metal-organic compounds
Poly[ethylenediammonium [tris[μ3-hydrogenphosphato(2−)]dicadmium] monohydrate]
aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mohamedsaadi82@gmail.com
The title compound, {(C2H10N2)[Cd2(HPO4)3]·H2O}n, was synthesized under hydrothermal conditions. The structure of this hybrid compound consists of CdO6, CdO5 and PO4 polyhedra arranged so as to build an anionic inorganic layer, namely [Cd2(HPO4)3]2−, parallel to the ab plane. The edge-sharing CdO6 octahedra form infinite chains running along the a axis and are linked by CdO5 and PO4 polyhedra. The ethylenediammonium cation and the water molecule are located between two adjacent inorganic layers and ensure the cohesion of the structure via N—H⋯O and O—H⋯O hydrogen bonds.
Related literature
For properties of and background to hybride cadmium phosphates, see: Chandrasekhar et al. (2010); Lin et al. (2003, 2005); Moffat & Jewur (1980); Qiu et al. (2009). For related structures, see: Cavellec et al. (1995); Assani et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810038729/fk2024sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810038729/fk2024Isup2.hkl
In a typical hydrothermal synthesis, a mixture containing cadmium chloride (CdCl2; 0.0917 g), 85 wt % phosphoric acid (H3PO4; 0.34 ml), ethylenediamine (NH2(CH2)2NH2; 0.3 ml), 40 wt % fluoridric acid (HF; 0.1 ml), and water (10 ml), was allowed to react in 23 ml Teflon-lined autoclave under autogeneous pressure at 125°C for tow days. The autoclave were then removed to air and allowed to cool to room temperature. The resulting product was filtered off, washed with deionized water and air dried. The reaction produced colorless parallelepipedic crystals, corresponding to the title compound, (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O; mixed with some white powder.
All O-bound, N-bound and C-bound H atoms were initially located in a difference map and refined with O—H, N—H and C—H distance restraints of 0.82 (1), (0.86 (1) for the water molecule) Å, 0.89 (1) Å and C–H 0.97 (1) Å, respectively. In a the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O) or (N) and Uiso(H) set to 1.2 Ueq(C).
The two reflections (0 0 2) and (0 1 1), affected by the beam stop, are eliminated resulting in improved quality of
and a significant reduction of R and Rw factors. No significant electron density residuals in the difference map.From the synthetis conditions one might expect an incorporation of F- ions. The distinction by X-ray diffraction between F- and O2- is difficult. However, when the relevant OH positions were replaced by F-, a small worsening of the reliability factors was observed. Moreover, the clearly discernible proton positions in the difference Fourier maps point to OH rather than to F. Nevertheless, the existence of a very small amount of F- incorporated in the structure cannot be excluded.
Intensive efforts have been greatly devoted to the design of new organic- inorganic materials offering porous and open-framework structures. Such materials are promising for a variety of applications. One class of those materials is the cadmium derived compounds, such as cadmium phosphate by virtue of applications to catalysis (Moffat & Jewur, 1980) and, more recently, cadmium–organic framework used for selective ion sensing (Qiu et al. 2009). However, the organically templated cadmium phosphate, a member of such class, remains less investigated. In fact, to our knowledge, the rare compounds isolated in the system Cd – P – organic molecules correspond to Cd(2,2'-bipy)(H2PO4)2 (bipy = bipyridine) (Lin et al., 2003), Cd(phen)(H2PO4)2.H2O (phen = 1,10-phenanthroline) (Lin et al., 2005) in addition to those recently published (Chandrasekhar et al., 2010). Consequently, with a view to generate new cadmium hybrid compounds, our interest is focused on the ethylendiamine templated cadmium phosphate with different Cd/P ratio. We present in this work, the hydrothermal synthesis and the structural characterization of the first member of this family with a ratio Cd/P=2/3, namely (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O compound.
Fig. 1 shows the plot of the
of the title compound with hydrogen bond. A three-dimensional polyhedral view of its is represented in Fig. 2. It shows the concatenation of three types of polyhedra: CdO6, CdO5 and PO4. The sharing edge CdO6 octahedra form an infinite chain running along the a axis. The unshared vertices of the CdO6 octahedra are related to PO4 tetrahedron and CdO5 polyhedron in the way to build a two-dimensional inorganic layer parallel to the plane (a, b). These layers are separated by organic and water molecules as shown in Fig. 2. A similar connectivity is observed in the structure of the two-dimensional iron phosphate templated by ethylenediammonium (C2N2 H10)0.5 [Fe(PO4)(OH)] (Cavellec et al. 1995).The cadmium polyhedra show various degres of deformation from idealized geometry. Cd(2)O6 and Cd(3)O6 octahedra are slightly deformed with Cd–O distances in the range 2.235 (2)–2.333 (2) Å. The Cd(1)O5 adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands (O6—O9; O3—O2i) and O1ii. The Cd1—O bond lengths vary between 2.166 (2)Å and 2.347 (2) Å. From the three tetrahedrally coordinated phosphorus atoms P1, P2 and P3, the first (P1) shares three O atoms with adjacent cadmium atoms (average distance P—O = 1.519 (2) Å) and possesses one terminal P1—O4 = 1.579 (2) Å. The other phosphorus atoms P2 and P3 are linked to two adjacent cadmium atoms via two oxygene atoms (average distance P—O = 1.537 (2) Å) and have two terminal P2═O5 = 1.511 (2) Å and P3═O9 = 1.525 (2) Å and P2—O8 = 1.566 (2) Å and P3—O12 = 1.565 (2) Å bond. The terminal O atoms are involved in hydrogen bonds as show in Table 1. These results corroborate the framework formula and are in close agreement with former study of a similar phosphate (Assani et al. 2010).
The ethylenediammonium cation and the water molecules ensure the cohesion of the structure via N—H···O and O—H···O hydrogen bonds (Fig. 1, Table 1). Symmetry code: (i) 1 + x, y, z - 1; (ii) -x, -y, -z.
For properties of and background to hybride cadmium phosphates, see: Chandrasekhar et al. (2010); Lin et al. (2003, 2005); Moffat & Jewur (1980); Qiu et al. (2009). For related structures, see: Cavellec et al. (1995); Assani et al. (2010).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Partial plot of (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 5/2; (ii) -x, -y, -z + 2; (iii) x - 1/2, -y + 1/2, z + 1/2; (iv) x + 1/2, -y + 1/2, z + 1/2. | |
Fig. 2. A three-dimensional polyhedral view of the crystal structure of the (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O, showing the stacking of organic and inorganic layers along c axis. |
(C2H10N2)[Cd2(HPO4)3]·H2O | F(000) = 1144 |
Mr = 592.87 | Dx = 2.750 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 21519 reflections |
a = 6.8203 (1) Å | θ = 1.9–31.0° |
b = 9.5731 (2) Å | µ = 3.38 mm−1 |
c = 21.9302 (4) Å | T = 296 K |
β = 90.274 (1)° | Prism, colourless |
V = 1431.84 (4) Å3 | 0.15 × 0.08 × 0.05 mm |
Z = 4 |
Bruker X8 APEXII diffractometer | 4546 independent reflections |
Radiation source: fine-focus sealed tube | 4010 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 31.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.730, Tmax = 0.845 | k = −13→13 |
21519 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0195P)2 + 1.2601P] where P = (Fo2 + 2Fc2)/3 |
4544 reflections | (Δ/σ)max = 0.002 |
205 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −0.74 e Å−3 |
(C2H10N2)[Cd2(HPO4)3]·H2O | V = 1431.84 (4) Å3 |
Mr = 592.87 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.8203 (1) Å | µ = 3.38 mm−1 |
b = 9.5731 (2) Å | T = 296 K |
c = 21.9302 (4) Å | 0.15 × 0.08 × 0.05 mm |
β = 90.274 (1)° |
Bruker X8 APEXII diffractometer | 4546 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4010 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 0.845 | Rint = 0.029 |
21519 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.81 e Å−3 |
4544 reflections | Δρmin = −0.74 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.265141 (19) | 0.322444 (16) | 0.995676 (6) | 0.01225 (4) | |
Cd2 | 0.5000 | 0.0000 | 1.0000 | 0.01160 (5) | |
Cd3 | 0.0000 | 0.0000 | 1.0000 | 0.01155 (5) | |
P1 | −0.23831 (7) | 0.31181 (5) | 1.01284 (2) | 0.01023 (9) | |
P2 | 0.26500 (7) | 0.14162 (5) | 0.87635 (2) | 0.00985 (9) | |
P3 | 0.22616 (7) | 0.16014 (5) | 1.11897 (2) | 0.01106 (10) | |
O1 | −0.2503 (2) | 0.45600 (17) | 0.98506 (8) | 0.0231 (3) | |
O2 | −0.4243 (2) | 0.23029 (16) | 0.99783 (7) | 0.0165 (3) | |
O3 | −0.0553 (2) | 0.23344 (15) | 0.99202 (7) | 0.0135 (3) | |
O4 | −0.2219 (2) | 0.3313 (2) | 1.08413 (7) | 0.0252 (4) | |
H4 | −0.1629 | 0.2647 | 1.0989 | 0.038* | |
O5 | 0.4393 (2) | 0.10843 (17) | 0.83666 (7) | 0.0189 (3) | |
O6 | 0.2610 (2) | 0.29729 (16) | 0.89393 (7) | 0.0160 (3) | |
O7 | 0.2583 (2) | 0.05068 (17) | 0.93438 (6) | 0.0148 (3) | |
O8 | 0.0698 (2) | 0.11514 (17) | 0.84012 (8) | 0.0209 (3) | |
H8 | 0.0409 | 0.0321 | 0.8421 | 0.031* | |
O9 | 0.2659 (2) | 0.30932 (16) | 1.09801 (7) | 0.0163 (3) | |
O10 | 0.0213 (2) | 0.14966 (16) | 1.14671 (7) | 0.0181 (3) | |
O11 | 0.2469 (2) | 0.05774 (16) | 1.06531 (6) | 0.0150 (3) | |
O12 | 0.3816 (3) | 0.12463 (19) | 1.16923 (7) | 0.0243 (4) | |
H12 | 0.4319 | 0.0488 | 1.1617 | 0.036* | |
O13 | 0.3841 (3) | 0.12448 (19) | 0.71465 (7) | 0.0280 (4) | |
H13A | 0.3975 | 0.1271 | 0.7536 | 0.042* | |
H13B | 0.4199 | 0.2058 | 0.7023 | 0.042* | |
N1 | −0.0232 (3) | −0.0197 (2) | 1.33813 (9) | 0.0195 (4) | |
H1A | 0.0428 | −0.0751 | 1.3635 | 0.029* | |
H1B | −0.1147 | −0.0691 | 1.3187 | 0.029* | |
H1C | −0.0800 | 0.0486 | 1.3592 | 0.029* | |
N2 | 0.4080 (3) | 0.0696 (2) | 1.35973 (9) | 0.0232 (4) | |
H2A | 0.5009 | 0.1303 | 1.3703 | 0.035* | |
H2B | 0.4613 | −0.0005 | 1.3389 | 0.035* | |
H2C | 0.3509 | 0.0362 | 1.3931 | 0.035* | |
C4 | 0.1140 (3) | 0.0414 (3) | 1.29303 (10) | 0.0248 (5) | |
H4A | 0.0389 | 0.0907 | 1.2621 | 0.030* | |
H4B | 0.1846 | −0.0335 | 1.2731 | 0.030* | |
C3 | 0.2594 (4) | 0.1406 (3) | 1.32117 (12) | 0.0268 (5) | |
H3A | 0.3257 | 0.1912 | 1.2889 | 0.032* | |
H3B | 0.1895 | 0.2082 | 1.3458 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01344 (7) | 0.00955 (7) | 0.01375 (7) | 0.00046 (5) | −0.00049 (5) | −0.00069 (5) |
Cd2 | 0.01005 (8) | 0.00937 (10) | 0.01536 (9) | 0.00148 (6) | −0.00147 (7) | −0.00025 (7) |
Cd3 | 0.01014 (8) | 0.00897 (10) | 0.01556 (9) | −0.00122 (6) | −0.00001 (7) | −0.00143 (7) |
P1 | 0.0102 (2) | 0.0071 (2) | 0.0134 (2) | 0.00079 (16) | −0.00040 (17) | −0.00148 (18) |
P2 | 0.0124 (2) | 0.0084 (2) | 0.0088 (2) | 0.00099 (16) | 0.00007 (17) | 0.00108 (17) |
P3 | 0.0135 (2) | 0.0097 (2) | 0.0100 (2) | 0.00022 (17) | −0.00054 (17) | −0.00105 (18) |
O1 | 0.0288 (8) | 0.0076 (7) | 0.0331 (9) | 0.0025 (6) | 0.0040 (7) | 0.0018 (7) |
O2 | 0.0100 (6) | 0.0113 (7) | 0.0283 (8) | −0.0011 (5) | −0.0020 (6) | −0.0018 (6) |
O3 | 0.0110 (6) | 0.0097 (7) | 0.0198 (7) | 0.0006 (5) | 0.0021 (5) | −0.0019 (6) |
O4 | 0.0267 (8) | 0.0332 (10) | 0.0155 (7) | 0.0130 (7) | −0.0031 (6) | −0.0069 (7) |
O5 | 0.0225 (7) | 0.0184 (8) | 0.0160 (7) | 0.0057 (6) | 0.0046 (6) | 0.0026 (6) |
O6 | 0.0202 (7) | 0.0117 (7) | 0.0161 (7) | 0.0005 (5) | 0.0008 (6) | −0.0004 (6) |
O7 | 0.0123 (6) | 0.0202 (8) | 0.0119 (6) | 0.0006 (5) | −0.0012 (5) | 0.0058 (6) |
O8 | 0.0220 (7) | 0.0166 (8) | 0.0240 (8) | −0.0046 (6) | −0.0097 (6) | 0.0046 (7) |
O9 | 0.0208 (7) | 0.0116 (7) | 0.0166 (7) | −0.0020 (6) | −0.0014 (6) | 0.0011 (6) |
O10 | 0.0176 (7) | 0.0168 (8) | 0.0200 (7) | −0.0017 (6) | 0.0059 (6) | −0.0025 (6) |
O11 | 0.0131 (6) | 0.0188 (8) | 0.0131 (6) | 0.0007 (5) | −0.0004 (5) | −0.0068 (6) |
O12 | 0.0313 (8) | 0.0234 (9) | 0.0181 (7) | 0.0118 (7) | −0.0120 (7) | −0.0050 (7) |
O13 | 0.0393 (10) | 0.0281 (10) | 0.0167 (8) | −0.0095 (8) | −0.0031 (7) | 0.0015 (7) |
N1 | 0.0172 (8) | 0.0191 (10) | 0.0222 (9) | 0.0000 (7) | −0.0002 (7) | 0.0029 (8) |
N2 | 0.0211 (9) | 0.0230 (11) | 0.0254 (10) | −0.0078 (7) | −0.0016 (8) | 0.0009 (8) |
C4 | 0.0244 (10) | 0.0327 (14) | 0.0172 (10) | −0.0061 (10) | −0.0016 (8) | 0.0055 (10) |
C3 | 0.0261 (11) | 0.0228 (12) | 0.0314 (12) | −0.0052 (9) | −0.0038 (10) | 0.0072 (10) |
Cd1—O1i | 2.1651 (17) | P2—O8 | 1.5676 (16) |
Cd1—O6 | 2.2443 (15) | P3—O9 | 1.5250 (16) |
Cd1—O9 | 2.2477 (15) | P3—O10 | 1.5301 (15) |
Cd1—O2ii | 2.2950 (14) | P3—O11 | 1.5386 (15) |
Cd1—O3 | 2.3464 (14) | P3—O12 | 1.5631 (16) |
Cd1—Cd2 | 3.4787 (2) | O1—Cd1i | 2.1652 (17) |
Cd2—O7iii | 2.2362 (14) | O2—Cd2v | 2.2648 (15) |
Cd2—O7 | 2.2362 (14) | O2—Cd1v | 2.2950 (14) |
Cd2—O2iv | 2.2648 (15) | O4—H4 | 0.8200 |
Cd2—O2ii | 2.2648 (15) | O8—H8 | 0.8200 |
Cd2—O11iii | 2.3150 (13) | O12—H12 | 0.8200 |
Cd2—O11 | 2.3150 (13) | O13—H13A | 0.8599 |
Cd2—Cd3 | 3.4102 (2) | O13—H13B | 0.8598 |
Cd2—Cd1iii | 3.4787 (2) | N1—C4 | 1.485 (3) |
Cd3—O3iv | 2.2729 (15) | N1—H1A | 0.8900 |
Cd3—O3 | 2.2729 (15) | N1—H1B | 0.8900 |
Cd3—O11iv | 2.2738 (14) | N1—H1C | 0.8900 |
Cd3—O11 | 2.2739 (14) | N2—C3 | 1.482 (3) |
Cd3—O7 | 2.3312 (13) | N2—H2A | 0.8900 |
Cd3—O7iv | 2.3312 (13) | N2—H2B | 0.8900 |
P1—O1 | 1.5109 (18) | N2—H2C | 0.8900 |
P1—O2 | 1.5238 (15) | C4—C3 | 1.503 (3) |
P1—O3 | 1.5282 (14) | C4—H4A | 0.9700 |
P1—O4 | 1.5779 (16) | C4—H4B | 0.9700 |
P2—O5 | 1.5104 (15) | C3—H3A | 0.9700 |
P2—O6 | 1.5395 (16) | C3—H3B | 0.9700 |
P2—O7 | 1.5427 (15) | ||
O1i—Cd1—O6 | 107.38 (6) | O3—Cd3—Cd2 | 99.52 (3) |
O1i—Cd1—O9 | 81.94 (6) | O11iv—Cd3—Cd2 | 137.54 (3) |
O6—Cd1—O9 | 170.62 (6) | O11—Cd3—Cd2 | 42.47 (3) |
O1i—Cd1—O2ii | 114.61 (6) | O7—Cd3—Cd2 | 40.65 (3) |
O6—Cd1—O2ii | 89.22 (6) | O7iv—Cd3—Cd2 | 139.35 (3) |
O9—Cd1—O2ii | 87.72 (6) | O3iv—Cd3—Cd2v | 99.52 (3) |
O1i—Cd1—O3 | 108.55 (6) | O3—Cd3—Cd2v | 80.48 (3) |
O6—Cd1—O3 | 85.39 (5) | O11iv—Cd3—Cd2v | 42.46 (3) |
O9—Cd1—O3 | 90.67 (5) | O11—Cd3—Cd2v | 137.53 (3) |
O2ii—Cd1—O3 | 136.09 (5) | O7—Cd3—Cd2v | 139.35 (3) |
O1i—Cd1—Cd2 | 152.36 (5) | O7iv—Cd3—Cd2v | 40.65 (3) |
O6—Cd1—Cd2 | 86.30 (4) | Cd2—Cd3—Cd2v | 180.0 |
O9—Cd1—Cd2 | 85.66 (4) | O1—P1—O2 | 109.71 (9) |
O2ii—Cd1—Cd2 | 39.96 (4) | O1—P1—O3 | 111.77 (9) |
O3—Cd1—Cd2 | 96.16 (4) | O2—P1—O3 | 111.37 (9) |
O7iii—Cd2—O7 | 180.0 | O1—P1—O4 | 107.17 (10) |
O7iii—Cd2—O2iv | 86.72 (6) | O2—P1—O4 | 109.25 (10) |
O7—Cd2—O2iv | 93.28 (6) | O3—P1—O4 | 107.44 (9) |
O7iii—Cd2—O2ii | 93.28 (6) | O5—P2—O6 | 111.28 (9) |
O7—Cd2—O2ii | 86.72 (6) | O5—P2—O7 | 112.53 (9) |
O2iv—Cd2—O2ii | 180.00 (7) | O6—P2—O7 | 109.82 (9) |
O7iii—Cd2—O11iii | 78.28 (5) | O5—P2—O8 | 110.02 (10) |
O7—Cd2—O11iii | 101.72 (5) | O6—P2—O8 | 105.51 (9) |
O2iv—Cd2—O11iii | 87.22 (5) | O7—P2—O8 | 107.37 (8) |
O2ii—Cd2—O11iii | 92.79 (5) | O9—P3—O10 | 110.20 (9) |
O7iii—Cd2—O11 | 101.72 (5) | O9—P3—O11 | 110.43 (9) |
O7—Cd2—O11 | 78.28 (5) | O10—P3—O11 | 110.49 (9) |
O2iv—Cd2—O11 | 92.78 (5) | O9—P3—O12 | 107.17 (10) |
O2ii—Cd2—O11 | 87.21 (5) | O10—P3—O12 | 108.84 (9) |
O11iii—Cd2—O11 | 180.00 (7) | O11—P3—O12 | 109.64 (9) |
O7iii—Cd2—Cd3ii | 42.78 (3) | P1—O1—Cd1i | 144.97 (11) |
O7—Cd2—Cd3ii | 137.23 (3) | P1—O2—Cd2v | 133.13 (9) |
O2iv—Cd2—Cd3ii | 103.19 (4) | P1—O2—Cd1v | 125.08 (9) |
O2ii—Cd2—Cd3ii | 76.81 (4) | Cd2v—O2—Cd1v | 99.44 (5) |
O11iii—Cd2—Cd3ii | 41.54 (4) | P1—O3—Cd3 | 126.52 (8) |
O11—Cd2—Cd3ii | 138.46 (4) | P1—O3—Cd1 | 125.00 (8) |
O7iii—Cd2—Cd3 | 137.22 (3) | Cd3—O3—Cd1 | 101.56 (5) |
O7—Cd2—Cd3 | 42.77 (3) | P1—O4—H4 | 109.5 |
O2iv—Cd2—Cd3 | 76.81 (4) | P2—O6—Cd1 | 110.65 (8) |
O2ii—Cd2—Cd3 | 103.19 (4) | P2—O7—Cd2 | 128.95 (8) |
O11iii—Cd2—Cd3 | 138.46 (4) | P2—O7—Cd3 | 130.69 (8) |
O11—Cd2—Cd3 | 41.54 (4) | Cd2—O7—Cd3 | 96.58 (5) |
Cd3ii—Cd2—Cd3 | 180.0 | P2—O8—H8 | 109.5 |
O7iii—Cd2—Cd1iii | 56.77 (4) | P3—O9—Cd1 | 110.71 (8) |
O7—Cd2—Cd1iii | 123.23 (4) | P3—O11—Cd3 | 124.47 (8) |
O2iv—Cd2—Cd1iii | 40.60 (4) | P3—O11—Cd2 | 134.18 (8) |
O2ii—Cd2—Cd1iii | 139.40 (4) | Cd3—O11—Cd2 | 95.99 (5) |
O11iii—Cd2—Cd1iii | 57.35 (4) | P3—O12—H12 | 109.5 |
O11—Cd2—Cd1iii | 122.65 (4) | H13A—O13—H13B | 105.0 |
Cd3—Cd2—Cd1iii | 117.408 (2) | C4—N1—H1A | 109.5 |
O7iii—Cd2—Cd1 | 123.23 (4) | C4—N1—H1B | 109.5 |
O7—Cd2—Cd1 | 56.77 (4) | H1A—N1—H1B | 109.5 |
O2iv—Cd2—Cd1 | 139.40 (4) | C4—N1—H1C | 109.5 |
O2ii—Cd2—Cd1 | 40.60 (4) | H1A—N1—H1C | 109.5 |
O11iii—Cd2—Cd1 | 122.65 (4) | H1B—N1—H1C | 109.5 |
O11—Cd2—Cd1 | 57.35 (4) | C3—N2—H2A | 109.5 |
Cd3—Cd2—Cd1 | 62.592 (2) | C3—N2—H2B | 109.5 |
Cd1iii—Cd2—Cd1 | 180.0 | H2A—N2—H2B | 109.5 |
O3iv—Cd3—O3 | 179.999 (1) | C3—N2—H2C | 109.5 |
O3iv—Cd3—O11iv | 86.08 (5) | H2A—N2—H2C | 109.5 |
O3—Cd3—O11iv | 93.93 (5) | H2B—N2—H2C | 109.5 |
O3iv—Cd3—O11 | 93.92 (5) | N1—C4—C3 | 113.1 (2) |
O3—Cd3—O11 | 86.08 (5) | N1—C4—H4A | 109.0 |
O11iv—Cd3—O11 | 180.00 (8) | C3—C4—H4A | 109.0 |
O3iv—Cd3—O7 | 97.28 (5) | N1—C4—H4B | 109.0 |
O3—Cd3—O7 | 82.72 (5) | C3—C4—H4B | 109.0 |
O11iv—Cd3—O7 | 102.80 (5) | H4A—C4—H4B | 107.8 |
O11—Cd3—O7 | 77.21 (5) | N2—C3—C4 | 113.1 (2) |
O3iv—Cd3—O7iv | 82.73 (5) | N2—C3—H3A | 109.0 |
O3—Cd3—O7iv | 97.27 (5) | C4—C3—H3A | 109.0 |
O11iv—Cd3—O7iv | 77.20 (5) | N2—C3—H3B | 109.0 |
O11—Cd3—O7iv | 102.79 (5) | C4—C3—H3B | 109.0 |
O7—Cd3—O7iv | 180.00 (4) | H3A—C3—H3B | 107.8 |
O3iv—Cd3—Cd2 | 80.48 (3) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x+1, y, z; (iii) −x+1, −y, −z+2; (iv) −x, −y, −z+2; (v) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O9vi | 0.89 | 1.90 | 2.774 (2) | 165 |
N1—H1B···O13iv | 0.89 | 2.05 | 2.895 (3) | 159 |
N1—H1C···O6vii | 0.89 | 1.99 | 2.866 (2) | 170 |
N2—H2A···O6viii | 0.89 | 1.97 | 2.823 (2) | 160 |
N2—H2A···O8viii | 0.89 | 2.57 | 3.243 (3) | 133 |
N2—H2B···O13iii | 0.89 | 1.98 | 2.856 (3) | 168 |
N2—H2C···O1viii | 0.89 | 2.14 | 2.967 (3) | 155 |
O4—H4···O10 | 0.82 | 1.97 | 2.763 (3) | 163 |
O8—H8···O10iv | 0.82 | 1.81 | 2.627 (2) | 175 |
O12—H12···O5iii | 0.82 | 1.74 | 2.547 (2) | 166 |
O13—H13A···O5 | 0.86 | 1.85 | 2.705 (2) | 173 |
O13—H13B···O10ix | 0.86 | 1.97 | 2.790 (2) | 159 |
C3—H3B···O5vii | 0.97 | 2.45 | 3.264 (3) | 141 |
C4—H4A···O10 | 0.97 | 2.59 | 3.428 (3) | 144 |
Symmetry codes: (iii) −x+1, −y, −z+2; (iv) −x, −y, −z+2; (vi) −x+1/2, y−1/2, −z+5/2; (vii) x−1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C2H10N2)[Cd2(HPO4)3]·H2O |
Mr | 592.87 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 6.8203 (1), 9.5731 (2), 21.9302 (4) |
β (°) | 90.274 (1) |
V (Å3) | 1431.84 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.38 |
Crystal size (mm) | 0.15 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Bruker X8 APEXII |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.730, 0.845 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21519, 4546, 4010 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.725 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.053, 1.09 |
No. of reflections | 4544 |
No. of parameters | 205 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.81, −0.74 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O9i | 0.89 | 1.90 | 2.774 (2) | 165 |
N1—H1B···O13ii | 0.89 | 2.05 | 2.895 (3) | 159 |
N1—H1C···O6iii | 0.89 | 1.99 | 2.866 (2) | 170 |
N2—H2A···O6iv | 0.89 | 1.97 | 2.823 (2) | 160 |
N2—H2A···O8iv | 0.89 | 2.57 | 3.243 (3) | 133 |
N2—H2B···O13v | 0.89 | 1.98 | 2.856 (3) | 168 |
N2—H2C···O1iv | 0.89 | 2.14 | 2.967 (3) | 155 |
O4—H4···O10 | 0.82 | 1.97 | 2.763 (3) | 163 |
O8—H8···O10ii | 0.82 | 1.81 | 2.627 (2) | 175 |
O12—H12···O5v | 0.82 | 1.74 | 2.547 (2) | 166 |
O13—H13A···O5 | 0.86 | 1.85 | 2.705 (2) | 173 |
O13—H13B···O10vi | 0.86 | 1.97 | 2.790 (2) | 159 |
C3—H3B···O5iii | 0.97 | 2.45 | 3.264 (3) | 141 |
C4—H4A···O10 | 0.97 | 2.59 | 3.428 (3) | 144 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+5/2; (ii) −x, −y, −z+2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1, −y, −z+2; (vi) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, m1065–m1066. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavellec, M., Riou, D. & Ferey, G. (1995). Acta Cryst. C51, 2242–2244. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chandrasekhar, V., Sasikumar, P., Senapati, T. & Dey, A. (2010). Inorg. Chim. Acta, 363, 2920–2928. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Lin, Z., Sun, Y., Zhang, J., Wei, Q. & Yang, G. (2003). J. Mater. Chem. 13, 447–449. Web of Science CSD CrossRef CAS Google Scholar
Lin, Z., Zhang, J., Zheng, S. & Yang, G. (2005). Solid State Sci. 7, 319–323. Web of Science CSD CrossRef CAS Google Scholar
Moffat, J. B. & Jewur, S. S. (1980). J. Chem. Soc. Faraday Trans. 1, 76, 746–752. Google Scholar
Qiu, Y., Deng, H., Mou, J., Yang, S., Zeller, M., Batten, S. R., Wu, H. & Li, J. (2009). Chem. Commun. pp. 5415–5417. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Intensive efforts have been greatly devoted to the design of new organic- inorganic materials offering porous and open-framework structures. Such materials are promising for a variety of applications. One class of those materials is the cadmium derived compounds, such as cadmium phosphate by virtue of applications to catalysis (Moffat & Jewur, 1980) and, more recently, cadmium–organic framework used for selective ion sensing (Qiu et al. 2009). However, the organically templated cadmium phosphate, a member of such class, remains less investigated. In fact, to our knowledge, the rare compounds isolated in the system Cd – P – organic molecules correspond to Cd(2,2'-bipy)(H2PO4)2 (bipy = bipyridine) (Lin et al., 2003), Cd(phen)(H2PO4)2.H2O (phen = 1,10-phenanthroline) (Lin et al., 2005) in addition to those recently published (Chandrasekhar et al., 2010). Consequently, with a view to generate new cadmium hybrid compounds, our interest is focused on the ethylendiamine templated cadmium phosphate with different Cd/P ratio. We present in this work, the hydrothermal synthesis and the structural characterization of the first member of this family with a ratio Cd/P=2/3, namely (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O compound.
Fig. 1 shows the plot of the asymmetric unit of the title compound with hydrogen bond. A three-dimensional polyhedral view of its crystal structure is represented in Fig. 2. It shows the concatenation of three types of polyhedra: CdO6, CdO5 and PO4. The sharing edge CdO6 octahedra form an infinite chain running along the a axis. The unshared vertices of the CdO6 octahedra are related to PO4 tetrahedron and CdO5 polyhedron in the way to build a two-dimensional inorganic layer parallel to the plane (a, b). These layers are separated by organic and water molecules as shown in Fig. 2. A similar connectivity is observed in the structure of the two-dimensional iron phosphate templated by ethylenediammonium (C2N2 H10)0.5 [Fe(PO4)(OH)] (Cavellec et al. 1995).
The cadmium polyhedra show various degres of deformation from idealized geometry. Cd(2)O6 and Cd(3)O6 octahedra are slightly deformed with Cd–O distances in the range 2.235 (2)–2.333 (2) Å. The Cd(1)O5 adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands (O6—O9; O3—O2i) and O1ii. The Cd1—O bond lengths vary between 2.166 (2)Å and 2.347 (2) Å. From the three tetrahedrally coordinated phosphorus atoms P1, P2 and P3, the first (P1) shares three O atoms with adjacent cadmium atoms (average distance P—O = 1.519 (2) Å) and possesses one terminal P1—O4 = 1.579 (2) Å. The other phosphorus atoms P2 and P3 are linked to two adjacent cadmium atoms via two oxygene atoms (average distance P—O = 1.537 (2) Å) and have two terminal P2═O5 = 1.511 (2) Å and P3═O9 = 1.525 (2) Å and P2—O8 = 1.566 (2) Å and P3—O12 = 1.565 (2) Å bond. The terminal O atoms are involved in hydrogen bonds as show in Table 1. These results corroborate the framework formula and are in close agreement with former study of a similar phosphate (Assani et al. 2010).
The ethylenediammonium cation and the water molecules ensure the cohesion of the structure via N—H···O and O—H···O hydrogen bonds (Fig. 1, Table 1). Symmetry code: (i) 1 + x, y, z - 1; (ii) -x, -y, -z.