17)170 (2)
O7—H7···O10.821.672.4370 (16)156
C9—H9A···O5iv0.932.543.4312 (18)161
C12—H12A···O7i0.982.413.3023 (18)152
C14—H14B···O4v0.962.603.2318 (19)124
C15—H15C···O3vi0.962.603.471 (2)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H13N2O+·C7H3N2O7·H2O
Mr398.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6691 (3), 11.3831 (4), 12.2900 (5)
α, β, γ (°)89.727 (2), 76.771 (2), 76.930 (2)
V3)883.62 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.52 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.937, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17014, 4061, 3279
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.03
No. of reflections4061
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O6i0.91 (2)1.817 (19)2.7180 (16)170 (2)
N4—H1N4···O1W0.90 (2)1.84 (2)2.7309 (17)171 (2)
O1W—H2W1···O1ii0.85 (2)1.97 (2)2.7878 (16)162 (2)
O1W—H1W1···O3iii0.84 (2)2.11 (2)2.9381 (17)170 (2)
O7—H7···O10.821.672.4370 (16)156
C9—H9A···O5iv0.932.543.4312 (18)161
C12—H12A···O7i0.982.413.3023 (18)152
C14—H14B···O4v0.962.603.2318 (19)124
C15—H15C···O3vi0.962.603.471 (2)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds