organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1,4-di­phenyl-1H-pyrazolo­[3,4-b]quinoline

aDepartment of Chemistry and Physics, Agricultural University, 30-149 Kraków, Poland, and bFaculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
*Correspondence e-mail: pszlachcic@ar.krakow.pl

(Received 30 September 2010; accepted 21 October 2010; online 31 October 2010)

In the title mol­ecule, C23H17N3, the phenyl substituents at positions 1 and 4 are twisted relative to the central core by 27.09 (5) and 66.62 (4)°, respectively. In the crystal, mol­ecules are assembled into centrosymmetric dimers via ππ stacking inter­actions between the 1H-pyrazolo­[3,4-b]quinoline ­units, with an inter­planar distance of 3.601 (2) Å and by weak inter­molecular C—H⋯N inter­actions.

Related literature

For the synthesis of 1,3 and 4-substituted 1H-pyrazolo­[3,4-b]quinoline derivatives using Friedländer condensation, see: Danel (1996[Danel, A. (1996). PhD thesis, University of Agriculture, Kraków, Poland.]); Woo et al. (2002[Woo, E. P., Inbasekaram, M., Wu, W. & Bernius, M. T. (2002). US Patent 6 353 083.]). For selected photophysical properties of 1H-pyrazolo­[3,4-b]quinoline derivatives, see: Gondek et al. (2006[Gondek, E., Kityk, I. V., Sanetra, J., Szlachcic, P., Armatys, P., Wisla, A. & Danel, A. (2006). Opt. Laser Technol. 38, 487-492.]). For related structures, see: Szlachcic & Stadnicka (2010[Szlachcic, P. & Stadnicka, K. (2010). Acta Cryst. E66, o575.]); Szlachcic et al. (2010[Szlachcic, P., Jarosz, B. & Stadnicka, K. (2010). Acta Cryst. C66, o488-o492.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3

  • Mr = 335.40

  • Triclinic, [P \overline 1]

  • a = 9.2120 (4) Å

  • b = 9.9377 (5) Å

  • c = 10.3440 (4) Å

  • α = 92.278 (2)°

  • β = 113.376 (2)°

  • γ = 90.152 (2)°

  • V = 868.37 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.42 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.963, Tmax = 0.989

  • 6556 measured reflections

  • 4964 independent reflections

  • 3285 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.139

  • S = 1.02

  • 4964 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C46—H46⋯N9i 0.93 2.52 3.4164 (18) 163
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound and other 1H-pyrazolo[3,4-b]quinoline (PQ) derivatives containing hydrogen, methyl or phenyl substituents and their combination, showed important photophysical properties (Gondek et al., 2006) which could be utilized in organic light-emitting diodes (OLED) fabrication. To synthesize 1,3,4-substituted PQ derivatives, a method of preparation introduced by Danel (1996) was used. The results of using the title compound in OLED preparation will be published elsewhere.

The shape of the title molecule is shown in Fig. 1. The core of the molecule, 1H-pyrazolo[3,4-b]quinoline, is planar and aromatic. The planes of phenyl substituents at positions 1 and 4 are twisted against the core moiety with the torsion angles N2—N1—C11—C16 = -15.7 (2) and C3a—C4—C41—C46 = 116.7 (2)°. The conformation of the molecule is stabilized by two intramolecular interactions of C—H···N type in which N2 and N9 atoms are acceptors.

The packing of the molecules (Fig. 2) is determined by one weak intermolecular hydrogen bond C46—H46···N9 (-x + 1, -y + 1, -z), and π-π interactions: with Cg1 (N1—N2—C3—C3a—C9a)···Cg3 (C4a—C5—C6—C7—C8—C8a at 1 - x, 1 - y, -z) = 3.731 and Cg2 (C3a—C4—C4a—C8a—N9—C9a)···Cg2 (C3a—C4—C4a—C8a—N9—C9a at 1 - x, 1 - y, -z) = 3.799 Å resulting in forming molecular dimers. The two C—H···π interactions are described by the geometry parameters (H···A /Å, D···A /Å, <DHA /°, respectively) given below:

C6—H6···Cg5 (C41—C42—C43—C44—C45—C46 at 2 - x, 1 - y, -z): 2.967, 3.750, 143;

C31—H31···Cg1 (N1—N2—C3—C3a—C9a at 1 - x, -y, -z): 3.172, 3.875, 132.

Related literature top

For the synthesis of 1,3 and 4-substituted 1H-pyrazolo[3,4-b]quinoline derivatives using Friedländer condensation, see: Danel (1996); Woo et al. (2002). For selected photophysical properties of 1H-pyrazolo[3,4-b]quinoline derivatives, see: Gondek et al. (2006). For related structures, see: Szlachcic & Stadnicka (2010); Szlachcic et al. (2010).

Experimental top

The title compound was synthesized using procedure already described in literature (Danel, 1996) from 2-aminobenzophenone and 5-methyl-2-phenyl-2,4-dihydro-pyrazol-3-one (10 mmol of each substrate, ethylene glycol as a solvent). The product was purified by flash chromatography on Al2O3 with chloroform as a solvent, followed by crystallization from toluene/petroleum ether to give 2.38 g (71% yield) of light-yellow crystalline solid, mp. 438–440 K. 1H NMR (CDCl3): δ 2.14 (s, 3H), 7.25–7.30 (m, 1H), 7.36 (ddd, J = 8.6, 6.7, 1.3 Hz, 1H), 7.44–7.47 (m, 2H), 7.52–7.60 (m, 5H). 7.71–7.77 (m, 2H), 8.20 (d, J = 8.4 Hz, 1H), 8.49–8.53 (m, 2H). 13C NMR (CDCl3): δ 14.9, 116.3, 120.3, 123.6, 123.9, 124.9, 127.0, 128.3, 128.7, 129.0 (two signals), 129.7, 130.3, 135.0, 140.0, 143.8, 144.4, 148.5, 150.2. Single crystals suitable for X-ray diffraction were grown by slow evaporation from toluene solution at ambient conditions.

Refinement top

H atoms were included into refinement in geometrically calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq for the aromatic CH groups and C—H = 0.96 Å and Uiso(H) = 1.5Ueq for methyl groups. The positions of H atoms were constrained as a part of a riding model. In the case of methyl group the torsion angle along the Caromatic—Cmethyl bond was refined using AFIX 137 procedure (SHELXL-97; Sheldrick, 2008).

Structure description top

The title compound and other 1H-pyrazolo[3,4-b]quinoline (PQ) derivatives containing hydrogen, methyl or phenyl substituents and their combination, showed important photophysical properties (Gondek et al., 2006) which could be utilized in organic light-emitting diodes (OLED) fabrication. To synthesize 1,3,4-substituted PQ derivatives, a method of preparation introduced by Danel (1996) was used. The results of using the title compound in OLED preparation will be published elsewhere.

The shape of the title molecule is shown in Fig. 1. The core of the molecule, 1H-pyrazolo[3,4-b]quinoline, is planar and aromatic. The planes of phenyl substituents at positions 1 and 4 are twisted against the core moiety with the torsion angles N2—N1—C11—C16 = -15.7 (2) and C3a—C4—C41—C46 = 116.7 (2)°. The conformation of the molecule is stabilized by two intramolecular interactions of C—H···N type in which N2 and N9 atoms are acceptors.

The packing of the molecules (Fig. 2) is determined by one weak intermolecular hydrogen bond C46—H46···N9 (-x + 1, -y + 1, -z), and π-π interactions: with Cg1 (N1—N2—C3—C3a—C9a)···Cg3 (C4a—C5—C6—C7—C8—C8a at 1 - x, 1 - y, -z) = 3.731 and Cg2 (C3a—C4—C4a—C8a—N9—C9a)···Cg2 (C3a—C4—C4a—C8a—N9—C9a at 1 - x, 1 - y, -z) = 3.799 Å resulting in forming molecular dimers. The two C—H···π interactions are described by the geometry parameters (H···A /Å, D···A /Å, <DHA /°, respectively) given below:

C6—H6···Cg5 (C41—C42—C43—C44—C45—C46 at 2 - x, 1 - y, -z): 2.967, 3.750, 143;

C31—H31···Cg1 (N1—N2—C3—C3a—C9a at 1 - x, -y, -z): 3.172, 3.875, 132.

For the synthesis of 1,3 and 4-substituted 1H-pyrazolo[3,4-b]quinoline derivatives using Friedländer condensation, see: Danel (1996); Woo et al. (2002). For selected photophysical properties of 1H-pyrazolo[3,4-b]quinoline derivatives, see: Gondek et al. (2006). For related structures, see: Szlachcic & Stadnicka (2010); Szlachcic et al. (2010).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The conformation of the 3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]quinoline molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The unit-cell contents of the title compound in projection along [001] showing molecular dimers formation.
3-Methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]quinoline top
Crystal data top
C23H17N3Z = 2
Mr = 335.40F(000) = 352
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Melting point = 438–440 K
a = 9.2120 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9377 (5) ÅCell parameters from 2458 reflections
c = 10.3440 (4) Åθ = 1.0–30.0°
α = 92.278 (2)°µ = 0.08 mm1
β = 113.376 (2)°T = 293 K
γ = 90.152 (2)°Plate, green–yellow
V = 868.37 (7) Å30.50 × 0.42 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4964 independent reflections
Radiation source: fine-focus sealed tube3285 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.020
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.9°
φ and ο scans to fill Ewald sphereh = 1211
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 137
Tmin = 0.963, Tmax = 0.989l = 1413
6556 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1697P]
where P = (Fo2 + 2Fc2)/3
4964 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C23H17N3γ = 90.152 (2)°
Mr = 335.40V = 868.37 (7) Å3
Triclinic, P1Z = 2
a = 9.2120 (4) ÅMo Kα radiation
b = 9.9377 (5) ŵ = 0.08 mm1
c = 10.3440 (4) ÅT = 293 K
α = 92.278 (2)°0.50 × 0.42 × 0.15 mm
β = 113.376 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4964 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
3285 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.989Rint = 0.020
6556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
4964 reflectionsΔρmin = 0.17 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34388 (14)0.18687 (11)0.08010 (12)0.0397 (3)
N20.28625 (15)0.11194 (12)0.04633 (13)0.0438 (3)
C30.37588 (17)0.13841 (14)0.11453 (15)0.0416 (3)
C3A0.49700 (16)0.23706 (13)0.03567 (14)0.0351 (3)
C40.61386 (15)0.31001 (13)0.05685 (14)0.0344 (3)
C4A0.70159 (15)0.40697 (13)0.05158 (14)0.0345 (3)
C50.82339 (17)0.49062 (14)0.04416 (15)0.0418 (3)
H50.84500.48510.03640.050*
C60.90904 (18)0.57853 (16)0.15214 (17)0.0478 (4)
H60.98700.63300.14410.057*
C70.88014 (19)0.58731 (16)0.27575 (17)0.0514 (4)
H70.94020.64660.34970.062*
C80.76495 (18)0.50976 (15)0.28780 (16)0.0464 (4)
H80.74760.51630.37040.056*
C8A0.67061 (15)0.41895 (13)0.17655 (14)0.0356 (3)
N90.55506 (13)0.34765 (11)0.19637 (12)0.0381 (3)
C9A0.47232 (15)0.26467 (13)0.08992 (14)0.0343 (3)
C110.25132 (16)0.19574 (13)0.16186 (14)0.0378 (3)
C120.31890 (19)0.24076 (15)0.30166 (16)0.0487 (4)
H120.42600.26390.34360.058*
C130.2259 (2)0.25117 (17)0.37876 (19)0.0579 (4)
H130.27060.28310.47230.069*
C140.0681 (2)0.21477 (17)0.3187 (2)0.0591 (4)
H140.00640.22200.37120.071*
C150.00234 (19)0.16761 (17)0.18044 (19)0.0553 (4)
H150.10380.14130.14010.066*
C160.09222 (17)0.15891 (15)0.10080 (17)0.0455 (3)
H160.04640.12850.00680.055*
C310.3400 (2)0.06994 (18)0.25516 (17)0.0578 (4)
H31A0.42090.00630.24770.087*
H31B0.33650.13580.32170.087*
H31C0.23950.02370.28660.087*
C410.64981 (16)0.28577 (13)0.18381 (14)0.0357 (3)
C420.70864 (19)0.16239 (15)0.20626 (16)0.0462 (4)
H420.72430.09530.14210.055*
C430.7441 (2)0.13829 (17)0.32315 (18)0.0540 (4)
H430.78360.05550.33710.065*
C440.72084 (19)0.23688 (18)0.41857 (17)0.0524 (4)
H440.74430.22070.49730.063*
C450.66269 (18)0.35998 (17)0.39743 (16)0.0491 (4)
H450.64680.42650.46220.059*
C460.62795 (17)0.38491 (14)0.28066 (15)0.0417 (3)
H460.58980.46840.26670.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0428 (6)0.0404 (6)0.0370 (6)0.0120 (5)0.0179 (5)0.0042 (5)
N20.0489 (7)0.0417 (6)0.0396 (6)0.0131 (5)0.0172 (5)0.0058 (5)
C30.0461 (8)0.0386 (7)0.0390 (7)0.0073 (6)0.0164 (6)0.0017 (6)
C3A0.0399 (7)0.0325 (6)0.0335 (6)0.0019 (5)0.0153 (6)0.0008 (5)
C40.0363 (7)0.0329 (6)0.0353 (7)0.0014 (5)0.0156 (6)0.0018 (5)
C4A0.0342 (7)0.0335 (6)0.0375 (7)0.0004 (5)0.0162 (6)0.0003 (5)
C50.0409 (8)0.0449 (8)0.0444 (8)0.0061 (6)0.0223 (6)0.0029 (6)
C60.0417 (8)0.0495 (8)0.0561 (9)0.0134 (6)0.0243 (7)0.0065 (7)
C70.0485 (9)0.0547 (9)0.0517 (9)0.0176 (7)0.0225 (7)0.0156 (7)
C80.0461 (8)0.0537 (8)0.0429 (8)0.0131 (7)0.0230 (7)0.0122 (7)
C8A0.0351 (7)0.0359 (6)0.0372 (7)0.0031 (5)0.0160 (6)0.0012 (5)
N90.0389 (6)0.0401 (6)0.0370 (6)0.0073 (5)0.0173 (5)0.0032 (5)
C9A0.0359 (7)0.0331 (6)0.0352 (6)0.0033 (5)0.0155 (5)0.0018 (5)
C110.0420 (7)0.0326 (6)0.0419 (7)0.0047 (5)0.0198 (6)0.0043 (6)
C120.0521 (9)0.0529 (9)0.0428 (8)0.0151 (7)0.0210 (7)0.0023 (7)
C130.0749 (12)0.0548 (9)0.0531 (10)0.0144 (8)0.0360 (9)0.0073 (8)
C140.0658 (11)0.0563 (10)0.0722 (12)0.0003 (8)0.0455 (10)0.0011 (9)
C150.0425 (9)0.0590 (10)0.0689 (11)0.0006 (7)0.0265 (8)0.0083 (9)
C160.0411 (8)0.0467 (8)0.0467 (8)0.0052 (6)0.0151 (7)0.0040 (7)
C310.0659 (11)0.0612 (10)0.0460 (9)0.0213 (8)0.0237 (8)0.0155 (8)
C410.0369 (7)0.0365 (7)0.0355 (7)0.0032 (5)0.0167 (6)0.0012 (6)
C420.0563 (9)0.0398 (7)0.0454 (8)0.0040 (6)0.0235 (7)0.0007 (6)
C430.0632 (10)0.0498 (9)0.0546 (10)0.0061 (8)0.0301 (8)0.0069 (8)
C440.0532 (9)0.0675 (10)0.0417 (8)0.0034 (8)0.0256 (7)0.0085 (8)
C450.0523 (9)0.0582 (9)0.0403 (8)0.0035 (7)0.0218 (7)0.0067 (7)
C460.0453 (8)0.0412 (7)0.0421 (8)0.0010 (6)0.0212 (6)0.0029 (6)
Geometric parameters (Å, º) top
N1—C9A1.3790 (16)C12—C131.385 (2)
N1—N21.3842 (16)C12—H120.9300
N1—C111.4201 (17)C13—C141.376 (3)
N2—C31.3132 (18)C13—H130.9300
C3—C3A1.4422 (19)C14—C151.374 (3)
C3—C311.492 (2)C14—H140.9300
C3A—C41.3885 (18)C15—C161.381 (2)
C3A—C9A1.4217 (18)C15—H150.9300
C4—C4A1.4249 (18)C16—H160.9300
C4—C411.4876 (18)C31—H31A0.9600
C4A—C51.4228 (18)C31—H31B0.9600
C4A—C8A1.4308 (18)C31—H31C0.9600
C5—C61.361 (2)C41—C421.3898 (19)
C5—H50.9300C41—C461.3907 (19)
C6—C71.405 (2)C42—C431.384 (2)
C6—H60.9300C42—H420.9300
C7—C81.358 (2)C43—C441.375 (2)
C7—H70.9300C43—H430.9300
C8—C8A1.4190 (19)C44—C451.381 (2)
C8—H80.9300C44—H440.9300
C8A—N91.3631 (16)C45—C461.381 (2)
N9—C9A1.3160 (17)C45—H450.9300
C11—C121.383 (2)C46—H460.9300
C11—C161.3875 (19)
C9A—N1—N2110.06 (11)C11—C12—H12120.3
C9A—N1—C11129.37 (11)C13—C12—H12120.3
N2—N1—C11119.07 (11)C14—C13—C12120.78 (16)
C3—N2—N1108.04 (11)C14—C13—H13119.6
N2—C3—C3A110.55 (12)C12—C13—H13119.6
N2—C3—C31119.20 (13)C15—C14—C13119.47 (15)
C3A—C3—C31130.23 (13)C15—C14—H14120.3
C4—C3A—C9A118.45 (12)C13—C14—H14120.3
C4—C3A—C3136.89 (13)C14—C15—C16120.71 (16)
C9A—C3A—C3104.51 (11)C14—C15—H15119.6
C3A—C4—C4A116.60 (12)C16—C15—H15119.6
C3A—C4—C41122.02 (12)C15—C16—C11119.61 (15)
C4A—C4—C41121.36 (11)C15—C16—H16120.2
C5—C4A—C4123.14 (12)C11—C16—H16120.2
C5—C4A—C8A117.71 (12)C3—C31—H31A109.5
C4—C4A—C8A119.12 (11)C3—C31—H31B109.5
C6—C5—C4A121.57 (13)H31A—C31—H31B109.5
C6—C5—H5119.2C3—C31—H31C109.5
C4A—C5—H5119.2H31A—C31—H31C109.5
C5—C6—C7120.27 (13)H31B—C31—H31C109.5
C5—C6—H6119.9C42—C41—C46118.74 (12)
C7—C6—H6119.9C42—C41—C4119.81 (12)
C8—C7—C6120.36 (14)C46—C41—C4121.45 (12)
C8—C7—H7119.8C43—C42—C41120.68 (14)
C6—C7—H7119.8C43—C42—H42119.7
C7—C8—C8A121.18 (14)C41—C42—H42119.7
C7—C8—H8119.4C44—C43—C42119.96 (14)
C8A—C8—H8119.4C44—C43—H43120.0
N9—C8A—C8117.20 (12)C42—C43—H43120.0
N9—C8A—C4A123.94 (12)C43—C44—C45119.95 (14)
C8—C8A—C4A118.86 (12)C43—C44—H44120.0
C9A—N9—C8A114.32 (11)C45—C44—H44120.0
N9—C9A—N1125.83 (12)C46—C45—C44120.36 (14)
N9—C9A—C3A127.35 (12)C46—C45—H45119.8
N1—C9A—C3A106.81 (11)C44—C45—H45119.8
C12—C11—C16119.95 (13)C45—C46—C41120.30 (13)
C12—C11—N1120.37 (13)C45—C46—H46119.9
C16—C11—N1119.67 (13)C41—C46—H46119.9
C11—C12—C13119.46 (15)
C9A—N1—N2—C31.12 (16)C11—N1—C9A—N914.3 (2)
C11—N1—N2—C3168.47 (12)N2—N1—C9A—C3A0.24 (15)
N1—N2—C3—C3A1.54 (16)C11—N1—C9A—C3A165.91 (13)
N1—N2—C3—C31179.75 (13)C4—C3A—C9A—N94.6 (2)
N2—C3—C3A—C4173.86 (15)C3—C3A—C9A—N9179.13 (13)
C31—C3—C3A—C44.7 (3)C4—C3A—C9A—N1175.65 (12)
N2—C3—C3A—C9A1.37 (16)C3—C3A—C9A—N10.64 (14)
C31—C3—C3A—C9A179.90 (16)C9A—N1—C11—C1231.2 (2)
C9A—C3A—C4—C4A0.62 (18)N2—N1—C11—C12164.26 (12)
C3—C3A—C4—C4A175.37 (15)C9A—N1—C11—C16148.85 (14)
C9A—C3A—C4—C41178.75 (12)N2—N1—C11—C1615.73 (19)
C3—C3A—C4—C416.5 (2)C16—C11—C12—C131.3 (2)
C3A—C4—C4A—C5179.09 (13)N1—C11—C12—C13178.74 (13)
C41—C4—C4A—C52.8 (2)C11—C12—C13—C141.3 (3)
C3A—C4—C4A—C8A3.01 (18)C12—C13—C14—C150.0 (3)
C41—C4—C4A—C8A175.13 (12)C13—C14—C15—C161.3 (3)
C4—C4A—C5—C6177.40 (14)C14—C15—C16—C111.3 (2)
C8A—C4A—C5—C60.5 (2)C12—C11—C16—C150.0 (2)
C4A—C5—C6—C70.9 (2)N1—C11—C16—C15179.99 (13)
C5—C6—C7—C81.0 (3)C3A—C4—C41—C4264.18 (18)
C6—C7—C8—C8A0.4 (3)C4A—C4—C41—C42113.86 (15)
C7—C8—C8A—N9178.35 (14)C3A—C4—C41—C46116.72 (15)
C7—C8—C8A—C4A1.8 (2)C4A—C4—C41—C4665.24 (18)
C5—C4A—C8A—N9178.31 (13)C46—C41—C42—C430.3 (2)
C4—C4A—C8A—N93.7 (2)C4—C41—C42—C43179.45 (14)
C5—C4A—C8A—C81.87 (19)C41—C42—C43—C440.1 (2)
C4—C4A—C8A—C8176.15 (13)C42—C43—C44—C450.2 (3)
C8—C8A—N9—C9A179.62 (13)C43—C44—C45—C460.1 (2)
C4A—C8A—N9—C9A0.20 (19)C44—C45—C46—C410.6 (2)
C8A—N9—C9A—N1176.24 (12)C42—C41—C46—C450.7 (2)
C8A—N9—C9A—C3A4.0 (2)C4—C41—C46—C45179.80 (13)
N2—N1—C9A—N9179.99 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N90.932.443.0012 (18)119
C46—H46···N9i0.932.523.4164 (18)163
C16—H16···N20.932.482.799 (2)100
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H17N3
Mr335.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2120 (4), 9.9377 (5), 10.3440 (4)
α, β, γ (°)92.278 (2), 113.376 (2), 90.152 (2)
V3)868.37 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.42 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6556, 4964, 3285
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.02
No. of reflections4964
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···N9i0.932.523.4164 (18)163
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the Ministry of Science and Higher Education, Poland, for financial support of this work through grant No. N N204 216734.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDanel, A. (1996). PhD thesis, University of Agriculture, Kraków, Poland.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGondek, E., Kityk, I. V., Sanetra, J., Szlachcic, P., Armatys, P., Wisla, A. & Danel, A. (2006). Opt. Laser Technol. 38, 487–492.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzlachcic, P., Jarosz, B. & Stadnicka, K. (2010). Acta Cryst. C66, o488–o492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSzlachcic, P. & Stadnicka, K. (2010). Acta Cryst. E66, o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWoo, E. P., Inbasekaram, M., Wu, W. & Bernius, M. T. (2002). US Patent 6 353 083.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds