metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[meso-Tetra­kis(4-heptyl­oxyphen­yl)porphyrinato]nickel(II)

aDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and bEnvironmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China
*Correspondence e-mail: zhhbhanlf@163.com

(Received 28 September 2010; accepted 16 October 2010; online 23 October 2010)

In the title compound, [Ni(C72H84N4O4)], the four-coordinate NiII ion in the middle of the planar 24-membered porphyrin ring is located on a crystallograpic inversion center, with Ni—N distances of 1.946 (2)–1.951 (2) Å. The 4-heptyl­oxyphenyl groups are twisted with respect to the porphyrin mean plane, the dihedral angles being 88.5 (3) and 79.1 (2)°.

Related literature

For related structures, see: Scheidt (1977[Scheidt, W. R. (1977). Acc. Chem. Res. 10, 339-345.]); Maclean et al. (1996[Maclean, A. L., Foran, G. J., Kennedy, B. J., Turner, P. & Hambley, T. W. (1996). Aust. J. Chem. 49, 1273-1278.]); Jentzen et al. (1996[Jentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559-3567.]). For background to porphyrins and metalloporphyrins, see: Kozaki et al. (2007[Kozaki, M., Akita, K. & Okada, K. (2007). Org. Lett. 9, 1509-1592.]); Kuciauskas et al. (1996[Kuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, M. T. & Gust, D. (1996). J. Phys. Chem. 100, 15926-15932.]); Suslick et al. (2005[Suslick, K. S., Bhyrappa, P., Chou, J. H., Kosal, M. E., Nakagaki, S., Smithenry, D. W. & Wilson, S. R. (2005). Acc. Chem. Res. 38, 283-291.]); Liu et al. (1985[Liu, H. Y., Abdalmuhdi, I., Chang, C. K. & Anson, F. C. (1985). J. Phys. Chem. 89, 665-670.]); Gross & Ini (1999[Gross, Z. & Ini, S. (1999). Org. Lett. 1, 2077-2080.]); Wasielewski et al. (1993[Wasielewski, M. R., Gaines, G. L., Wiederrecht, G. P., Svec, W. A. & Niemczyk, M. P. (1993). J. Am. Chem. Soc. 115, 10442-10443.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C72H84N4O4)]

  • Mr = 1128.14

  • Monoclinic, P 21 /c

  • a = 15.8843 (12) Å

  • b = 19.0602 (15) Å

  • c = 10.2398 (8) Å

  • β = 91.221 (2)°

  • V = 3099.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 185 K

  • 0.21 × 0.16 × 0.07 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.975

  • 14663 measured reflections

  • 5469 independent reflections

  • 3578 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.114

  • S = 0.96

  • 5469 reflections

  • 369 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Porphyrins and metalloporphyrins are researched in many aspects, such as electron and energy transfer (Kozaki et al.,2007; Kuciauskas et al.,1996), molecular recognition (Suslick et al.,2005), catalysts (Liu et al.,1985; Gross & Ini, 1999) or biomimetic models of photosynthetic systems (Wasielewski et al.,1993). In this paper, the structure of Nickel(II) meso-tetrakis[p-(heptyloxy)phenyl] porphyrinate is reported.

The 24-membered porphyrin moiety of the title compound is planar with a mean deviation of 0.045 (3) Å. The four-coordinate NiII ion is located at a crystallograpic inversion center, with Ni—N distances of 1.946 (2) to 1.951 (2) Å, in agreement with those found in other nickel porphyrin compounds (Scheidt,1977; Maclean et al.1996; Jentzen et al.1996.).

The p-pentyloxyphenyl groups are rotated at angles of 88.5 (3)° and 79.1 (2)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

Related literature top

For related structures, see: Scheidt (1977); Maclean et al. (1996); Jentzen et al. (1996). For background to porphyrins and metalloporphyrins, see: Kozaki et al. (2007); Kuciauskas et al.(1996); Suslick et al.(2005); Liu et al.(1985); Gross & Ini(1999); Wasielewski et al.(1993).

Experimental top

Single crystals were recrystallised from a dichloromethane solution at room temperature.

Refinement top

H atoms were placed in calculated positions (C—H = 0.95, 0.98 or 0.99 Å) and refined in riding mode, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Porphyrins and metalloporphyrins are researched in many aspects, such as electron and energy transfer (Kozaki et al.,2007; Kuciauskas et al.,1996), molecular recognition (Suslick et al.,2005), catalysts (Liu et al.,1985; Gross & Ini, 1999) or biomimetic models of photosynthetic systems (Wasielewski et al.,1993). In this paper, the structure of Nickel(II) meso-tetrakis[p-(heptyloxy)phenyl] porphyrinate is reported.

The 24-membered porphyrin moiety of the title compound is planar with a mean deviation of 0.045 (3) Å. The four-coordinate NiII ion is located at a crystallograpic inversion center, with Ni—N distances of 1.946 (2) to 1.951 (2) Å, in agreement with those found in other nickel porphyrin compounds (Scheidt,1977; Maclean et al.1996; Jentzen et al.1996.).

The p-pentyloxyphenyl groups are rotated at angles of 88.5 (3)° and 79.1 (2)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

For related structures, see: Scheidt (1977); Maclean et al. (1996); Jentzen et al. (1996). For background to porphyrins and metalloporphyrins, see: Kozaki et al. (2007); Kuciauskas et al.(1996); Suslick et al.(2005); Liu et al.(1985); Gross & Ini(1999); Wasielewski et al.(1993).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and 50% probability displacement ellipsoids.
[meso-Tetrakis(4-heptyloxyphenyl)porphyrinato]nickel(II) top
Crystal data top
[Ni(C72H84N4O4)]F(000) = 1208
Mr = 1128.14Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1476 reflections
a = 15.8843 (12) Åθ = 2.3–22.6°
b = 19.0602 (15) ŵ = 0.37 mm1
c = 10.2398 (8) ÅT = 185 K
β = 91.221 (2)°Block, purple
V = 3099.5 (4) Å30.21 × 0.16 × 0.07 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
5469 independent reflections
Radiation source: fine-focus sealed tube3578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1816
Tmin = 0.927, Tmax = 0.975k = 2222
14663 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0487P)2]
where P = (Fo2 + 2Fc2)/3
5469 reflections(Δ/σ)max = 0.001
369 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C72H84N4O4)]V = 3099.5 (4) Å3
Mr = 1128.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.8843 (12) ŵ = 0.37 mm1
b = 19.0602 (15) ÅT = 185 K
c = 10.2398 (8) Å0.21 × 0.16 × 0.07 mm
β = 91.221 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5469 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3578 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.975Rint = 0.062
14663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.96Δρmax = 0.36 e Å3
5469 reflectionsΔρmin = 0.35 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.02268 (15)
N10.93762 (14)0.08453 (11)0.0426 (2)0.0234 (5)
N20.90680 (13)0.05759 (11)0.0596 (2)0.0234 (5)
O11.09497 (12)0.46905 (9)0.07128 (19)0.0323 (5)
O20.51784 (12)0.09270 (11)0.4285 (2)0.0408 (6)
C11.03791 (18)0.17651 (14)0.0219 (3)0.0242 (7)
C20.96102 (17)0.15389 (14)0.0243 (3)0.0244 (7)
C30.89751 (17)0.20052 (15)0.0693 (3)0.0281 (7)
H30.89850.25030.06460.034*
C40.83648 (18)0.16108 (15)0.1191 (3)0.0301 (7)
H40.78660.17770.15830.036*
C50.86001 (17)0.08937 (14)0.1025 (3)0.0244 (7)
C60.81084 (17)0.03361 (15)0.1406 (3)0.0259 (7)
C70.83248 (17)0.03534 (15)0.1162 (3)0.0267 (7)
C80.78014 (18)0.09352 (15)0.1457 (3)0.0327 (8)
H80.72600.09140.18320.039*
C90.82105 (17)0.15206 (16)0.1109 (3)0.0325 (8)
H90.80130.19890.11870.039*
C100.90037 (17)0.13037 (14)0.0595 (3)0.0243 (7)
C111.05300 (17)0.25403 (14)0.0347 (3)0.0252 (7)
C121.01380 (19)0.29119 (15)0.1341 (3)0.0330 (8)
H120.97780.26680.19400.040*
C131.02490 (18)0.36291 (15)0.1501 (3)0.0333 (8)
H130.99600.38720.21860.040*
C141.07832 (17)0.39857 (14)0.0654 (3)0.0276 (7)
C151.11814 (18)0.36205 (15)0.0355 (3)0.0325 (7)
H151.15450.38630.09490.039*
C161.10554 (18)0.29106 (15)0.0505 (3)0.0334 (8)
H161.13330.26700.12030.040*
C171.04975 (18)0.50907 (14)0.1690 (3)0.0321 (7)
H17A0.98920.51070.14850.039*
H17B1.05570.48690.25580.039*
C181.08534 (18)0.58205 (14)0.1706 (3)0.0326 (7)
H18A1.08800.60050.08020.039*
H18B1.04720.61270.22270.039*
C191.17292 (18)0.58474 (14)0.2277 (3)0.0339 (8)
H19A1.21070.55420.17460.041*
H19B1.17000.56500.31720.041*
C201.21164 (18)0.65730 (15)0.2341 (3)0.0360 (8)
H20A1.22390.67420.14420.043*
H20B1.17060.69000.27530.043*
C211.29262 (19)0.65811 (16)0.3114 (3)0.0384 (8)
H21A1.33190.62310.27290.046*
H21B1.27920.64320.40210.046*
C221.3369 (2)0.72806 (17)0.3155 (4)0.0528 (10)
H22A1.35260.74240.22530.063*
H22B1.29750.76370.35170.063*
C231.4159 (2)0.7267 (2)0.3977 (4)0.0689 (12)
H23A1.45270.68830.36800.103*
H23B1.44580.77140.38830.103*
H23C1.39990.71940.48970.103*
C240.73300 (17)0.04826 (14)0.2166 (3)0.0266 (7)
C250.65543 (18)0.06211 (16)0.1569 (3)0.0376 (8)
H250.65050.06170.06430.045*
C260.58512 (19)0.07654 (17)0.2299 (3)0.0417 (8)
H260.53280.08620.18710.050*
C270.59084 (18)0.07690 (15)0.3649 (3)0.0321 (8)
C280.66699 (18)0.06206 (16)0.4264 (3)0.0380 (8)
H280.67150.06150.51910.046*
C290.73707 (19)0.04797 (16)0.3511 (3)0.0363 (8)
H290.78930.03780.39400.044*
C300.5209 (2)0.08959 (17)0.5680 (3)0.0431 (9)
H30A0.56770.11900.60240.052*
H30B0.53080.04070.59710.052*
C310.4376 (2)0.11602 (17)0.6195 (3)0.0469 (9)
H31A0.43440.10430.71340.056*
H31B0.39100.09140.57310.056*
C320.42590 (19)0.19494 (16)0.6025 (3)0.0435 (9)
H32A0.47850.21890.63080.052*
H32B0.41640.20520.50860.052*
C330.35324 (19)0.22487 (16)0.6787 (3)0.0430 (9)
H33A0.35880.20960.77090.052*
H33B0.29970.20570.64250.052*
C340.3499 (2)0.30462 (17)0.6739 (4)0.0500 (9)
H34A0.40520.32340.70340.060*
H34B0.34040.31950.58210.060*
C350.2822 (2)0.33668 (17)0.7564 (4)0.0568 (11)
H35A0.28960.32010.84760.068*
H35B0.22640.32060.72370.068*
C360.2846 (3)0.41618 (19)0.7547 (5)0.0884 (15)
H36A0.33890.43240.79060.133*
H36B0.23900.43460.80770.133*
H36C0.27750.43290.66460.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0215 (3)0.0189 (3)0.0279 (3)0.0005 (2)0.0057 (2)0.0001 (3)
N10.0224 (13)0.0219 (13)0.0262 (14)0.0005 (11)0.0043 (10)0.0013 (11)
N20.0220 (13)0.0215 (13)0.0269 (14)0.0000 (10)0.0044 (11)0.0015 (11)
O10.0413 (13)0.0198 (11)0.0359 (13)0.0051 (9)0.0003 (10)0.0042 (9)
O20.0328 (12)0.0430 (14)0.0473 (15)0.0041 (10)0.0168 (11)0.0031 (11)
C10.0256 (16)0.0231 (16)0.0238 (17)0.0005 (13)0.0022 (13)0.0022 (13)
C20.0277 (16)0.0217 (16)0.0237 (17)0.0032 (13)0.0014 (13)0.0000 (13)
C30.0311 (17)0.0199 (16)0.0336 (18)0.0022 (13)0.0032 (14)0.0009 (13)
C40.0271 (17)0.0261 (17)0.038 (2)0.0063 (14)0.0090 (15)0.0013 (14)
C50.0225 (16)0.0208 (16)0.0302 (17)0.0005 (13)0.0040 (13)0.0022 (13)
C60.0218 (16)0.0264 (17)0.0295 (18)0.0008 (13)0.0045 (13)0.0022 (14)
C70.0230 (16)0.0245 (17)0.0330 (18)0.0021 (13)0.0067 (14)0.0008 (13)
C80.0240 (16)0.0315 (18)0.043 (2)0.0019 (14)0.0118 (15)0.0010 (15)
C90.0307 (18)0.0250 (17)0.042 (2)0.0039 (14)0.0105 (15)0.0005 (15)
C100.0264 (16)0.0224 (16)0.0243 (16)0.0012 (13)0.0040 (13)0.0002 (13)
C110.0245 (15)0.0206 (15)0.0308 (17)0.0011 (13)0.0060 (13)0.0015 (13)
C120.0396 (19)0.0265 (17)0.0330 (18)0.0060 (14)0.0016 (15)0.0026 (14)
C130.0415 (19)0.0260 (17)0.0321 (18)0.0024 (15)0.0036 (15)0.0037 (14)
C140.0297 (17)0.0214 (15)0.0318 (18)0.0023 (13)0.0058 (14)0.0015 (14)
C150.0371 (18)0.0258 (17)0.0343 (19)0.0076 (14)0.0072 (15)0.0027 (14)
C160.0359 (18)0.0281 (17)0.0361 (19)0.0002 (14)0.0031 (15)0.0068 (15)
C170.0352 (17)0.0246 (17)0.0366 (18)0.0001 (14)0.0020 (14)0.0064 (15)
C180.0372 (18)0.0242 (17)0.0367 (19)0.0024 (14)0.0072 (15)0.0033 (14)
C190.0361 (18)0.0227 (17)0.043 (2)0.0001 (14)0.0035 (15)0.0013 (15)
C200.0364 (19)0.0295 (17)0.042 (2)0.0007 (15)0.0066 (16)0.0028 (15)
C210.041 (2)0.0336 (19)0.041 (2)0.0012 (16)0.0039 (16)0.0004 (16)
C220.053 (2)0.037 (2)0.070 (3)0.0073 (18)0.025 (2)0.0005 (19)
C230.064 (3)0.063 (3)0.081 (3)0.017 (2)0.034 (2)0.001 (2)
C240.0243 (16)0.0194 (15)0.0365 (19)0.0005 (12)0.0073 (14)0.0004 (13)
C250.0309 (18)0.045 (2)0.038 (2)0.0039 (16)0.0093 (15)0.0022 (16)
C260.0257 (18)0.051 (2)0.049 (2)0.0065 (15)0.0046 (16)0.0006 (18)
C270.0255 (17)0.0257 (17)0.046 (2)0.0032 (13)0.0144 (15)0.0016 (15)
C280.0343 (19)0.046 (2)0.034 (2)0.0044 (16)0.0071 (16)0.0030 (16)
C290.0246 (17)0.043 (2)0.041 (2)0.0055 (15)0.0044 (15)0.0006 (16)
C300.045 (2)0.037 (2)0.049 (2)0.0030 (16)0.0177 (18)0.0038 (17)
C310.043 (2)0.041 (2)0.058 (2)0.0002 (17)0.0284 (18)0.0068 (18)
C320.038 (2)0.037 (2)0.056 (2)0.0019 (16)0.0214 (17)0.0056 (17)
C330.0360 (19)0.0348 (19)0.059 (2)0.0013 (16)0.0176 (17)0.0069 (17)
C340.046 (2)0.038 (2)0.066 (3)0.0018 (17)0.0165 (19)0.0047 (19)
C350.045 (2)0.040 (2)0.086 (3)0.0044 (17)0.015 (2)0.013 (2)
C360.091 (3)0.043 (3)0.132 (4)0.012 (2)0.034 (3)0.014 (3)
Geometric parameters (Å, º) top
Ni1—N11.946 (2)C19—H19A0.9900
Ni1—N1i1.946 (2)C19—H19B0.9900
Ni1—N2i1.951 (2)C20—C211.525 (4)
Ni1—N21.951 (2)C20—H20A0.9900
N1—C21.387 (3)C20—H20B0.9900
N1—C51.391 (3)C21—C221.508 (4)
N2—C101.391 (3)C21—H21A0.9900
N2—C71.392 (3)C21—H21B0.9900
O1—C141.371 (3)C22—C231.526 (4)
O1—C171.438 (3)C22—H22A0.9900
O2—C271.376 (3)C22—H22B0.9900
O2—C301.430 (4)C23—H23A0.9800
C1—C10i1.378 (4)C23—H23B0.9800
C1—C21.388 (4)C23—H23C0.9800
C1—C111.503 (4)C24—C291.378 (4)
C2—C31.428 (4)C24—C251.389 (4)
C3—C41.337 (4)C25—C261.384 (4)
C3—H30.9500C25—H250.9500
C4—C51.428 (4)C26—C271.383 (4)
C4—H40.9500C26—H260.9500
C5—C61.380 (4)C27—C281.381 (4)
C6—C71.382 (4)C28—C291.394 (4)
C6—C241.502 (4)C28—H280.9500
C7—C81.422 (4)C29—H290.9500
C8—C91.343 (4)C30—C311.520 (4)
C8—H80.9500C30—H30A0.9900
C9—C101.437 (4)C30—H30B0.9900
C9—H90.9500C31—C321.525 (4)
C10—C1i1.378 (4)C31—H31A0.9900
C11—C121.378 (4)C31—H31B0.9900
C11—C161.387 (4)C32—C331.518 (4)
C12—C131.388 (4)C32—H32A0.9900
C12—H120.9500C32—H32B0.9900
C13—C141.380 (4)C33—C341.522 (4)
C13—H130.9500C33—H33A0.9900
C14—C151.387 (4)C33—H33B0.9900
C15—C161.377 (4)C34—C351.510 (4)
C15—H150.9500C34—H34A0.9900
C16—H160.9500C34—H34B0.9900
C17—C181.502 (4)C35—C361.516 (5)
C17—H17A0.9900C35—H35A0.9900
C17—H17B0.9900C35—H35B0.9900
C18—C191.521 (4)C36—H36A0.9800
C18—H18A0.9900C36—H36B0.9800
C18—H18B0.9900C36—H36C0.9800
C19—C201.516 (4)
N1—Ni1—N1i179.996 (1)C21—C20—H20A109.1
N1—Ni1—N2i89.88 (9)C19—C20—H20B109.1
N1i—Ni1—N2i90.13 (9)C21—C20—H20B109.1
N1—Ni1—N290.13 (9)H20A—C20—H20B107.9
N1i—Ni1—N289.87 (9)C22—C21—C20115.0 (3)
N2i—Ni1—N2180.0C22—C21—H21A108.5
C2—N1—C5103.8 (2)C20—C21—H21A108.5
C2—N1—Ni1128.28 (19)C22—C21—H21B108.5
C5—N1—Ni1127.87 (18)C20—C21—H21B108.5
C10—N2—C7104.0 (2)H21A—C21—H21B107.5
C10—N2—Ni1128.07 (18)C21—C22—C23112.9 (3)
C7—N2—Ni1127.92 (18)C21—C22—H22A109.0
C14—O1—C17117.2 (2)C23—C22—H22A109.0
C27—O2—C30116.9 (2)C21—C22—H22B109.0
C10i—C1—C2122.2 (2)C23—C22—H22B109.0
C10i—C1—C11119.2 (3)H22A—C22—H22B107.8
C2—C1—C11118.6 (2)C22—C23—H23A109.5
C1—C2—N1125.6 (2)C22—C23—H23B109.5
C1—C2—C3123.3 (3)H23A—C23—H23B109.5
N1—C2—C3110.9 (2)C22—C23—H23C109.5
C4—C3—C2107.2 (3)H23A—C23—H23C109.5
C4—C3—H3126.4H23B—C23—H23C109.5
C2—C3—H3126.4C29—C24—C25117.6 (3)
C3—C4—C5107.4 (3)C29—C24—C6119.8 (3)
C3—C4—H4126.3C25—C24—C6122.6 (3)
C5—C4—H4126.3C24—C25—C26121.2 (3)
C6—C5—N1125.8 (2)C24—C25—H25119.4
C6—C5—C4123.5 (3)C26—C25—H25119.4
N1—C5—C4110.6 (2)C27—C26—C25120.2 (3)
C5—C6—C7122.5 (3)C27—C26—H26119.9
C5—C6—C24118.7 (3)C25—C26—H26119.9
C7—C6—C24118.7 (3)O2—C27—C28124.6 (3)
C6—C7—N2125.5 (3)O2—C27—C26115.9 (3)
C6—C7—C8123.7 (3)C28—C27—C26119.5 (3)
N2—C7—C8110.8 (2)C27—C28—C29119.3 (3)
C9—C8—C7107.6 (3)C27—C28—H28120.4
C9—C8—H8126.2C29—C28—H28120.4
C7—C8—H8126.2C24—C29—C28122.1 (3)
C8—C9—C10106.9 (3)C24—C29—H29119.0
C8—C9—H9126.5C28—C29—H29119.0
C10—C9—H9126.5O2—C30—C31108.7 (3)
C1i—C10—N2125.8 (3)O2—C30—H30A109.9
C1i—C10—C9123.6 (3)C31—C30—H30A109.9
N2—C10—C9110.6 (2)O2—C30—H30B109.9
C12—C11—C16117.3 (3)C31—C30—H30B109.9
C12—C11—C1119.9 (3)H30A—C30—H30B108.3
C16—C11—C1122.7 (3)C30—C31—C32113.1 (3)
C11—C12—C13122.5 (3)C30—C31—H31A109.0
C11—C12—H12118.8C32—C31—H31A109.0
C13—C12—H12118.8C30—C31—H31B109.0
C14—C13—C12119.3 (3)C32—C31—H31B109.0
C14—C13—H13120.4H31A—C31—H31B107.8
C12—C13—H13120.4C33—C32—C31113.9 (3)
O1—C14—C13124.9 (3)C33—C32—H32A108.8
O1—C14—C15116.1 (3)C31—C32—H32A108.8
C13—C14—C15119.1 (3)C33—C32—H32B108.8
C16—C15—C14120.7 (3)C31—C32—H32B108.8
C16—C15—H15119.6H32A—C32—H32B107.7
C14—C15—H15119.6C32—C33—C34112.7 (3)
C15—C16—C11121.1 (3)C32—C33—H33A109.1
C15—C16—H16119.4C34—C33—H33A109.1
C11—C16—H16119.4C32—C33—H33B109.1
O1—C17—C18108.4 (2)C34—C33—H33B109.1
O1—C17—H17A110.0H33A—C33—H33B107.8
C18—C17—H17A110.0C35—C34—C33114.3 (3)
O1—C17—H17B110.0C35—C34—H34A108.7
C18—C17—H17B110.0C33—C34—H34A108.7
H17A—C17—H17B108.4C35—C34—H34B108.7
C17—C18—C19112.5 (2)C33—C34—H34B108.7
C17—C18—H18A109.1H34A—C34—H34B107.6
C19—C18—H18A109.1C34—C35—C36112.3 (3)
C17—C18—H18B109.1C34—C35—H35A109.1
C19—C18—H18B109.1C36—C35—H35A109.1
H18A—C18—H18B107.8C34—C35—H35B109.1
C20—C19—C18115.0 (2)C36—C35—H35B109.1
C20—C19—H19A108.5H35A—C35—H35B107.9
C18—C19—H19A108.5C35—C36—H36A109.5
C20—C19—H19B108.5C35—C36—H36B109.5
C18—C19—H19B108.5H36A—C36—H36B109.5
H19A—C19—H19B107.5C35—C36—H36C109.5
C19—C20—C21112.3 (2)H36A—C36—H36C109.5
C19—C20—H20A109.1H36B—C36—H36C109.5
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C72H84N4O4)]
Mr1128.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)15.8843 (12), 19.0602 (15), 10.2398 (8)
β (°) 91.221 (2)
V3)3099.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.21 × 0.16 × 0.07
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.927, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
14663, 5469, 3578
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.114, 0.96
No. of reflections5469
No. of parameters369
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGross, Z. & Ini, S. (1999). Org. Lett. 1, 2077–2080.  Web of Science CrossRef CAS Google Scholar
First citationJentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559–3567.  CSD CrossRef CAS Web of Science Google Scholar
First citationKozaki, M., Akita, K. & Okada, K. (2007). Org. Lett. 9, 1509–1592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, M. T. & Gust, D. (1996). J. Phys. Chem. 100, 15926–15932.  CrossRef CAS Web of Science Google Scholar
First citationLiu, H. Y., Abdalmuhdi, I., Chang, C. K. & Anson, F. C. (1985). J. Phys. Chem. 89, 665–670.  CrossRef CAS Web of Science Google Scholar
First citationMaclean, A. L., Foran, G. J., Kennedy, B. J., Turner, P. & Hambley, T. W. (1996). Aust. J. Chem. 49, 1273–1278.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. (1977). Acc. Chem. Res. 10, 339–345.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuslick, K. S., Bhyrappa, P., Chou, J. H., Kosal, M. E., Nakagaki, S., Smithenry, D. W. & Wilson, S. R. (2005). Acc. Chem. Res. 38, 283–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWasielewski, M. R., Gaines, G. L., Wiederrecht, G. P., Svec, W. A. & Niemczyk, M. P. (1993). J. Am. Chem. Soc. 115, 10442–10443.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds