organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[(3,5-di-tert-butyl-2-hy­dr­oxy­benzyl­­idene)­amino]­benzoate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 September 2010; accepted 14 October 2010; online 23 October 2010)

The title compound, a Schiff base, C24H31NO3, has a substituted aromatic ring at both ends of the azomethine linkage and these make a dihedral angle of 24.9 (1)°. There is an intra­molecular hydrogen bond between the hy­droxy group (donor) and the N atom of themazomethine linkage.

Related literature

For the use of the methyl ester analog of the title compound as a second-harmonic generation material, see: Sliwa et al. (2008[Sliwa, M., Spangenberg, A., Metivier, R., Letard, S., Nakatani, K. & Yu, P. (2008). Res. Chem. Intermed. 34, 181-190.]).

[Scheme 1]

Experimental

Crystal data
  • C24H31NO3

  • Mr = 381.50

  • Monoclinic, P 21 /c

  • a = 18.4789 (18) Å

  • b = 10.7194 (11) Å

  • c = 10.7768 (10) Å

  • β = 97.437 (2)°

  • V = 2116.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 19941 measured reflections

  • 4855 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.01

  • 4855 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (1) 1.80 (2) 2.609 (2) 154 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Schiff base, methyl 4-(di-3,5-tert-butyl-2-hydroxybenzylideneamino)benzoate, is a material suitable for second-harmonic generation as it has electron-donating and electron-withdrawing components that are critical for the manifestation of a permanent dipole (Sliwa et al., 2008). Replacing the methyl group with an ethyl moiety leads to (I), an intensely orange-colored compound (Scheme I, Fig. 1) that crystallizes in a centric space group and is, therefore, not suitable as an SHG material. The azomethine bond has an E-configuration; the two aromatic rings are aligned at 24.9 (1) °. The compound is neutral as the hydroxy group bears a hydrogen atom which is a donor in an intra-molecular H bond to the azomethine nitrogen atom (Table 1). There are no important intermolecular contacts; on the other hand, the compound appears to pack in such a way as to accomodate the bulky t-butyl groups as far as possible (Fig. 2).

Related literature top

For the use of the methyl ester analog of the title compound as a second-harmonic generation material, see: Sliwa et al. (2008).

Experimental top

Ethyl 4-aminobenzoate (0.35 g) dissolved in ethanol (5 ml) was added to 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.5 g) dissolved in ethanol (20 ml). Several drops of acetic acid were added. The solution was heated for 3 h. The solvent was evaporated and the product recrystallized from ethanol to yield orange prisms in 80% yield that were suitable for data collection.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2–1.5U eq(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with the O–H distance restrained to 0.84±0.01 Å; its temperature factor was refined.

In the final difference Fourier map, the largest peak was in the vicinity of an aromatic H-atom.

Structure description top

The Schiff base, methyl 4-(di-3,5-tert-butyl-2-hydroxybenzylideneamino)benzoate, is a material suitable for second-harmonic generation as it has electron-donating and electron-withdrawing components that are critical for the manifestation of a permanent dipole (Sliwa et al., 2008). Replacing the methyl group with an ethyl moiety leads to (I), an intensely orange-colored compound (Scheme I, Fig. 1) that crystallizes in a centric space group and is, therefore, not suitable as an SHG material. The azomethine bond has an E-configuration; the two aromatic rings are aligned at 24.9 (1) °. The compound is neutral as the hydroxy group bears a hydrogen atom which is a donor in an intra-molecular H bond to the azomethine nitrogen atom (Table 1). There are no important intermolecular contacts; on the other hand, the compound appears to pack in such a way as to accomodate the bulky t-butyl groups as far as possible (Fig. 2).

For the use of the methyl ester analog of the title compound as a second-harmonic generation material, see: Sliwa et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the C24H31NO3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Van der Waals packing of two adjacent molecules.
Ethyl 4-[(di-3,5-tert-butyl-2-hydroxybenzylidene)amino]benzoate top
Crystal data top
C24H31NO3F(000) = 824
Mr = 381.50Dx = 1.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.4789 (18) ÅCell parameters from 2280 reflections
b = 10.7194 (11) Åθ = 2.2–23.8°
c = 10.7768 (10) ŵ = 0.08 mm1
β = 97.437 (2)°T = 100 K
V = 2116.7 (4) Å3Prism, orange
Z = 40.30 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
3123 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 2423
19941 measured reflectionsk = 1313
4855 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0558P)2 + 1.1473P]
where P = (Fo2 + 2Fc2)/3
4855 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C24H31NO3V = 2116.7 (4) Å3
Mr = 381.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.4789 (18) ŵ = 0.08 mm1
b = 10.7194 (11) ÅT = 100 K
c = 10.7768 (10) Å0.30 × 0.05 × 0.05 mm
β = 97.437 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3123 reflections with I > 2σ(I)
19941 measured reflectionsRint = 0.065
4855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.64 e Å3
4855 reflectionsΔρmin = 0.26 e Å3
257 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78175 (8)0.89233 (13)0.62825 (14)0.0252 (3)
H10.7466 (13)0.885 (3)0.567 (2)0.086 (12)*
O20.42198 (8)0.93692 (14)0.03223 (14)0.0291 (4)
O30.43875 (7)0.73467 (13)0.01081 (13)0.0237 (3)
N10.67954 (9)0.79668 (16)0.46645 (16)0.0222 (4)
C10.78970 (11)0.77878 (18)0.68363 (19)0.0203 (4)
C20.84179 (10)0.76051 (18)0.78972 (18)0.0186 (4)
C30.85050 (10)0.63866 (18)0.83515 (18)0.0180 (4)
H30.88620.62430.90540.022*
C40.80999 (10)0.53616 (18)0.78384 (18)0.0183 (4)
C50.75592 (10)0.56031 (19)0.68469 (18)0.0199 (4)
H50.72530.49410.65090.024*
C60.74560 (10)0.67938 (19)0.63368 (18)0.0201 (4)
C70.94204 (12)0.9088 (2)0.7566 (2)0.0290 (5)
H7A0.91370.93590.67800.044*
H7B0.97350.83880.74020.044*
H7C0.97220.97820.79300.044*
C80.88965 (11)0.86740 (19)0.84883 (19)0.0219 (4)
C90.84263 (13)0.9784 (2)0.8811 (2)0.0295 (5)
H9A0.81241.00720.80510.044*
H9B0.87441.04640.91580.044*
H9C0.81120.95210.94280.044*
C100.93590 (13)0.8274 (2)0.9709 (2)0.0304 (5)
H10A0.96700.75690.95420.046*
H10B0.90370.80241.03200.046*
H10C0.96650.89741.00440.046*
C110.82432 (11)0.40232 (18)0.82969 (18)0.0197 (4)
C120.75683 (11)0.3511 (2)0.8825 (2)0.0254 (5)
H12A0.74650.40300.95290.038*
H12B0.76620.26520.91110.038*
H12C0.71480.35260.81690.038*
C130.84080 (12)0.3212 (2)0.7192 (2)0.0259 (5)
H13A0.88380.35400.68580.039*
H13B0.79880.32250.65350.039*
H13C0.85020.23520.74790.039*
C140.88904 (11)0.3930 (2)0.9334 (2)0.0247 (5)
H14A0.93300.42510.90250.037*
H14B0.89660.30560.95830.037*
H14C0.87890.44231.00570.037*
C150.68922 (11)0.69415 (19)0.52586 (19)0.0219 (4)
H150.65890.62500.49950.026*
C160.62487 (10)0.8028 (2)0.36008 (19)0.0213 (4)
C170.59190 (11)0.9167 (2)0.3314 (2)0.0235 (5)
H170.60620.98760.38150.028*
C180.53831 (11)0.9279 (2)0.23032 (19)0.0228 (5)
H180.51571.00640.21160.027*
C190.51707 (10)0.82475 (19)0.15535 (19)0.0202 (4)
C200.55214 (11)0.7112 (2)0.18075 (19)0.0214 (4)
H200.53910.64110.12860.026*
C210.60615 (11)0.7002 (2)0.28224 (19)0.0234 (5)
H210.63050.62280.29900.028*
C220.45526 (11)0.84073 (19)0.05346 (19)0.0209 (4)
C230.37799 (11)0.7442 (2)0.1100 (2)0.0265 (5)
H23A0.39080.80020.17680.032*
H23B0.33470.77880.07670.032*
C240.36159 (12)0.6163 (2)0.1613 (2)0.0281 (5)
H24A0.32060.62040.22860.042*
H24B0.34880.56160.09450.042*
H24C0.40460.58300.19440.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (8)0.0202 (8)0.0271 (8)0.0029 (6)0.0030 (7)0.0048 (6)
O20.0308 (8)0.0244 (8)0.0291 (8)0.0063 (7)0.0075 (7)0.0009 (7)
O30.0216 (7)0.0233 (8)0.0235 (8)0.0036 (6)0.0069 (6)0.0009 (6)
N10.0198 (8)0.0244 (9)0.0225 (9)0.0007 (7)0.0031 (7)0.0006 (8)
C10.0218 (10)0.0195 (10)0.0202 (10)0.0052 (8)0.0057 (8)0.0059 (8)
C20.0173 (9)0.0200 (10)0.0187 (10)0.0001 (8)0.0031 (8)0.0001 (8)
C30.0162 (9)0.0229 (10)0.0143 (9)0.0016 (8)0.0008 (8)0.0021 (8)
C40.0165 (9)0.0206 (10)0.0178 (10)0.0008 (8)0.0023 (8)0.0009 (8)
C50.0173 (9)0.0229 (11)0.0191 (10)0.0008 (8)0.0011 (8)0.0032 (8)
C60.0154 (9)0.0273 (11)0.0173 (10)0.0025 (8)0.0004 (8)0.0000 (9)
C70.0294 (12)0.0291 (12)0.0286 (12)0.0085 (9)0.0037 (10)0.0017 (10)
C80.0252 (10)0.0193 (10)0.0204 (10)0.0026 (8)0.0000 (8)0.0017 (8)
C90.0393 (13)0.0220 (11)0.0273 (12)0.0012 (10)0.0047 (10)0.0015 (9)
C100.0351 (12)0.0253 (12)0.0275 (12)0.0087 (10)0.0080 (10)0.0024 (10)
C110.0201 (10)0.0191 (10)0.0192 (10)0.0004 (8)0.0002 (8)0.0015 (8)
C120.0262 (11)0.0220 (11)0.0280 (12)0.0025 (9)0.0031 (9)0.0009 (9)
C130.0309 (11)0.0232 (11)0.0232 (11)0.0051 (9)0.0023 (9)0.0025 (9)
C140.0269 (11)0.0202 (11)0.0254 (11)0.0022 (9)0.0024 (9)0.0009 (9)
C150.0212 (10)0.0212 (11)0.0235 (11)0.0011 (8)0.0039 (8)0.0020 (9)
C160.0170 (9)0.0283 (12)0.0184 (10)0.0001 (8)0.0014 (8)0.0009 (9)
C170.0216 (10)0.0247 (11)0.0238 (11)0.0014 (9)0.0013 (9)0.0008 (9)
C180.0226 (10)0.0227 (11)0.0227 (11)0.0021 (8)0.0012 (9)0.0015 (9)
C190.0187 (10)0.0239 (11)0.0174 (10)0.0028 (8)0.0004 (8)0.0021 (8)
C200.0205 (10)0.0228 (11)0.0204 (10)0.0005 (8)0.0016 (8)0.0003 (9)
C210.0216 (10)0.0241 (11)0.0238 (11)0.0060 (9)0.0004 (8)0.0039 (9)
C220.0194 (10)0.0232 (11)0.0198 (10)0.0001 (8)0.0012 (8)0.0020 (9)
C230.0240 (11)0.0295 (12)0.0231 (11)0.0018 (9)0.0082 (9)0.0016 (9)
C240.0261 (11)0.0306 (12)0.0271 (12)0.0001 (10)0.0012 (9)0.0006 (10)
Geometric parameters (Å, º) top
O1—C11.355 (2)C11—C141.531 (3)
O1—H10.866 (10)C11—C131.537 (3)
O2—C221.207 (2)C11—C121.537 (3)
O3—C221.346 (2)C12—H12A0.9800
O3—C231.450 (2)C12—H12B0.9800
N1—C151.273 (3)C12—H12C0.9800
N1—C161.428 (3)C13—H13A0.9800
C1—C61.406 (3)C13—H13B0.9800
C1—C21.410 (3)C13—H13C0.9800
C2—C31.397 (3)C14—H14A0.9800
C2—C81.535 (3)C14—H14B0.9800
C3—C41.402 (3)C14—H14C0.9800
C3—H30.9500C15—H150.9500
C4—C51.389 (3)C16—C171.381 (3)
C4—C111.529 (3)C16—C211.399 (3)
C5—C61.393 (3)C17—C181.379 (3)
C5—H50.9500C17—H170.9500
C6—C151.465 (3)C18—C191.395 (3)
C7—C81.540 (3)C18—H180.9500
C7—H7A0.9800C19—C201.389 (3)
C7—H7B0.9800C19—C221.488 (3)
C7—H7C0.9800C20—C211.387 (3)
C8—C101.534 (3)C20—H200.9500
C8—C91.539 (3)C21—H210.9500
C9—H9A0.9800C23—C241.494 (3)
C9—H9B0.9800C23—H23A0.9900
C9—H9C0.9800C23—H23B0.9900
C10—H10A0.9800C24—H24A0.9800
C10—H10B0.9800C24—H24B0.9800
C10—H10C0.9800C24—H24C0.9800
C1—O1—H1106 (2)H12A—C12—H12B109.5
C22—O3—C23114.99 (16)C11—C12—H12C109.5
C15—N1—C16118.83 (18)H12A—C12—H12C109.5
O1—C1—C6119.20 (18)H12B—C12—H12C109.5
O1—C1—C2120.37 (18)C11—C13—H13A109.5
C6—C1—C2120.43 (18)C11—C13—H13B109.5
C3—C2—C1116.73 (18)H13A—C13—H13B109.5
C3—C2—C8121.24 (17)C11—C13—H13C109.5
C1—C2—C8121.96 (18)H13A—C13—H13C109.5
C2—C3—C4124.26 (18)H13B—C13—H13C109.5
C2—C3—H3117.9C11—C14—H14A109.5
C4—C3—H3117.9C11—C14—H14B109.5
C5—C4—C3116.83 (18)H14A—C14—H14B109.5
C5—C4—C11120.03 (17)C11—C14—H14C109.5
C3—C4—C11123.12 (17)H14A—C14—H14C109.5
C4—C5—C6121.49 (19)H14B—C14—H14C109.5
C4—C5—H5119.3N1—C15—C6122.09 (19)
C6—C5—H5119.3N1—C15—H15119.0
C5—C6—C1120.03 (18)C6—C15—H15119.0
C5—C6—C15117.32 (18)C17—C16—C21119.51 (19)
C1—C6—C15122.63 (19)C17—C16—N1117.79 (19)
C8—C7—H7A109.5C21—C16—N1122.64 (19)
C8—C7—H7B109.5C18—C17—C16120.3 (2)
H7A—C7—H7B109.5C18—C17—H17119.8
C8—C7—H7C109.5C16—C17—H17119.8
H7A—C7—H7C109.5C17—C18—C19120.5 (2)
H7B—C7—H7C109.5C17—C18—H18119.7
C10—C8—C2112.00 (17)C19—C18—H18119.7
C10—C8—C7107.87 (18)C20—C19—C18119.40 (18)
C2—C8—C7108.92 (17)C20—C19—C22122.69 (19)
C10—C8—C9106.89 (17)C18—C19—C22117.87 (18)
C2—C8—C9111.03 (17)C21—C20—C19120.0 (2)
C7—C8—C9110.07 (18)C21—C20—H20120.0
C8—C9—H9A109.5C19—C20—H20120.0
C8—C9—H9B109.5C20—C21—C16120.18 (19)
H9A—C9—H9B109.5C20—C21—H21119.9
C8—C9—H9C109.5C16—C21—H21119.9
H9A—C9—H9C109.5O2—C22—O3123.23 (18)
H9B—C9—H9C109.5O2—C22—C19124.17 (19)
C8—C10—H10A109.5O3—C22—C19112.57 (17)
C8—C10—H10B109.5O3—C23—C24107.99 (17)
H10A—C10—H10B109.5O3—C23—H23A110.1
C8—C10—H10C109.5C24—C23—H23A110.1
H10A—C10—H10C109.5O3—C23—H23B110.1
H10B—C10—H10C109.5C24—C23—H23B110.1
C4—C11—C14112.55 (16)H23A—C23—H23B108.4
C4—C11—C13108.92 (16)C23—C24—H24A109.5
C14—C11—C13108.30 (16)C23—C24—H24B109.5
C4—C11—C12109.85 (16)H24A—C24—H24B109.5
C14—C11—C12107.53 (17)C23—C24—H24C109.5
C13—C11—C12109.64 (17)H24A—C24—H24C109.5
C11—C12—H12A109.5H24B—C24—H24C109.5
C11—C12—H12B109.5
O1—C1—C2—C3175.11 (17)C3—C4—C11—C13122.2 (2)
C6—C1—C2—C34.6 (3)C5—C4—C11—C1264.1 (2)
O1—C1—C2—C81.8 (3)C3—C4—C11—C12117.6 (2)
C6—C1—C2—C8178.52 (18)C16—N1—C15—C6178.21 (17)
C1—C2—C3—C41.5 (3)C5—C6—C15—N1174.29 (19)
C8—C2—C3—C4178.36 (18)C1—C6—C15—N14.0 (3)
C2—C3—C4—C52.7 (3)C15—N1—C16—C17151.3 (2)
C2—C3—C4—C11175.58 (19)C15—N1—C16—C2131.4 (3)
C3—C4—C5—C63.9 (3)C21—C16—C17—C183.2 (3)
C11—C4—C5—C6174.44 (18)N1—C16—C17—C18179.46 (18)
C4—C5—C6—C10.9 (3)C16—C17—C18—C190.4 (3)
C4—C5—C6—C15177.43 (18)C17—C18—C19—C202.2 (3)
O1—C1—C6—C5176.18 (18)C17—C18—C19—C22175.61 (19)
C2—C1—C6—C53.5 (3)C18—C19—C20—C212.0 (3)
O1—C1—C6—C152.1 (3)C22—C19—C20—C21175.68 (18)
C2—C1—C6—C15178.18 (18)C19—C20—C21—C160.8 (3)
C3—C2—C8—C109.4 (3)C17—C16—C21—C203.4 (3)
C1—C2—C8—C10173.86 (19)N1—C16—C21—C20179.43 (18)
C3—C2—C8—C7109.8 (2)C23—O3—C22—O20.8 (3)
C1—C2—C8—C766.9 (2)C23—O3—C22—C19178.95 (17)
C3—C2—C8—C9128.8 (2)C20—C19—C22—O2177.1 (2)
C1—C2—C8—C954.5 (2)C18—C19—C22—O20.6 (3)
C5—C4—C11—C14176.14 (18)C20—C19—C22—O31.0 (3)
C3—C4—C11—C142.1 (3)C18—C19—C22—O3178.74 (18)
C5—C4—C11—C1356.0 (2)C22—O3—C23—C24173.52 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (1)1.80 (2)2.609 (2)154 (3)

Experimental details

Crystal data
Chemical formulaC24H31NO3
Mr381.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.4789 (18), 10.7194 (11), 10.7768 (10)
β (°) 97.437 (2)
V3)2116.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19941, 4855, 3123
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.01
No. of reflections4855
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (1)1.80 (2)2.609 (2)154 (3)
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliwa, M., Spangenberg, A., Metivier, R., Letard, S., Nakatani, K. & Yu, P. (2008). Res. Chem. Intermed. 34, 181–190.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds