organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-Hy­dr­oxy-2-(2-oxo­cyclo­pent­yl)-1H-indene-1,3(2H)-dione

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 16 September 2010; accepted 21 October 2010; online 30 October 2010)

In the title compound, C14H12O4, the indene unit is essentially planar [r.m.s. deviation = 0.0309 (1) Å] and the cyclo­penta­none ring adopts a twist form. In the crystal, mol­ecules are joined via pairs of O—H⋯O hydrogen bonds into centrosymmetric dimers.

Related literature

For a similar structure, see: Penthala et al. (2009[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o1877.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O4

  • Mr = 244.24

  • Triclinic, [P \overline 1]

  • a = 8.044 (3) Å

  • b = 8.404 (4) Å

  • c = 10.239 (3) Å

  • α = 66.95 (3)°

  • β = 74.36 (2)°

  • γ = 68.50 (3)°

  • V = 586.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.19 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.981

  • 2534 measured reflections

  • 2054 independent reflections

  • 1886 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.07

  • 2054 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 2.09 2.791 (2) 143
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ninhydrin derivatives constitute a versatile class of compounds with profound biological activities such as antibacterial, anticonvulsant, anticancer and anti-inflammatory activities. The present work constitutes the synthesis of various ninhydrin derivatives which are being tested for anti-tubercular and other biological activities.

Related literature top

For a similar structure, see: Penthala et al. (2009).

Experimental top

A mixture of cyclopentanone (0.5 g, 0.006 mol) and ninhydrin (1.05 g, 0.006 mol) in methanol (10 ml) was heated under reflux for 4 h in the presence of solid sodium ethoxide (0.4 g, 0.006 mol). After completion of the reaction, as was evident from TLC, the reaction mixture was poured into crushed ice, extracted with dichloromethane and subjected to column chromatographic purification using petroleum ether:ethyl acetate mixture (90:10 v/v) to obtain the product in 50% yield. The compound was further recrystallized from ethyl acetate to obtain suitable crystals for X-ray studies (m.p. 543 K)

Refinement top

All H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, Uiso = 1.2Ueq(C) and O—H = 0.82 Å, and Uiso = 1.5Ueq(O) .

Structure description top

Ninhydrin derivatives constitute a versatile class of compounds with profound biological activities such as antibacterial, anticonvulsant, anticancer and anti-inflammatory activities. The present work constitutes the synthesis of various ninhydrin derivatives which are being tested for anti-tubercular and other biological activities.

For a similar structure, see: Penthala et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title compound.
rac-2-Hydroxy-2-(2-oxocyclopentyl)-1H-indene-1,3(2H)-dione top
Crystal data top
C14H12O4Z = 2
Mr = 244.24F(000) = 256
Triclinic, P1Dx = 1.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.044 (3) ÅCell parameters from 25 reflections
b = 8.404 (4) Åθ = 2–25°
c = 10.239 (3) ŵ = 0.10 mm1
α = 66.95 (3)°T = 293 K
β = 74.36 (2)°Block, colourless
γ = 68.50 (3)°0.26 × 0.22 × 0.19 mm
V = 586.1 (4) Å3
Data collection top
Nonius MACH3
diffractometer
1886 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.974, Tmax = 0.981l = 1112
2534 measured reflections3 standard reflections every 60 min
2054 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2034P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2054 reflectionsΔρmax = 0.25 e Å3
164 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (7)
Crystal data top
C14H12O4γ = 68.50 (3)°
Mr = 244.24V = 586.1 (4) Å3
Triclinic, P1Z = 2
a = 8.044 (3) ÅMo Kα radiation
b = 8.404 (4) ŵ = 0.10 mm1
c = 10.239 (3) ÅT = 293 K
α = 66.95 (3)°0.26 × 0.22 × 0.19 mm
β = 74.36 (2)°
Data collection top
Nonius MACH3
diffractometer
1886 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.974, Tmax = 0.9813 standard reflections every 60 min
2534 measured reflections intensity decay: none
2054 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2054 reflectionsΔρmin = 0.23 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4901 (2)0.0143 (2)0.33717 (14)0.0367 (4)
C20.6584 (2)0.1372 (2)0.32374 (19)0.0505 (4)
H2A0.74110.15480.38520.061*
H2B0.71910.11290.22540.061*
C30.5929 (3)0.3013 (2)0.3708 (2)0.0551 (5)
H3A0.58210.35800.47420.066*
H3B0.67450.38960.32580.066*
C40.4084 (2)0.2245 (2)0.3207 (2)0.0494 (4)
H4A0.33530.30640.37190.059*
H4B0.42060.20080.21840.059*
C50.3268 (2)0.04868 (19)0.35711 (15)0.0367 (4)
H50.27970.08180.45980.044*
C60.17097 (19)0.09543 (19)0.27852 (15)0.0353 (3)
C70.2311 (2)0.1817 (2)0.11679 (15)0.0387 (4)
C80.2136 (2)0.3728 (2)0.09029 (16)0.0379 (4)
C90.2631 (2)0.5004 (2)0.03520 (18)0.0502 (4)
H90.31690.47100.11860.060*
C100.2304 (3)0.6721 (2)0.0329 (2)0.0573 (5)
H100.26180.76000.11630.069*
C110.1513 (3)0.7168 (2)0.0916 (2)0.0561 (5)
H110.13080.83380.09020.067*
C120.1028 (2)0.5900 (2)0.21723 (19)0.0470 (4)
H120.05080.61930.30080.056*
C130.13396 (19)0.4179 (2)0.21488 (16)0.0366 (3)
C140.09696 (19)0.2590 (2)0.33215 (15)0.0362 (3)
O10.48152 (16)0.16243 (15)0.33474 (12)0.0484 (3)
O20.03172 (15)0.02227 (15)0.29221 (13)0.0487 (3)
H20.00800.01700.37730.073*
O30.2801 (2)0.10548 (17)0.02872 (13)0.0602 (4)
O40.01604 (16)0.25544 (16)0.45179 (12)0.0502 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (8)0.0451 (9)0.0268 (7)0.0147 (7)0.0051 (6)0.0103 (6)
C20.0385 (9)0.0636 (11)0.0529 (10)0.0090 (8)0.0067 (7)0.0282 (9)
C30.0563 (11)0.0472 (10)0.0590 (11)0.0008 (8)0.0178 (8)0.0231 (8)
C40.0534 (10)0.0382 (9)0.0599 (10)0.0117 (7)0.0158 (8)0.0162 (7)
C50.0392 (8)0.0369 (8)0.0330 (7)0.0144 (6)0.0043 (6)0.0082 (6)
C60.0368 (8)0.0355 (8)0.0349 (7)0.0164 (6)0.0048 (6)0.0077 (6)
C70.0419 (8)0.0409 (8)0.0338 (8)0.0138 (6)0.0051 (6)0.0117 (6)
C80.0378 (8)0.0392 (8)0.0345 (7)0.0138 (6)0.0071 (6)0.0064 (6)
C90.0581 (10)0.0529 (10)0.0353 (8)0.0246 (8)0.0039 (7)0.0043 (7)
C100.0668 (12)0.0465 (10)0.0520 (10)0.0299 (9)0.0110 (9)0.0044 (8)
C110.0639 (11)0.0356 (9)0.0691 (12)0.0193 (8)0.0185 (9)0.0073 (8)
C120.0483 (9)0.0397 (9)0.0527 (10)0.0113 (7)0.0083 (7)0.0158 (7)
C130.0335 (7)0.0367 (8)0.0372 (8)0.0108 (6)0.0057 (6)0.0087 (6)
C140.0312 (7)0.0400 (8)0.0343 (8)0.0118 (6)0.0028 (6)0.0091 (6)
O10.0516 (7)0.0463 (7)0.0537 (7)0.0207 (5)0.0116 (5)0.0145 (5)
O20.0464 (7)0.0514 (7)0.0525 (7)0.0268 (5)0.0123 (5)0.0066 (5)
O30.0894 (10)0.0528 (7)0.0402 (6)0.0226 (7)0.0035 (6)0.0195 (6)
O40.0528 (7)0.0511 (7)0.0383 (6)0.0173 (5)0.0087 (5)0.0143 (5)
Geometric parameters (Å, º) top
C1—O11.2116 (19)C6—C71.545 (2)
C1—C21.499 (2)C7—O31.2059 (19)
C1—C51.526 (2)C7—C81.479 (2)
C2—C31.512 (3)C8—C91.384 (2)
C2—H2A0.9700C8—C131.393 (2)
C2—H2B0.9700C9—C101.378 (3)
C3—C41.528 (3)C9—H90.9300
C3—H3A0.9700C10—C111.391 (3)
C3—H3B0.9700C10—H100.9300
C4—C51.531 (2)C11—C121.379 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.383 (2)
C5—C61.534 (2)C12—H120.9300
C5—H50.9800C13—C141.469 (2)
C6—O21.4160 (18)C14—O41.2169 (18)
C6—C141.536 (2)O2—H20.8200
O1—C1—C2126.74 (15)C5—C6—C14110.99 (12)
O1—C1—C5124.60 (14)O2—C6—C7107.82 (12)
C2—C1—C5108.66 (13)C5—C6—C7113.02 (12)
C1—C2—C3104.51 (14)C14—C6—C7102.49 (12)
C1—C2—H2A110.9O3—C7—C8126.80 (14)
C3—C2—H2A110.9O3—C7—C6125.30 (14)
C1—C2—H2B110.9C8—C7—C6107.89 (13)
C3—C2—H2B110.9C9—C8—C13120.56 (15)
H2A—C2—H2B108.9C9—C8—C7129.09 (15)
C2—C3—C4103.75 (14)C13—C8—C7110.35 (13)
C2—C3—H3A111.0C10—C9—C8118.04 (17)
C4—C3—H3A111.0C10—C9—H9121.0
C2—C3—H3B111.0C8—C9—H9121.0
C4—C3—H3B111.0C9—C10—C11121.33 (16)
H3A—C3—H3B109.0C9—C10—H10119.3
C3—C4—C5102.74 (13)C11—C10—H10119.3
C3—C4—H4A111.2C12—C11—C10120.90 (17)
C5—C4—H4A111.2C12—C11—H11119.6
C3—C4—H4B111.2C10—C11—H11119.6
C5—C4—H4B111.2C11—C12—C13117.90 (17)
H4A—C4—H4B109.1C11—C12—H12121.1
C1—C5—C4103.78 (13)C13—C12—H12121.1
C1—C5—C6114.77 (12)C12—C13—C8121.28 (14)
C4—C5—C6117.09 (13)C12—C13—C14129.02 (15)
C1—C5—H5106.9C8—C13—C14109.69 (14)
C4—C5—H5106.9O4—C14—C13126.49 (15)
C6—C5—H5106.9O4—C14—C6124.45 (13)
O2—C6—C5111.26 (12)C13—C14—C6109.03 (12)
O2—C6—C14110.92 (12)C6—O2—H2109.5
O1—C1—C2—C3166.12 (15)O3—C7—C8—C13173.24 (16)
C5—C1—C2—C313.03 (17)C6—C7—C8—C135.46 (17)
C1—C2—C3—C433.50 (18)C13—C8—C9—C100.3 (2)
C2—C3—C4—C541.27 (18)C7—C8—C9—C10179.19 (16)
O1—C1—C5—C4168.45 (14)C8—C9—C10—C110.5 (3)
C2—C1—C5—C412.37 (16)C9—C10—C11—C120.1 (3)
O1—C1—C5—C639.4 (2)C10—C11—C12—C130.5 (3)
C2—C1—C5—C6141.39 (14)C11—C12—C13—C80.7 (2)
C3—C4—C5—C132.54 (16)C11—C12—C13—C14179.53 (15)
C3—C4—C5—C6160.13 (14)C9—C8—C13—C120.3 (2)
C1—C5—C6—O2174.96 (11)C7—C8—C13—C12179.90 (14)
C4—C5—C6—O252.92 (18)C9—C8—C13—C14179.32 (14)
C1—C5—C6—C1461.01 (16)C7—C8—C13—C141.09 (17)
C4—C5—C6—C14176.94 (12)C12—C13—C14—O47.0 (3)
C1—C5—C6—C753.49 (17)C8—C13—C14—O4174.07 (15)
C4—C5—C6—C768.56 (17)C12—C13—C14—C6175.15 (15)
O2—C6—C7—O354.4 (2)C8—C13—C14—C63.77 (16)
C5—C6—C7—O369.0 (2)O2—C6—C14—O456.38 (19)
C14—C6—C7—O3171.52 (16)C5—C6—C14—O467.85 (19)
O2—C6—C7—C8124.29 (13)C7—C6—C14—O4171.22 (14)
C5—C6—C7—C8112.31 (14)O2—C6—C14—C13121.51 (13)
C14—C6—C7—C87.21 (15)C5—C6—C14—C13114.26 (13)
O3—C7—C8—C96.3 (3)C7—C6—C14—C136.67 (15)
C6—C7—C8—C9174.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.822.092.791 (2)143
C2—H2A···O4ii0.972.603.560 (2)171
C2—H2B···O3iii0.972.583.423 (2)146
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12O4
Mr244.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.044 (3), 8.404 (4), 10.239 (3)
α, β, γ (°)66.95 (3), 74.36 (2), 68.50 (3)
V3)586.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.19
Data collection
DiffractometerNonius MACH3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2534, 2054, 1886
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.07
No. of reflections2054
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.822.092.791 (2)143
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

JKS thanks the UGC for an RFSMS fellowship.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds