metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[ethyl­enedi­ammonium [tris­­[μ3-hydrogenphosphato(2−)]dicadmium] monohydrate]

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mohamedsaadi82@gmail.com

(Received 31 August 2010; accepted 28 September 2010; online 2 October 2010)

The title compound, {(C2H10N2)[Cd2(HPO4)3]·H2O}n, was synthesized under hydro­thermal conditions. The structure of this hybrid compound consists of CdO6, CdO5 and PO4 polyhedra arranged so as to build an anionic inorganic layer, namely [Cd2(HPO4)3]2−, parallel to the ab plane. The edge-sharing CdO6 octa­hedra form infinite chains running along the a axis and are linked by CdO5 and PO4 polyhedra. The ethyl­ene­diammonium cation and the water mol­ecule are located between two adjacent inorganic layers and ensure the cohesion of the structure via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For properties of and background to hybride cadmium phosphates, see: Chandrasekhar et al. (2010[Chandrasekhar, V., Sasikumar, P., Senapati, T. & Dey, A. (2010). Inorg. Chim. Acta, 363, 2920-2928.]); Lin et al. (2003[Lin, Z., Sun, Y., Zhang, J., Wei, Q. & Yang, G. (2003). J. Mater. Chem. 13, 447-449.], 2005[Lin, Z., Zhang, J., Zheng, S. & Yang, G. (2005). Solid State Sci. 7, 319-323.]); Moffat & Jewur (1980[Moffat, J. B. & Jewur, S. S. (1980). J. Chem. Soc. Faraday Trans. 1, 76, 746-752.]); Qiu et al. (2009[Qiu, Y., Deng, H., Mou, J., Yang, S., Zeller, M., Batten, S. R., Wu, H. & Li, J. (2009). Chem. Commun. pp. 5415-5417.]). For related structures, see: Cavellec et al. (1995[Cavellec, M., Riou, D. & Ferey, G. (1995). Acta Cryst. C51, 2242-2244.]); Assani et al. (2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, m1065-m1066.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)[Cd2(HPO4)3]·H2O

  • Mr = 592.87

  • Monoclinic, P 21 /n

  • a = 6.8203 (1) Å

  • b = 9.5731 (2) Å

  • c = 21.9302 (4) Å

  • β = 90.274 (1)°

  • V = 1431.84 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 296 K

  • 0.15 × 0.08 × 0.05 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.730, Tmax = 0.845

  • 21519 measured reflections

  • 4546 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.09

  • 4544 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O9i 0.89 1.90 2.774 (2) 165
N1—H1B⋯O13ii 0.89 2.05 2.895 (3) 159
N1—H1C⋯O6iii 0.89 1.99 2.866 (2) 170
N2—H2A⋯O6iv 0.89 1.97 2.823 (2) 160
N2—H2A⋯O8iv 0.89 2.57 3.243 (3) 133
N2—H2B⋯O13v 0.89 1.98 2.856 (3) 168
N2—H2C⋯O1iv 0.89 2.14 2.967 (3) 155
O4—H4⋯O10 0.82 1.97 2.763 (3) 163
O8—H8⋯O10ii 0.82 1.81 2.627 (2) 175
O12—H12⋯O5v 0.82 1.74 2.547 (2) 166
O13—H13A⋯O5 0.86 1.85 2.705 (2) 173
O13—H13B⋯O10vi 0.86 1.97 2.790 (2) 159
C3—H3B⋯O5iii 0.97 2.45 3.264 (3) 141
C4—H4A⋯O10 0.97 2.59 3.428 (3) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x, -y, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y, -z+2; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Intensive efforts have been greatly devoted to the design of new organic- inorganic materials offering porous and open-framework structures. Such materials are promising for a variety of applications. One class of those materials is the cadmium derived compounds, such as cadmium phosphate by virtue of applications to catalysis (Moffat & Jewur, 1980) and, more recently, cadmium–organic framework used for selective ion sensing (Qiu et al. 2009). However, the organically templated cadmium phosphate, a member of such class, remains less investigated. In fact, to our knowledge, the rare compounds isolated in the system Cd – P – organic molecules correspond to Cd(2,2'-bipy)(H2PO4)2 (bipy = bipyridine) (Lin et al., 2003), Cd(phen)(H2PO4)2.H2O (phen = 1,10-phenanthroline) (Lin et al., 2005) in addition to those recently published (Chandrasekhar et al., 2010). Consequently, with a view to generate new cadmium hybrid compounds, our interest is focused on the ethylendiamine templated cadmium phosphate with different Cd/P ratio. We present in this work, the hydrothermal synthesis and the structural characterization of the first member of this family with a ratio Cd/P=2/3, namely (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O compound.

Fig. 1 shows the plot of the asymmetric unit of the title compound with hydrogen bond. A three-dimensional polyhedral view of its crystal structure is represented in Fig. 2. It shows the concatenation of three types of polyhedra: CdO6, CdO5 and PO4. The sharing edge CdO6 octahedra form an infinite chain running along the a axis. The unshared vertices of the CdO6 octahedra are related to PO4 tetrahedron and CdO5 polyhedron in the way to build a two-dimensional inorganic layer parallel to the plane (a, b). These layers are separated by organic and water molecules as shown in Fig. 2. A similar connectivity is observed in the structure of the two-dimensional iron phosphate templated by ethylenediammonium (C2N2 H10)0.5 [Fe(PO4)(OH)] (Cavellec et al. 1995).

The cadmium polyhedra show various degres of deformation from idealized geometry. Cd(2)O6 and Cd(3)O6 octahedra are slightly deformed with Cd–O distances in the range 2.235 (2)–2.333 (2) Å. The Cd(1)O5 adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands (O6—O9; O3—O2i) and O1ii. The Cd1—O bond lengths vary between 2.166 (2)Å and 2.347 (2) Å. From the three tetrahedrally coordinated phosphorus atoms P1, P2 and P3, the first (P1) shares three O atoms with adjacent cadmium atoms (average distance P—O = 1.519 (2) Å) and possesses one terminal P1—O4 = 1.579 (2) Å. The other phosphorus atoms P2 and P3 are linked to two adjacent cadmium atoms via two oxygene atoms (average distance P—O = 1.537 (2) Å) and have two terminal P2O5 = 1.511 (2) Å and P3O9 = 1.525 (2) Å and P2—O8 = 1.566 (2) Å and P3—O12 = 1.565 (2) Å bond. The terminal O atoms are involved in hydrogen bonds as show in Table 1. These results corroborate the framework formula and are in close agreement with former study of a similar phosphate (Assani et al. 2010).

The ethylenediammonium cation and the water molecules ensure the cohesion of the structure via N—H···O and O—H···O hydrogen bonds (Fig. 1, Table 1). Symmetry code: (i) 1 + x, y, z - 1; (ii) -x, -y, -z.

Related literature top

For properties of and background to hybride cadmium phosphates, see: Chandrasekhar et al. (2010); Lin et al. (2003, 2005); Moffat & Jewur (1980); Qiu et al. (2009). For related structures, see: Cavellec et al. (1995); Assani et al. (2010).

Experimental top

In a typical hydrothermal synthesis, a mixture containing cadmium chloride (CdCl2; 0.0917 g), 85 wt % phosphoric acid (H3PO4; 0.34 ml), ethylenediamine (NH2(CH2)2NH2; 0.3 ml), 40 wt % fluoridric acid (HF; 0.1 ml), and water (10 ml), was allowed to react in 23 ml Teflon-lined autoclave under autogeneous pressure at 125°C for tow days. The autoclave were then removed to air and allowed to cool to room temperature. The resulting product was filtered off, washed with deionized water and air dried. The reaction produced colorless parallelepipedic crystals, corresponding to the title compound, (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O; mixed with some white powder.

Refinement top

All O-bound, N-bound and C-bound H atoms were initially located in a difference map and refined with O—H, N—H and C—H distance restraints of 0.82 (1), (0.86 (1) for the water molecule) Å, 0.89 (1) Å and C–H 0.97 (1) Å, respectively. In a the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O) or (N) and Uiso(H) set to 1.2 Ueq(C).

The two reflections (0 0 2) and (0 1 1), affected by the beam stop, are eliminated resulting in improved quality of refinement and a significant reduction of R and Rw factors. No significant electron density residuals in the difference map.

From the synthetis conditions one might expect an incorporation of F- ions. The distinction by X-ray diffraction between F- and O2- is difficult. However, when the relevant OH positions were replaced by F-, a small worsening of the reliability factors was observed. Moreover, the clearly discernible proton positions in the difference Fourier maps point to OH rather than to F. Nevertheless, the existence of a very small amount of F- incorporated in the structure cannot be excluded.

Structure description top

Intensive efforts have been greatly devoted to the design of new organic- inorganic materials offering porous and open-framework structures. Such materials are promising for a variety of applications. One class of those materials is the cadmium derived compounds, such as cadmium phosphate by virtue of applications to catalysis (Moffat & Jewur, 1980) and, more recently, cadmium–organic framework used for selective ion sensing (Qiu et al. 2009). However, the organically templated cadmium phosphate, a member of such class, remains less investigated. In fact, to our knowledge, the rare compounds isolated in the system Cd – P – organic molecules correspond to Cd(2,2'-bipy)(H2PO4)2 (bipy = bipyridine) (Lin et al., 2003), Cd(phen)(H2PO4)2.H2O (phen = 1,10-phenanthroline) (Lin et al., 2005) in addition to those recently published (Chandrasekhar et al., 2010). Consequently, with a view to generate new cadmium hybrid compounds, our interest is focused on the ethylendiamine templated cadmium phosphate with different Cd/P ratio. We present in this work, the hydrothermal synthesis and the structural characterization of the first member of this family with a ratio Cd/P=2/3, namely (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O compound.

Fig. 1 shows the plot of the asymmetric unit of the title compound with hydrogen bond. A three-dimensional polyhedral view of its crystal structure is represented in Fig. 2. It shows the concatenation of three types of polyhedra: CdO6, CdO5 and PO4. The sharing edge CdO6 octahedra form an infinite chain running along the a axis. The unshared vertices of the CdO6 octahedra are related to PO4 tetrahedron and CdO5 polyhedron in the way to build a two-dimensional inorganic layer parallel to the plane (a, b). These layers are separated by organic and water molecules as shown in Fig. 2. A similar connectivity is observed in the structure of the two-dimensional iron phosphate templated by ethylenediammonium (C2N2 H10)0.5 [Fe(PO4)(OH)] (Cavellec et al. 1995).

The cadmium polyhedra show various degres of deformation from idealized geometry. Cd(2)O6 and Cd(3)O6 octahedra are slightly deformed with Cd–O distances in the range 2.235 (2)–2.333 (2) Å. The Cd(1)O5 adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands (O6—O9; O3—O2i) and O1ii. The Cd1—O bond lengths vary between 2.166 (2)Å and 2.347 (2) Å. From the three tetrahedrally coordinated phosphorus atoms P1, P2 and P3, the first (P1) shares three O atoms with adjacent cadmium atoms (average distance P—O = 1.519 (2) Å) and possesses one terminal P1—O4 = 1.579 (2) Å. The other phosphorus atoms P2 and P3 are linked to two adjacent cadmium atoms via two oxygene atoms (average distance P—O = 1.537 (2) Å) and have two terminal P2O5 = 1.511 (2) Å and P3O9 = 1.525 (2) Å and P2—O8 = 1.566 (2) Å and P3—O12 = 1.565 (2) Å bond. The terminal O atoms are involved in hydrogen bonds as show in Table 1. These results corroborate the framework formula and are in close agreement with former study of a similar phosphate (Assani et al. 2010).

The ethylenediammonium cation and the water molecules ensure the cohesion of the structure via N—H···O and O—H···O hydrogen bonds (Fig. 1, Table 1). Symmetry code: (i) 1 + x, y, z - 1; (ii) -x, -y, -z.

For properties of and background to hybride cadmium phosphates, see: Chandrasekhar et al. (2010); Lin et al. (2003, 2005); Moffat & Jewur (1980); Qiu et al. (2009). For related structures, see: Cavellec et al. (1995); Assani et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 5/2; (ii) -x, -y, -z + 2; (iii) x - 1/2, -y + 1/2, z + 1/2; (iv) x + 1/2, -y + 1/2, z + 1/2.
[Figure 2] Fig. 2. A three-dimensional polyhedral view of the crystal structure of the (H3N—CH2—CH2—NH3)Cd2[(HPO4)3].H2O, showing the stacking of organic and inorganic layers along c axis.
Poly[ethylenediammonium [tris[µ3-hydrogenphosphato(2-)]dicadmium(II)] monohydrate] top
Crystal data top
(C2H10N2)[Cd2(HPO4)3]·H2OF(000) = 1144
Mr = 592.87Dx = 2.750 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21519 reflections
a = 6.8203 (1) Åθ = 1.9–31.0°
b = 9.5731 (2) ŵ = 3.38 mm1
c = 21.9302 (4) ÅT = 296 K
β = 90.274 (1)°Prism, colourless
V = 1431.84 (4) Å30.15 × 0.08 × 0.05 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
4546 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 31.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.730, Tmax = 0.845k = 1313
21519 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0195P)2 + 1.2601P]
where P = (Fo2 + 2Fc2)/3
4544 reflections(Δ/σ)max = 0.002
205 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
(C2H10N2)[Cd2(HPO4)3]·H2OV = 1431.84 (4) Å3
Mr = 592.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8203 (1) ŵ = 3.38 mm1
b = 9.5731 (2) ÅT = 296 K
c = 21.9302 (4) Å0.15 × 0.08 × 0.05 mm
β = 90.274 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
4546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4010 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.845Rint = 0.029
21519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.09Δρmax = 0.81 e Å3
4544 reflectionsΔρmin = 0.74 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.265141 (19)0.322444 (16)0.995676 (6)0.01225 (4)
Cd20.50000.00001.00000.01160 (5)
Cd30.00000.00001.00000.01155 (5)
P10.23831 (7)0.31181 (5)1.01284 (2)0.01023 (9)
P20.26500 (7)0.14162 (5)0.87635 (2)0.00985 (9)
P30.22616 (7)0.16014 (5)1.11897 (2)0.01106 (10)
O10.2503 (2)0.45600 (17)0.98506 (8)0.0231 (3)
O20.4243 (2)0.23029 (16)0.99783 (7)0.0165 (3)
O30.0553 (2)0.23344 (15)0.99202 (7)0.0135 (3)
O40.2219 (2)0.3313 (2)1.08413 (7)0.0252 (4)
H40.16290.26471.09890.038*
O50.4393 (2)0.10843 (17)0.83666 (7)0.0189 (3)
O60.2610 (2)0.29729 (16)0.89393 (7)0.0160 (3)
O70.2583 (2)0.05068 (17)0.93438 (6)0.0148 (3)
O80.0698 (2)0.11514 (17)0.84012 (8)0.0209 (3)
H80.04090.03210.84210.031*
O90.2659 (2)0.30932 (16)1.09801 (7)0.0163 (3)
O100.0213 (2)0.14966 (16)1.14671 (7)0.0181 (3)
O110.2469 (2)0.05774 (16)1.06531 (6)0.0150 (3)
O120.3816 (3)0.12463 (19)1.16923 (7)0.0243 (4)
H120.43190.04881.16170.036*
O130.3841 (3)0.12448 (19)0.71465 (7)0.0280 (4)
H13A0.39750.12710.75360.042*
H13B0.41990.20580.70230.042*
N10.0232 (3)0.0197 (2)1.33813 (9)0.0195 (4)
H1A0.04280.07511.36350.029*
H1B0.11470.06911.31870.029*
H1C0.08000.04861.35920.029*
N20.4080 (3)0.0696 (2)1.35973 (9)0.0232 (4)
H2A0.50090.13031.37030.035*
H2B0.46130.00051.33890.035*
H2C0.35090.03621.39310.035*
C40.1140 (3)0.0414 (3)1.29303 (10)0.0248 (5)
H4A0.03890.09071.26210.030*
H4B0.18460.03351.27310.030*
C30.2594 (4)0.1406 (3)1.32117 (12)0.0268 (5)
H3A0.32570.19121.28890.032*
H3B0.18950.20821.34580.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01344 (7)0.00955 (7)0.01375 (7)0.00046 (5)0.00049 (5)0.00069 (5)
Cd20.01005 (8)0.00937 (10)0.01536 (9)0.00148 (6)0.00147 (7)0.00025 (7)
Cd30.01014 (8)0.00897 (10)0.01556 (9)0.00122 (6)0.00001 (7)0.00143 (7)
P10.0102 (2)0.0071 (2)0.0134 (2)0.00079 (16)0.00040 (17)0.00148 (18)
P20.0124 (2)0.0084 (2)0.0088 (2)0.00099 (16)0.00007 (17)0.00108 (17)
P30.0135 (2)0.0097 (2)0.0100 (2)0.00022 (17)0.00054 (17)0.00105 (18)
O10.0288 (8)0.0076 (7)0.0331 (9)0.0025 (6)0.0040 (7)0.0018 (7)
O20.0100 (6)0.0113 (7)0.0283 (8)0.0011 (5)0.0020 (6)0.0018 (6)
O30.0110 (6)0.0097 (7)0.0198 (7)0.0006 (5)0.0021 (5)0.0019 (6)
O40.0267 (8)0.0332 (10)0.0155 (7)0.0130 (7)0.0031 (6)0.0069 (7)
O50.0225 (7)0.0184 (8)0.0160 (7)0.0057 (6)0.0046 (6)0.0026 (6)
O60.0202 (7)0.0117 (7)0.0161 (7)0.0005 (5)0.0008 (6)0.0004 (6)
O70.0123 (6)0.0202 (8)0.0119 (6)0.0006 (5)0.0012 (5)0.0058 (6)
O80.0220 (7)0.0166 (8)0.0240 (8)0.0046 (6)0.0097 (6)0.0046 (7)
O90.0208 (7)0.0116 (7)0.0166 (7)0.0020 (6)0.0014 (6)0.0011 (6)
O100.0176 (7)0.0168 (8)0.0200 (7)0.0017 (6)0.0059 (6)0.0025 (6)
O110.0131 (6)0.0188 (8)0.0131 (6)0.0007 (5)0.0004 (5)0.0068 (6)
O120.0313 (8)0.0234 (9)0.0181 (7)0.0118 (7)0.0120 (7)0.0050 (7)
O130.0393 (10)0.0281 (10)0.0167 (8)0.0095 (8)0.0031 (7)0.0015 (7)
N10.0172 (8)0.0191 (10)0.0222 (9)0.0000 (7)0.0002 (7)0.0029 (8)
N20.0211 (9)0.0230 (11)0.0254 (10)0.0078 (7)0.0016 (8)0.0009 (8)
C40.0244 (10)0.0327 (14)0.0172 (10)0.0061 (10)0.0016 (8)0.0055 (10)
C30.0261 (11)0.0228 (12)0.0314 (12)0.0052 (9)0.0038 (10)0.0072 (10)
Geometric parameters (Å, º) top
Cd1—O1i2.1651 (17)P2—O81.5676 (16)
Cd1—O62.2443 (15)P3—O91.5250 (16)
Cd1—O92.2477 (15)P3—O101.5301 (15)
Cd1—O2ii2.2950 (14)P3—O111.5386 (15)
Cd1—O32.3464 (14)P3—O121.5631 (16)
Cd1—Cd23.4787 (2)O1—Cd1i2.1652 (17)
Cd2—O7iii2.2362 (14)O2—Cd2v2.2648 (15)
Cd2—O72.2362 (14)O2—Cd1v2.2950 (14)
Cd2—O2iv2.2648 (15)O4—H40.8200
Cd2—O2ii2.2648 (15)O8—H80.8200
Cd2—O11iii2.3150 (13)O12—H120.8200
Cd2—O112.3150 (13)O13—H13A0.8599
Cd2—Cd33.4102 (2)O13—H13B0.8598
Cd2—Cd1iii3.4787 (2)N1—C41.485 (3)
Cd3—O3iv2.2729 (15)N1—H1A0.8900
Cd3—O32.2729 (15)N1—H1B0.8900
Cd3—O11iv2.2738 (14)N1—H1C0.8900
Cd3—O112.2739 (14)N2—C31.482 (3)
Cd3—O72.3312 (13)N2—H2A0.8900
Cd3—O7iv2.3312 (13)N2—H2B0.8900
P1—O11.5109 (18)N2—H2C0.8900
P1—O21.5238 (15)C4—C31.503 (3)
P1—O31.5282 (14)C4—H4A0.9700
P1—O41.5779 (16)C4—H4B0.9700
P2—O51.5104 (15)C3—H3A0.9700
P2—O61.5395 (16)C3—H3B0.9700
P2—O71.5427 (15)
O1i—Cd1—O6107.38 (6)O3—Cd3—Cd299.52 (3)
O1i—Cd1—O981.94 (6)O11iv—Cd3—Cd2137.54 (3)
O6—Cd1—O9170.62 (6)O11—Cd3—Cd242.47 (3)
O1i—Cd1—O2ii114.61 (6)O7—Cd3—Cd240.65 (3)
O6—Cd1—O2ii89.22 (6)O7iv—Cd3—Cd2139.35 (3)
O9—Cd1—O2ii87.72 (6)O3iv—Cd3—Cd2v99.52 (3)
O1i—Cd1—O3108.55 (6)O3—Cd3—Cd2v80.48 (3)
O6—Cd1—O385.39 (5)O11iv—Cd3—Cd2v42.46 (3)
O9—Cd1—O390.67 (5)O11—Cd3—Cd2v137.53 (3)
O2ii—Cd1—O3136.09 (5)O7—Cd3—Cd2v139.35 (3)
O1i—Cd1—Cd2152.36 (5)O7iv—Cd3—Cd2v40.65 (3)
O6—Cd1—Cd286.30 (4)Cd2—Cd3—Cd2v180.0
O9—Cd1—Cd285.66 (4)O1—P1—O2109.71 (9)
O2ii—Cd1—Cd239.96 (4)O1—P1—O3111.77 (9)
O3—Cd1—Cd296.16 (4)O2—P1—O3111.37 (9)
O7iii—Cd2—O7180.0O1—P1—O4107.17 (10)
O7iii—Cd2—O2iv86.72 (6)O2—P1—O4109.25 (10)
O7—Cd2—O2iv93.28 (6)O3—P1—O4107.44 (9)
O7iii—Cd2—O2ii93.28 (6)O5—P2—O6111.28 (9)
O7—Cd2—O2ii86.72 (6)O5—P2—O7112.53 (9)
O2iv—Cd2—O2ii180.00 (7)O6—P2—O7109.82 (9)
O7iii—Cd2—O11iii78.28 (5)O5—P2—O8110.02 (10)
O7—Cd2—O11iii101.72 (5)O6—P2—O8105.51 (9)
O2iv—Cd2—O11iii87.22 (5)O7—P2—O8107.37 (8)
O2ii—Cd2—O11iii92.79 (5)O9—P3—O10110.20 (9)
O7iii—Cd2—O11101.72 (5)O9—P3—O11110.43 (9)
O7—Cd2—O1178.28 (5)O10—P3—O11110.49 (9)
O2iv—Cd2—O1192.78 (5)O9—P3—O12107.17 (10)
O2ii—Cd2—O1187.21 (5)O10—P3—O12108.84 (9)
O11iii—Cd2—O11180.00 (7)O11—P3—O12109.64 (9)
O7iii—Cd2—Cd3ii42.78 (3)P1—O1—Cd1i144.97 (11)
O7—Cd2—Cd3ii137.23 (3)P1—O2—Cd2v133.13 (9)
O2iv—Cd2—Cd3ii103.19 (4)P1—O2—Cd1v125.08 (9)
O2ii—Cd2—Cd3ii76.81 (4)Cd2v—O2—Cd1v99.44 (5)
O11iii—Cd2—Cd3ii41.54 (4)P1—O3—Cd3126.52 (8)
O11—Cd2—Cd3ii138.46 (4)P1—O3—Cd1125.00 (8)
O7iii—Cd2—Cd3137.22 (3)Cd3—O3—Cd1101.56 (5)
O7—Cd2—Cd342.77 (3)P1—O4—H4109.5
O2iv—Cd2—Cd376.81 (4)P2—O6—Cd1110.65 (8)
O2ii—Cd2—Cd3103.19 (4)P2—O7—Cd2128.95 (8)
O11iii—Cd2—Cd3138.46 (4)P2—O7—Cd3130.69 (8)
O11—Cd2—Cd341.54 (4)Cd2—O7—Cd396.58 (5)
Cd3ii—Cd2—Cd3180.0P2—O8—H8109.5
O7iii—Cd2—Cd1iii56.77 (4)P3—O9—Cd1110.71 (8)
O7—Cd2—Cd1iii123.23 (4)P3—O11—Cd3124.47 (8)
O2iv—Cd2—Cd1iii40.60 (4)P3—O11—Cd2134.18 (8)
O2ii—Cd2—Cd1iii139.40 (4)Cd3—O11—Cd295.99 (5)
O11iii—Cd2—Cd1iii57.35 (4)P3—O12—H12109.5
O11—Cd2—Cd1iii122.65 (4)H13A—O13—H13B105.0
Cd3—Cd2—Cd1iii117.408 (2)C4—N1—H1A109.5
O7iii—Cd2—Cd1123.23 (4)C4—N1—H1B109.5
O7—Cd2—Cd156.77 (4)H1A—N1—H1B109.5
O2iv—Cd2—Cd1139.40 (4)C4—N1—H1C109.5
O2ii—Cd2—Cd140.60 (4)H1A—N1—H1C109.5
O11iii—Cd2—Cd1122.65 (4)H1B—N1—H1C109.5
O11—Cd2—Cd157.35 (4)C3—N2—H2A109.5
Cd3—Cd2—Cd162.592 (2)C3—N2—H2B109.5
Cd1iii—Cd2—Cd1180.0H2A—N2—H2B109.5
O3iv—Cd3—O3179.999 (1)C3—N2—H2C109.5
O3iv—Cd3—O11iv86.08 (5)H2A—N2—H2C109.5
O3—Cd3—O11iv93.93 (5)H2B—N2—H2C109.5
O3iv—Cd3—O1193.92 (5)N1—C4—C3113.1 (2)
O3—Cd3—O1186.08 (5)N1—C4—H4A109.0
O11iv—Cd3—O11180.00 (8)C3—C4—H4A109.0
O3iv—Cd3—O797.28 (5)N1—C4—H4B109.0
O3—Cd3—O782.72 (5)C3—C4—H4B109.0
O11iv—Cd3—O7102.80 (5)H4A—C4—H4B107.8
O11—Cd3—O777.21 (5)N2—C3—C4113.1 (2)
O3iv—Cd3—O7iv82.73 (5)N2—C3—H3A109.0
O3—Cd3—O7iv97.27 (5)C4—C3—H3A109.0
O11iv—Cd3—O7iv77.20 (5)N2—C3—H3B109.0
O11—Cd3—O7iv102.79 (5)C4—C3—H3B109.0
O7—Cd3—O7iv180.00 (4)H3A—C3—H3B107.8
O3iv—Cd3—Cd280.48 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x, y, z+2; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9vi0.891.902.774 (2)165
N1—H1B···O13iv0.892.052.895 (3)159
N1—H1C···O6vii0.891.992.866 (2)170
N2—H2A···O6viii0.891.972.823 (2)160
N2—H2A···O8viii0.892.573.243 (3)133
N2—H2B···O13iii0.891.982.856 (3)168
N2—H2C···O1viii0.892.142.967 (3)155
O4—H4···O100.821.972.763 (3)163
O8—H8···O10iv0.821.812.627 (2)175
O12—H12···O5iii0.821.742.547 (2)166
O13—H13A···O50.861.852.705 (2)173
O13—H13B···O10ix0.861.972.790 (2)159
C3—H3B···O5vii0.972.453.264 (3)141
C4—H4A···O100.972.593.428 (3)144
Symmetry codes: (iii) x+1, y, z+2; (iv) x, y, z+2; (vi) x+1/2, y1/2, z+5/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C2H10N2)[Cd2(HPO4)3]·H2O
Mr592.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.8203 (1), 9.5731 (2), 21.9302 (4)
β (°) 90.274 (1)
V3)1431.84 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.15 × 0.08 × 0.05
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.730, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
21519, 4546, 4010
Rint0.029
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.09
No. of reflections4544
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.74

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9i0.891.902.774 (2)165
N1—H1B···O13ii0.892.052.895 (3)159
N1—H1C···O6iii0.891.992.866 (2)170
N2—H2A···O6iv0.891.972.823 (2)160
N2—H2A···O8iv0.892.573.243 (3)133
N2—H2B···O13v0.891.982.856 (3)168
N2—H2C···O1iv0.892.142.967 (3)155
O4—H4···O100.821.972.763 (3)163
O8—H8···O10ii0.821.812.627 (2)175
O12—H12···O5v0.821.742.547 (2)166
O13—H13A···O50.861.852.705 (2)173
O13—H13B···O10vi0.861.972.790 (2)159
C3—H3B···O5iii0.972.453.264 (3)141
C4—H4A···O100.972.593.428 (3)144
Symmetry codes: (i) x+1/2, y1/2, z+5/2; (ii) x, y, z+2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+2; (vi) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, m1065–m1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavellec, M., Riou, D. & Ferey, G. (1995). Acta Cryst. C51, 2242–2244.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChandrasekhar, V., Sasikumar, P., Senapati, T. & Dey, A. (2010). Inorg. Chim. Acta, 363, 2920–2928.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLin, Z., Sun, Y., Zhang, J., Wei, Q. & Yang, G. (2003). J. Mater. Chem. 13, 447–449.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Z., Zhang, J., Zheng, S. & Yang, G. (2005). Solid State Sci. 7, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoffat, J. B. & Jewur, S. S. (1980). J. Chem. Soc. Faraday Trans. 1, 76, 746–752.  Google Scholar
First citationQiu, Y., Deng, H., Mou, J., Yang, S., Zeller, M., Batten, S. R., Wu, H. & Li, J. (2009). Chem. Commun. pp. 5415–5417.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds