organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl­sulfon­yl-2-(p-tolyl­sulfon­yl)-1H,8H-pyrrolo­[2,3-b]indole

aDepartment of Biological and Chemical Sciences, University of the West Indies, Cave Hill, Barbados, bDepartment of Chemistry, Dartmouth College, Hanover, NH 03755-3564, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 15 September 2010; accepted 1 October 2010; online 9 October 2010)

The title compound, C23H18N2O4S2, contains a pyrrolo group fused onto the plane of an indole ring with phenyl­sulfonyl and p-toluene­sulfonyl groups bonded to the indole and pyrrolo rings. The angles between the mean planes of the pyrrolo-indole ring and the phenyl­sulfonyl and p-toluene­sulfonyl rings are 73.7 (6) and 80.6 (0)°, respectively. The dihedral angle between the mean planes of the two benzene rings is 78.7 (4)°. In the crystal, both classical N—H⋯O and non-classical C—H⋯O inter­molecular hydrogen-bonding inter­actions are observed, as well as weak ππ inter­actions [centroid–centroid distances = 3.6258 (8) and 3.9298 (8) Å], which contribute to the stability of the packing.

Related literature

We have been inter­ested in the synthesis of fused indole heterocycles (Gribble et al., 2005[Gribble, G. W., Saulnier, M. G., Pelkey, E. T., Kishbaugh, T. L. S., Liu, Y. B., Jiang, J., Trujillo, H. A., Keavy, D. J., Davis, D. A., Conway, S. C., Switzer, F. L., Roy, S., Silva, R. A., Obaza-Nutaitis, J. A., Sibi, M. P., Moskalev, N. V., Barden, T. C., Chang, L., Habeski, W. M., Pelcman, B., Sponholtz, W. R., Chau, R. W., Allison, B. D., Garaas, S. D., Sinha, M. S., McGowan, M. A., Reese, M. R. & Harpp, K. S. (2005). Curr. Org. Chem. 9, 1493-1519.]) for the construction of more elaborate mol­ecules, such as the potent anti­biotics pyrroindomycins A and B (Abbanat et al., 1999[Abbanat, D., Maiese, W. & Greenstein, M. (1999). J. Antibiot. 52, 117-126.]; Ding et al., 1994[Ding, W., Williams, D. R., Northcote, P., Siegel, M. M., Tsao, R., Ashcroft, J., Morton, G. O., Alluri, M. & Abranat, D. (1994). J. Antibiot. 47, 1250-1257.]) Both pyrrolo­[2,3-b]indoles and pyrrolo­[3,4-b]indoles can be synthesized in one step via the Barton–Zard pyrrole synthesis (Barton & Zard, 1985[Barton, D. H. R. & Zard, S. Z. (1985). J. Chem. Soc. Chem. Commun. pp. 1098-1100.]; Barton et al., 1990[Barton, D. H. R., Kervagoret, J. & Zard, S. Z. (1990). Tetrahedron, 46, 7587-7598.]) from 3-nitro­indoles, depending on the N-indole protecting group [Pelkey et al., 1996[Pelkey, E. T., Chang, L. & Gribble, G. W. (1996). Chem. Commun. pp. 1909-1910.]; Pelkey & Gribble, 1997[Pelkey, E. T. & Gribble, G. W. (1997). Chem. Commun. pp. 1873-1874.], 1999[Pelkey, E. T. & Gribble, G. W. (1999). Synthesis, pp.1117-1122.], 2006[Pelkey, E. T. & Gribble, G. W. (2006). Can. J. Chem. 84, 1338-1342.]). For recent examples of the Barton–Zard pyrrole synthesis, see: Bobal & Lightner (2001[Bobal, P. & Lightner, D. A. (2001). J. Heterocycl. Chem. 38, 527-530.]); Woydziak et al. (2005[Woydziak, Z. R., Boiadjiev, S. E., Norona, W. S., McDonagh, A. F. & Lightner, D. A. (2005). J. Org. Chem. 70, 8417-8423.]); Larionov & deMeijere (2005[Larionov, O. V. & deMeijere, A. (2005). Angew. Chem. Int. Ed. 44, 5664-5667.]); Coffin et al. (2006[Coffin, A. R., Roussell, M. A., Tserlin, E. & Pelkey, E. T. (2006). J. Org. Chem. 71, 6678-6681.]); Okujima et al. (2006[Okujima, T., Jin, G., Hashimoto, Y., Yamada, H., Uno, H. & Ono, N. (2006). Heterocycles, 70, 619-626.]); Ono (2008[Ono, N. (2008). Heterocycles, 75, 243-284.]). For related structures, see: Jackson et al. (1975[Jackson, A. H., Johnston, D. N. & Shannon, P. V. R. (1975). J. Chem. Soc. Chem. Commun. pp. 911-912.]); Moody & Ward (1984a[Moody, C. J. & Ward, J. G. (1984a). J. Chem. Soc, Perkin Trans. 1, pp. 2903-2909.],b[Moody, C. J. & Ward, J. G. (1984b). J. Chem. Soc. Chem. Commun. pp. 646-647.]); Yamane et al. (1986[Yamane, K., Yamamoto, H., Satoh, A., Tamura, Y. & Nozoe, T. (1986). Bull. Chem. Soc. Jpn, 59, 3326-3328.]); Yin et al. (2010[Yin, W.-B., Yu, X., Xie, X.-L. & Li, S.-M. (2010). Org. Biomol. Chem. 8, 2430-2438.]); Tsuji et al. (2002[Tsuji, R., Nakagawa, M. & Nishida, A. (2002). Heterocycles, 58, 587-593.]); Somei et al. (1997[Somei, M., Yamada, F., Izumi, T. & Nakajou, M. (1997). Heterocycles, 45, 2327-2330.]); Kawasaki et al. (2005[Kawasaki, T., Ogawa, A., Terashima, R., Saheki, T., Ban, N., Sekiguchi, H., Sakaguchi, K. & Sakamoto, M. (2005). J. Org. Chem. 70, 2957-2966.]); Jasinski et al. (2010[Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr. 40, 40-47.]). For MOPAC theoretical calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA, available from http://www.webmo.net.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C23H18N2O4S2

  • Mr = 450.51

  • Triclinic, [P \overline 1]

  • a = 8.1547 (3) Å

  • b = 11.0471 (5) Å

  • c = 11.7185 (4) Å

  • α = 73.834 (4)°

  • β = 87.131 (3)°

  • γ = 79.277 (4)°

  • V = 996.22 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 123 K

  • 0.41 × 0.36 × 0.29 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Ruby (Gemini) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]) Tmin = 0.981, Tmax = 1.000

  • 12580 measured reflections

  • 6592 independent reflections

  • 5331 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.09

  • 6592 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3i 0.88 2.06 2.9244 (14) 167
C13—H13A⋯O2ii 0.95 2.53 3.2125 (15) 129
C22—H22A⋯O3i 0.95 2.45 3.3786 (15) 165
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In view of our continued interest in the synthesis of fused indole heterocycles (Gribble et al., 2005) for the construction of more elaborate molecules, such as the potent antibiotics pyrroindomycins A and B (Abbanat et al., 1999; Ding et al., 1994), we have sought to unequivocally confirm the assigned structure of the product formed in the reaction of 3-nitro-1-(phenylsulfonyl)indole with isocyanide. Our previous studies have shown that both pyrrolo[2,3-b]indoles and pyrrolo[3,4-b]indoles can be synthesized in one step via this Barton-Zard pyrrole synthesis (Barton & Zard, 1985; Barton et al., 1990) from 3-nitroindoles depending on the N-indole protecting group (Pelkey et al., 1996; Pelkey & Gribble, 1997, 1999, 2006). Indeed, whereas our proposed fragmentation-rearrangement sequence, to afford the pyrrolo[2,3-b]indole ring system (Pelkey et al., 1996), only occurs with the phenylsulfonyl protecting group, the same reaction with N-benzyl, N-2-pyridyl, and N-ethoxycarbonyl protecting groups generates the corresponding pyrrolo[3,4-b]indole ring system. We differentiated these two isomers both by comparison of the NMR coupling constants and through the independent synthesis of the corresponding pyrrolo[2,3-b]indole. (Moody & Ward, 1984a, 1984b). To confirm this structural assignment we now report the crystal structure of the title compound, the product of the reaction of 3-nitro-1-(phenylsulfonyl)indole with tosylmethyl isocyanide, and the first crystal structure of this fused indole ring system.

The title compound contains a pyrrolo group fused onto the plane of an indole ring with phenylsulfonyl and p-toluenesulfonyl groups bonded to the indol and pyrrolo rings. The angles between the mean planes of the pyrrolo-indole ring and the phenylsulfonyl and p-toluenesulfonyl rings are 73.7 (6)° and 80.6 (0)°, respectively. The dihedral angle between the mean planes of the two benzene rings is 78.7 (4)°. The sum of the angles around the indole N atom is 345.2 (4)° indicating slightly distorted sp2 hybridization. The C3C10 indole bond length is 1.3760 (17)Å similar to that observed in 3-acetyl-2-ethyl-1-(phenylsulfonyl)indole (Jasinski et al., 2010). The remainder of the bonds are in normal ranges (Allen et al., 1987). Both classical (N—H···O) and non-classical (C—H···O) hydrogen bonding interactions are observed (Table 1, Fig. 2) as well as weak ππ interactions [Cg1···Cg3i = 3.6258 (8) Å; Cg2···Cg3i = 3.9298 (8) Å; i = -x,1 - y,1 - z; where Cg1 = N1/C9/C4/C3/C10; Cg2 = N2/C1/C2/C3/C10; Cg3 = C4—C9].

Following geometry optimization MOPAC (Schmidt & Polik, 2007) theoretical calculations at the AM1 level, the angles between the mean planes of the pyrrolo-indole ring and the phenylsulfonyl and p-toluenesulfonyl rings become 73.7 (6)° and 80.6 (0)°, respectively, and the dihedral angle between the mean planes of the two benzene rings becomes 88.6 (2)°. These observations support the influence of the hydrogen bonds and ππ interactions as contributing to the stability of crystal packing.

Related literature top

We have been interested in the synthesis of fused indole heterocycles (Gribble et al., 2005) for the construction of more elaborate molecules, such as the potent antibiotics pyrroindomycins A and B (Abbanat et al., 1999; Ding et al., 1994) Both pyrrolo[2,3-b]indoles and pyrrolo[3,4-b]indoles can be synthesized in one step via th Barton–Zard pyrrole synthesis (Barton & Zard, 1985; Barton et al., 1990) from 3-nitroindoles depending on the N-indole protecting group [Pelkey et al., 1996; Pelkey & Gribble, 1997, 1999, 2006). For recent examples of the Barton–Zard pyrrole synthesis, see: Bobal & Lightner (2001); Woydziak et al. (2005); Larionov & deMeijere (2005); Coffin et al. (2006); Okujima et al. (2006); Ono (2008). For related structures, see: Jackson et al. (1975); Moody & Ward (1984a,b); Yamane et al. (1986); Yin et al. (2010); Tsuji et al. (2002); Somei et al. (1997); Kawasaki et al. (2005); Jasinski et al. (2010). For MOPAC theoretical calculations, see: Schmidt & Polik (2007). For standard bond lengths, see: Allen et al. (1987 987)

Experimental top

This compound was prepared according to the procedure of Pelkey & Gribble (2006). To a stirred solution of 3-nitro-1-(phenylsulfonyl)indole (0.50 g, 1.67 mmol, 1 eq.) in dry THF (30 ml) was added a solution of tosylmethyl isocyanide (0.39 g, 1.99 mmol, 1.20 eq.) dissolved in dry THF (15 ml) followed by the addition of DBU (0.6 ml, 4.01 mmol, 2.4 eq.). The solution was allowed to stir for 24 h at room temperature. Removal of the solvent in vacuo gave an orange oil that was purified via flash column chromatography (3:1 hexanes–ethyl acetate) to afford the pyrroloindole (0.46 g, 62%) as a yellow solid. Crystals suitable for the X-ray study were grown from a 1:1 mixture of CH2Cl2 and ether [m.p. 484–487 K; literature value 509–511 K].

Refinement top

All the H atoms were discernible in the difference electron density map, however, they were situated into idealized positions. The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 or 0.98 Å for aryl or methyl H atoms, and 0.88 for N—H atoms, Uiso(H) = 1.17–1.22Ueq(Caryl); Uiso(H) = 1.51Ueq(Cmethyl) or Uiso(H) = 1.16Ueq(N).

Structure description top

In view of our continued interest in the synthesis of fused indole heterocycles (Gribble et al., 2005) for the construction of more elaborate molecules, such as the potent antibiotics pyrroindomycins A and B (Abbanat et al., 1999; Ding et al., 1994), we have sought to unequivocally confirm the assigned structure of the product formed in the reaction of 3-nitro-1-(phenylsulfonyl)indole with isocyanide. Our previous studies have shown that both pyrrolo[2,3-b]indoles and pyrrolo[3,4-b]indoles can be synthesized in one step via this Barton-Zard pyrrole synthesis (Barton & Zard, 1985; Barton et al., 1990) from 3-nitroindoles depending on the N-indole protecting group (Pelkey et al., 1996; Pelkey & Gribble, 1997, 1999, 2006). Indeed, whereas our proposed fragmentation-rearrangement sequence, to afford the pyrrolo[2,3-b]indole ring system (Pelkey et al., 1996), only occurs with the phenylsulfonyl protecting group, the same reaction with N-benzyl, N-2-pyridyl, and N-ethoxycarbonyl protecting groups generates the corresponding pyrrolo[3,4-b]indole ring system. We differentiated these two isomers both by comparison of the NMR coupling constants and through the independent synthesis of the corresponding pyrrolo[2,3-b]indole. (Moody & Ward, 1984a, 1984b). To confirm this structural assignment we now report the crystal structure of the title compound, the product of the reaction of 3-nitro-1-(phenylsulfonyl)indole with tosylmethyl isocyanide, and the first crystal structure of this fused indole ring system.

The title compound contains a pyrrolo group fused onto the plane of an indole ring with phenylsulfonyl and p-toluenesulfonyl groups bonded to the indol and pyrrolo rings. The angles between the mean planes of the pyrrolo-indole ring and the phenylsulfonyl and p-toluenesulfonyl rings are 73.7 (6)° and 80.6 (0)°, respectively. The dihedral angle between the mean planes of the two benzene rings is 78.7 (4)°. The sum of the angles around the indole N atom is 345.2 (4)° indicating slightly distorted sp2 hybridization. The C3C10 indole bond length is 1.3760 (17)Å similar to that observed in 3-acetyl-2-ethyl-1-(phenylsulfonyl)indole (Jasinski et al., 2010). The remainder of the bonds are in normal ranges (Allen et al., 1987). Both classical (N—H···O) and non-classical (C—H···O) hydrogen bonding interactions are observed (Table 1, Fig. 2) as well as weak ππ interactions [Cg1···Cg3i = 3.6258 (8) Å; Cg2···Cg3i = 3.9298 (8) Å; i = -x,1 - y,1 - z; where Cg1 = N1/C9/C4/C3/C10; Cg2 = N2/C1/C2/C3/C10; Cg3 = C4—C9].

Following geometry optimization MOPAC (Schmidt & Polik, 2007) theoretical calculations at the AM1 level, the angles between the mean planes of the pyrrolo-indole ring and the phenylsulfonyl and p-toluenesulfonyl rings become 73.7 (6)° and 80.6 (0)°, respectively, and the dihedral angle between the mean planes of the two benzene rings becomes 88.6 (2)°. These observations support the influence of the hydrogen bonds and ππ interactions as contributing to the stability of crystal packing.

We have been interested in the synthesis of fused indole heterocycles (Gribble et al., 2005) for the construction of more elaborate molecules, such as the potent antibiotics pyrroindomycins A and B (Abbanat et al., 1999; Ding et al., 1994) Both pyrrolo[2,3-b]indoles and pyrrolo[3,4-b]indoles can be synthesized in one step via th Barton–Zard pyrrole synthesis (Barton & Zard, 1985; Barton et al., 1990) from 3-nitroindoles depending on the N-indole protecting group [Pelkey et al., 1996; Pelkey & Gribble, 1997, 1999, 2006). For recent examples of the Barton–Zard pyrrole synthesis, see: Bobal & Lightner (2001); Woydziak et al. (2005); Larionov & deMeijere (2005); Coffin et al. (2006); Okujima et al. (2006); Ono (2008). For related structures, see: Jackson et al. (1975); Moody & Ward (1984a,b); Yamane et al. (1986); Yin et al. (2010); Tsuji et al. (2002); Somei et al. (1997); Kawasaki et al. (2005); Jasinski et al. (2010). For MOPAC theoretical calculations, see: Schmidt & Polik (2007). For standard bond lengths, see: Allen et al. (1987 987)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate classical N—H···O and non-classical C—H···O hydrogen bonds with a bifurcated O3 acceptor atom.
4-Phenylsulfonyl-2-(p-tolylsulfonyl)-1H,8H- pyrrolo[2,3-b]indole top
Crystal data top
C23H18N2O4S2Z = 2
Mr = 450.51F(000) = 468
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1547 (3) ÅCell parameters from 7126 reflections
b = 11.0471 (5) Åθ = 5.0–32.7°
c = 11.7185 (4) ŵ = 0.30 mm1
α = 73.834 (4)°T = 123 K
β = 87.131 (3)°Prism, colorless
γ = 79.277 (4)°0.41 × 0.36 × 0.29 mm
V = 996.22 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby (Gemini) detector
6592 independent reflections
Radiation source: Enhance (Cu) X-ray Source5331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 5.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1616
Tmin = 0.981, Tmax = 1.000l = 1713
12580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0394P]
where P = (Fo2 + 2Fc2)/3
6592 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H18N2O4S2γ = 79.277 (4)°
Mr = 450.51V = 996.22 (7) Å3
Triclinic, P1Z = 2
a = 8.1547 (3) ÅMo Kα radiation
b = 11.0471 (5) ŵ = 0.30 mm1
c = 11.7185 (4) ÅT = 123 K
α = 73.834 (4)°0.41 × 0.36 × 0.29 mm
β = 87.131 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby (Gemini) detector
6592 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
5331 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1.000Rint = 0.020
12580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.09Δρmax = 0.52 e Å3
6592 reflectionsΔρmin = 0.33 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24124 (3)0.40940 (3)0.21069 (3)0.01455 (7)
S20.53714 (4)0.07067 (3)0.67939 (3)0.01540 (7)
O10.28990 (11)0.27445 (8)0.22946 (8)0.01961 (18)
O20.10331 (10)0.48046 (9)0.13513 (8)0.01992 (19)
O30.61740 (11)0.00088 (8)0.59944 (8)0.02005 (19)
O40.63277 (11)0.09255 (9)0.76857 (8)0.02102 (19)
N10.19171 (12)0.42667 (9)0.34605 (9)0.01529 (19)
N20.36818 (12)0.22963 (9)0.48254 (9)0.01541 (19)
H2B0.37220.16940.44620.018*
C10.43829 (15)0.21752 (11)0.59259 (10)0.0155 (2)
C20.40399 (15)0.33305 (11)0.62081 (11)0.0169 (2)
H2A0.43670.35010.69060.020*
C30.30982 (15)0.42085 (11)0.52414 (11)0.0160 (2)
C40.21746 (15)0.55003 (11)0.47483 (11)0.0161 (2)
C50.18616 (17)0.66151 (12)0.51200 (12)0.0218 (3)
H5A0.23060.66280.58500.026*
C60.08910 (17)0.77060 (12)0.44084 (12)0.0242 (3)
H6A0.06800.84710.46530.029*
C70.02218 (16)0.76964 (12)0.33428 (12)0.0232 (3)
H7A0.04360.84570.28710.028*
C80.04966 (15)0.65990 (12)0.29554 (12)0.0200 (2)
H8A0.00270.65880.22330.024*
C90.14851 (14)0.55177 (11)0.36653 (11)0.0159 (2)
C100.29295 (14)0.35350 (11)0.44405 (10)0.0146 (2)
C110.41636 (14)0.48258 (11)0.16669 (10)0.0142 (2)
C120.57366 (15)0.40983 (12)0.20143 (11)0.0186 (2)
H12A0.58500.32330.24800.022*
C130.71326 (15)0.46588 (13)0.16684 (12)0.0214 (3)
H13A0.82130.41770.19010.026*
C140.69552 (16)0.59186 (13)0.09850 (11)0.0210 (3)
H14A0.79180.62950.07460.025*
C150.53830 (17)0.66374 (13)0.06448 (12)0.0214 (3)
H15A0.52760.75020.01760.026*
C160.39661 (15)0.60964 (12)0.09882 (11)0.0184 (2)
H16A0.28860.65840.07640.022*
C170.37346 (15)0.00606 (11)0.75228 (10)0.0155 (2)
C180.34028 (16)0.00884 (12)0.87037 (11)0.0188 (2)
H18A0.40560.02890.91100.023*
C190.21030 (16)0.06741 (12)0.92891 (11)0.0197 (2)
H19A0.18850.07061.01000.024*
C200.11216 (15)0.12121 (11)0.86952 (11)0.0175 (2)
C210.14575 (16)0.11501 (12)0.74970 (11)0.0188 (2)
H21A0.07770.14960.70800.023*
C220.27672 (15)0.05922 (11)0.69078 (11)0.0178 (2)
H22A0.30010.05730.61010.021*
C230.02767 (17)0.18520 (13)0.93246 (13)0.0244 (3)
H23A0.04150.17271.01220.037*
H23B0.00100.27710.93880.037*
H23C0.13150.14750.88730.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01309 (13)0.01663 (14)0.01399 (14)0.00350 (10)0.00090 (10)0.00358 (10)
S20.01639 (14)0.01312 (13)0.01499 (14)0.00131 (10)0.00004 (10)0.00193 (10)
O10.0238 (4)0.0173 (4)0.0193 (4)0.0061 (3)0.0006 (3)0.0059 (3)
O20.0137 (4)0.0273 (5)0.0173 (4)0.0036 (3)0.0034 (3)0.0031 (4)
O30.0205 (4)0.0163 (4)0.0219 (5)0.0005 (3)0.0043 (3)0.0056 (3)
O40.0204 (4)0.0218 (4)0.0201 (5)0.0053 (4)0.0037 (3)0.0028 (4)
N10.0165 (5)0.0145 (4)0.0133 (5)0.0013 (4)0.0001 (4)0.0022 (4)
N20.0189 (5)0.0120 (4)0.0147 (5)0.0012 (4)0.0003 (4)0.0036 (4)
C10.0183 (5)0.0139 (5)0.0127 (5)0.0018 (4)0.0003 (4)0.0017 (4)
C20.0211 (6)0.0146 (5)0.0143 (5)0.0028 (4)0.0004 (4)0.0030 (4)
C30.0187 (5)0.0139 (5)0.0145 (5)0.0024 (4)0.0018 (4)0.0033 (4)
C40.0167 (5)0.0141 (5)0.0156 (5)0.0025 (4)0.0029 (4)0.0018 (4)
C50.0275 (7)0.0167 (5)0.0203 (6)0.0016 (5)0.0019 (5)0.0054 (5)
C60.0270 (7)0.0148 (6)0.0287 (7)0.0000 (5)0.0040 (5)0.0059 (5)
C70.0203 (6)0.0169 (6)0.0271 (7)0.0024 (5)0.0020 (5)0.0014 (5)
C80.0175 (6)0.0186 (6)0.0201 (6)0.0007 (5)0.0008 (4)0.0014 (5)
C90.0149 (5)0.0143 (5)0.0173 (6)0.0019 (4)0.0040 (4)0.0033 (4)
C100.0153 (5)0.0134 (5)0.0139 (5)0.0024 (4)0.0013 (4)0.0020 (4)
C110.0120 (5)0.0178 (5)0.0134 (5)0.0037 (4)0.0006 (4)0.0046 (4)
C120.0160 (5)0.0184 (5)0.0191 (6)0.0007 (4)0.0011 (4)0.0029 (5)
C130.0129 (5)0.0288 (7)0.0222 (6)0.0022 (5)0.0004 (4)0.0073 (5)
C140.0178 (6)0.0301 (7)0.0187 (6)0.0112 (5)0.0043 (4)0.0085 (5)
C150.0253 (6)0.0202 (6)0.0177 (6)0.0073 (5)0.0011 (5)0.0019 (5)
C160.0177 (5)0.0188 (5)0.0165 (6)0.0016 (4)0.0013 (4)0.0019 (4)
C170.0171 (5)0.0114 (5)0.0153 (5)0.0007 (4)0.0000 (4)0.0006 (4)
C180.0227 (6)0.0174 (5)0.0153 (6)0.0035 (5)0.0030 (4)0.0024 (4)
C190.0235 (6)0.0200 (6)0.0141 (6)0.0035 (5)0.0010 (4)0.0026 (4)
C200.0190 (6)0.0128 (5)0.0184 (6)0.0013 (4)0.0013 (4)0.0018 (4)
C210.0226 (6)0.0151 (5)0.0197 (6)0.0041 (4)0.0003 (5)0.0057 (4)
C220.0224 (6)0.0148 (5)0.0153 (6)0.0012 (4)0.0018 (4)0.0044 (4)
C230.0258 (7)0.0244 (6)0.0241 (7)0.0098 (5)0.0058 (5)0.0062 (5)
Geometric parameters (Å, º) top
S1—O11.4263 (9)C8—H8A0.9500
S1—O21.4316 (9)C11—C161.3914 (16)
S1—N11.6707 (10)C11—C121.3941 (16)
S1—C111.7557 (12)C12—C131.3856 (18)
S2—O41.4322 (9)C12—H12A0.9500
S2—O31.4455 (9)C13—C141.3839 (19)
S2—C11.7300 (12)C13—H13A0.9500
S2—C171.7701 (12)C14—C151.3889 (18)
N1—C101.4084 (15)C14—H14A0.9500
N1—C91.4446 (15)C15—C161.3895 (18)
N2—C101.3506 (14)C15—H15A0.9500
N2—C11.3990 (15)C16—H16A0.9500
N2—H2B0.8800C17—C181.3896 (17)
C1—C21.3818 (17)C17—C221.3970 (17)
C2—C31.4184 (17)C18—C191.3958 (17)
C2—H2A0.9500C18—H18A0.9500
C3—C101.3760 (17)C19—C201.3932 (18)
C3—C41.4567 (16)C19—H19A0.9500
C4—C51.3937 (18)C20—C211.4022 (17)
C4—C91.4075 (17)C20—C231.5065 (17)
C5—C61.3877 (18)C21—C221.3897 (17)
C5—H5A0.9500C21—H21A0.9500
C6—C71.391 (2)C22—H22A0.9500
C6—H6A0.9500C23—H23A0.9800
C7—C81.3861 (19)C23—H23B0.9800
C7—H7A0.9500C23—H23C0.9800
C8—C91.3871 (16)
O1—S1—O2121.13 (6)N2—C10—C3111.89 (11)
O1—S1—N1104.32 (5)N2—C10—N1134.91 (11)
O2—S1—N1106.30 (5)C3—C10—N1112.99 (10)
O1—S1—C11109.10 (5)C16—C11—C12121.61 (11)
O2—S1—C11109.09 (5)C16—C11—S1120.24 (9)
N1—S1—C11105.77 (5)C12—C11—S1118.15 (9)
O4—S2—O3120.17 (6)C13—C12—C11118.89 (11)
O4—S2—C1108.32 (6)C13—C12—H12A120.6
O3—S2—C1107.11 (6)C11—C12—H12A120.6
O4—S2—C17107.49 (6)C14—C13—C12120.11 (12)
O3—S2—C17107.91 (6)C14—C13—H13A119.9
C1—S2—C17104.84 (6)C12—C13—H13A119.9
C10—N1—C9103.92 (10)C13—C14—C15120.63 (12)
C10—N1—S1119.83 (8)C13—C14—H14A119.7
C9—N1—S1121.49 (8)C15—C14—H14A119.7
C10—N2—C1105.31 (10)C14—C15—C16120.20 (12)
C10—N2—H2B127.3C14—C15—H15A119.9
C1—N2—H2B127.3C16—C15—H15A119.9
C2—C1—N2110.47 (10)C15—C16—C11118.56 (11)
C2—C1—S2128.02 (10)C15—C16—H16A120.7
N2—C1—S2121.31 (9)C11—C16—H16A120.7
C1—C2—C3105.85 (11)C18—C17—C22120.89 (11)
C1—C2—H2A127.1C18—C17—S2118.71 (10)
C3—C2—H2A127.1C22—C17—S2120.37 (9)
C10—C3—C2106.48 (10)C17—C18—C19119.56 (12)
C10—C3—C4106.28 (10)C17—C18—H18A120.2
C2—C3—C4147.16 (12)C19—C18—H18A120.2
C5—C4—C9118.78 (11)C20—C19—C18120.61 (12)
C5—C4—C3134.52 (12)C20—C19—H19A119.7
C9—C4—C3106.70 (10)C18—C19—H19A119.7
C6—C5—C4119.01 (13)C19—C20—C21118.85 (11)
C6—C5—H5A120.5C19—C20—C23120.83 (11)
C4—C5—H5A120.5C21—C20—C23120.31 (12)
C5—C6—C7121.04 (12)C22—C21—C20121.23 (12)
C5—C6—H6A119.5C22—C21—H21A119.4
C7—C6—H6A119.5C20—C21—H21A119.4
C8—C7—C6121.29 (12)C21—C22—C17118.83 (11)
C8—C7—H7A119.4C21—C22—H22A120.6
C6—C7—H7A119.4C17—C22—H22A120.6
C7—C8—C9117.26 (12)C20—C23—H23A109.5
C7—C8—H8A121.4C20—C23—H23B109.5
C9—C8—H8A121.4H23A—C23—H23B109.5
C8—C9—C4122.62 (11)C20—C23—H23C109.5
C8—C9—N1127.30 (11)H23A—C23—H23C109.5
C4—C9—N1110.05 (10)H23B—C23—H23C109.5
O1—S1—N1—C1042.28 (10)C2—C3—C10—N20.36 (14)
O2—S1—N1—C10171.37 (9)C4—C3—C10—N2177.43 (10)
C11—S1—N1—C1072.74 (10)C2—C3—C10—N1175.95 (10)
O1—S1—N1—C9174.84 (9)C4—C3—C10—N11.84 (13)
O2—S1—N1—C956.07 (10)C9—N1—C10—N2176.61 (13)
C11—S1—N1—C959.82 (10)S1—N1—C10—N243.72 (18)
C10—N2—C1—C20.64 (13)C9—N1—C10—C32.39 (13)
C10—N2—C1—S2175.91 (9)S1—N1—C10—C3142.06 (9)
O4—S2—C1—C220.80 (13)O1—S1—C11—C16154.12 (10)
O3—S2—C1—C2151.78 (11)O2—S1—C11—C1619.79 (12)
C17—S2—C1—C293.73 (12)N1—S1—C11—C1694.18 (11)
O4—S2—C1—N2164.83 (9)O1—S1—C11—C1225.73 (11)
O3—S2—C1—N233.85 (11)O2—S1—C11—C12160.07 (10)
C17—S2—C1—N280.63 (10)N1—S1—C11—C1285.96 (11)
N2—C1—C2—C30.43 (14)C16—C11—C12—C130.25 (19)
S2—C1—C2—C3175.30 (9)S1—C11—C12—C13179.61 (10)
C1—C2—C3—C100.05 (13)C11—C12—C13—C140.3 (2)
C1—C2—C3—C4176.14 (18)C12—C13—C14—C150.4 (2)
C10—C3—C4—C5179.76 (14)C13—C14—C15—C160.0 (2)
C2—C3—C4—C53.7 (3)C14—C15—C16—C110.49 (19)
C10—C3—C4—C90.47 (13)C12—C11—C16—C150.64 (19)
C2—C3—C4—C9175.62 (18)S1—C11—C16—C15179.22 (10)
C9—C4—C5—C60.39 (18)O4—S2—C17—C1812.96 (11)
C3—C4—C5—C6179.62 (13)O3—S2—C17—C18143.93 (9)
C4—C5—C6—C70.5 (2)C1—S2—C17—C18102.15 (10)
C5—C6—C7—C80.1 (2)O4—S2—C17—C22168.94 (9)
C6—C7—C8—C90.90 (19)O3—S2—C17—C2237.97 (11)
C7—C8—C9—C41.05 (18)C1—S2—C17—C2275.95 (11)
C7—C8—C9—N1178.71 (12)C22—C17—C18—C191.07 (17)
C5—C4—C9—C80.41 (18)S2—C17—C18—C19179.16 (9)
C3—C4—C9—C8179.01 (11)C17—C18—C19—C201.00 (18)
C5—C4—C9—N1178.44 (11)C18—C19—C20—C210.28 (18)
C3—C4—C9—N10.99 (13)C18—C19—C20—C23179.65 (11)
C10—N1—C9—C8179.91 (11)C19—C20—C21—C221.53 (18)
S1—N1—C9—C841.26 (16)C23—C20—C21—C22178.40 (11)
C10—N1—C9—C42.01 (12)C20—C21—C22—C171.47 (18)
S1—N1—C9—C4140.84 (9)C18—C17—C22—C210.15 (17)
C1—N2—C10—C30.61 (13)S2—C17—C22—C21177.91 (9)
C1—N2—C10—N1174.88 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.882.062.9244 (14)167
C13—H13A···O2ii0.952.533.2125 (15)129
C22—H22A···O3i0.952.453.3786 (15)165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H18N2O4S2
Mr450.51
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.1547 (3), 11.0471 (5), 11.7185 (4)
α, β, γ (°)73.834 (4), 87.131 (3), 79.277 (4)
V3)996.22 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.41 × 0.36 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Ruby (Gemini) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.981, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12580, 6592, 5331
Rint0.020
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.09
No. of reflections6592
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.882.062.9244 (14)166.7
C13—H13A···O2ii0.952.533.2125 (15)129.3
C22—H22A···O3i0.952.453.3786 (15)165.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

JCB wishes to thank the UWI and the Government of Barbados for funding this research. JPJ thanks Dr Ray Butcher and Howard University for assistance with the data collection and acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAbbanat, D., Maiese, W. & Greenstein, M. (1999). J. Antibiot. 52, 117–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarton, D. H. R., Kervagoret, J. & Zard, S. Z. (1990). Tetrahedron, 46, 7587–7598.  CAS Google Scholar
First citationBarton, D. H. R. & Zard, S. Z. (1985). J. Chem. Soc. Chem. Commun. pp. 1098–1100.  CrossRef Web of Science Google Scholar
First citationBobal, P. & Lightner, D. A. (2001). J. Heterocycl. Chem. 38, 527–530.  CrossRef CAS Google Scholar
First citationCoffin, A. R., Roussell, M. A., Tserlin, E. & Pelkey, E. T. (2006). J. Org. Chem. 71, 6678–6681.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, W., Williams, D. R., Northcote, P., Siegel, M. M., Tsao, R., Ashcroft, J., Morton, G. O., Alluri, M. & Abranat, D. (1994). J. Antibiot. 47, 1250–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGribble, G. W., Saulnier, M. G., Pelkey, E. T., Kishbaugh, T. L. S., Liu, Y. B., Jiang, J., Trujillo, H. A., Keavy, D. J., Davis, D. A., Conway, S. C., Switzer, F. L., Roy, S., Silva, R. A., Obaza-Nutaitis, J. A., Sibi, M. P., Moskalev, N. V., Barden, T. C., Chang, L., Habeski, W. M., Pelcman, B., Sponholtz, W. R., Chau, R. W., Allison, B. D., Garaas, S. D., Sinha, M. S., McGowan, M. A., Reese, M. R. & Harpp, K. S. (2005). Curr. Org. Chem. 9, 1493–1519.  Web of Science CrossRef CAS Google Scholar
First citationJackson, A. H., Johnston, D. N. & Shannon, P. V. R. (1975). J. Chem. Soc. Chem. Commun. pp. 911–912.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr. 40, 40–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationKawasaki, T., Ogawa, A., Terashima, R., Saheki, T., Ban, N., Sekiguchi, H., Sakaguchi, K. & Sakamoto, M. (2005). J. Org. Chem. 70, 2957–2966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarionov, O. V. & deMeijere, A. (2005). Angew. Chem. Int. Ed. 44, 5664–5667.  Web of Science CrossRef CAS Google Scholar
First citationMoody, C. J. & Ward, J. G. (1984a). J. Chem. Soc, Perkin Trans. 1, pp. 2903–2909.  Google Scholar
First citationMoody, C. J. & Ward, J. G. (1984b). J. Chem. Soc. Chem. Commun. pp. 646–647.  CrossRef Web of Science Google Scholar
First citationOkujima, T., Jin, G., Hashimoto, Y., Yamada, H., Uno, H. & Ono, N. (2006). Heterocycles, 70, 619–626.  CAS Google Scholar
First citationOno, N. (2008). Heterocycles, 75, 243–284.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationPelkey, E. T., Chang, L. & Gribble, G. W. (1996). Chem. Commun. pp. 1909–1910.  CrossRef Web of Science Google Scholar
First citationPelkey, E. T. & Gribble, G. W. (1997). Chem. Commun. pp. 1873–1874.  CrossRef Google Scholar
First citationPelkey, E. T. & Gribble, G. W. (1999). Synthesis, pp.1117–1122.  Google Scholar
First citationPelkey, E. T. & Gribble, G. W. (2006). Can. J. Chem. 84, 1338–1342.  Web of Science CrossRef CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomei, M., Yamada, F., Izumi, T. & Nakajou, M. (1997). Heterocycles, 45, 2327–2330.  CrossRef CAS Google Scholar
First citationTsuji, R., Nakagawa, M. & Nishida, A. (2002). Heterocycles, 58, 587–593.  CAS Google Scholar
First citationWoydziak, Z. R., Boiadjiev, S. E., Norona, W. S., McDonagh, A. F. & Lightner, D. A. (2005). J. Org. Chem. 70, 8417–8423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamane, K., Yamamoto, H., Satoh, A., Tamura, Y. & Nozoe, T. (1986). Bull. Chem. Soc. Jpn, 59, 3326–3328.  CrossRef CAS Web of Science Google Scholar
First citationYin, W.-B., Yu, X., Xie, X.-L. & Li, S.-M. (2010). Org. Biomol. Chem. 8, 2430–2438.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds