organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium (E)-3-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)prop-2-enoate monohydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 19 October 2010; accepted 21 October 2010; online 30 October 2010)

In structure of the title compound ammonium ferulate monohydrate, NH4+·C10H9O4·H2O, O—H⋯O and N—H⋯O hydrogen bonds link the ammonium cations, ferulate anions and water mol­ecules into a three-dimensional array. The ferulate anion is approximately planar, with a maximum deviation of 0.307 (2) Å.

Related literature

For the biological activity of ferulic acid, see: Hirabayashi et al. (1995[Hirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K. & Terasawa, K. (1995). Planta Med. 61, 221-226.]); Liyama et al. (1994[Liyama, K., Lam, T. B. T. & Stone, B. A. (1994). Plant Physiol. 104, 315-320.]); Nomura et al. (2003[Nomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. & Taniguchi, H. (2003). Bioorg. Med. Chem. 11, 3807-3813.]); Ogiwara et al. (2002[Ogiwara, T., Satoh, K., Kadoma, Y., Murakami, Y., Unten, S., Atsumi, T., Sakagami, H. & Fujisawa, S. (2002). Anticancer Res. 22, 2711-2717.]); Ou et al. (2003[Ou, L., Kong, L. Y., Zhang, X. M. & Niwa, M. (2003). Biol. Pharm. Bull. 26, 1511-1516.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C10H9O4·H2O

  • Mr = 229.23

  • Monoclinic, P 21 /n

  • a = 8.6613 (19) Å

  • b = 8.3282 (18) Å

  • c = 16.457 (4) Å

  • β = 100.525 (3)°

  • V = 1167.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII diffractometer

  • 5831 measured reflections

  • 2090 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.01

  • 2090 reflections

  • 166 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O3i 0.86 (2) 2.07 (2) 2.918 (2) 167 (3)
O1W—H1W⋯O3 0.86 (2) 1.96 (2) 2.817 (2) 173 (3)
N1—H13⋯O4ii 0.90 (2) 2.06 (2) 2.904 (3) 156 (2)
N1—H12⋯O1Wi 0.93 (2) 1.93 (2) 2.850 (3) 175 (2)
N1—H11⋯O1iii 0.93 (2) 2.25 (2) 3.043 (3) 144 (2)
N1—H11⋯O2iii 0.93 (2) 2.14 (2) 2.823 (2) 130 (2)
N1—H10⋯O4iv 0.94 (2) 1.83 (2) 2.761 (3) 169 (2)
O2—H2⋯O3v 0.82 1.81 2.594 (2) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, also known as ferulic acid, is one of the main endogenous phenolic acids in plant kingdom (Liyama et al., 1994). Attention was paid to the structural modifications of ferulic acid owing to its extensive bioactivities including anti-platelet aggregation, anti-oxidation, anti-inflammation, anti-tumor, anti-mutagenicity, antibiosis and immunity enchancement (Hirabayashi et al., 1995; Ogiwara et al., 2002). A series of ferulic acid derivatives were designed and synthesized, such as their salts, esters, ethers and amides, and some of them show the better bioactivities than those of ferulic acid (Nomura et al., 2003; Ou et al., 2003). The molecular and crystal structure of the title compound is presented in this article.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are an ammonium cation, one singly deprotonated 3-(4-hydroxy-3-methoxyphenyl)-2-propenoate anion, and one water molecule. The molecules are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2), resulting in the formation of a three-dimensional supramolecular network.

Related literature top

For the biological activity of ferulic acid, see: Hirabayashi et al. (1995); Liyama et al. (1994); Nomura et al. (2003); Ogiwara et al. (2002); Ou et al. (2003).

Experimental top

A mixture of ferulic acid (0.388 g, 2 mmol) and ammonia (0.15 ml, 2 mmol) was stirred with methanol (20 ml) for 0.5 h at room temperature. After several days colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement top

The H atoms of water molecule and ammonium cation were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.87 (2) Å and H1W···H2W = 1.39 (2) Å for water molecule, N—H = 0.87 (2) Å for ammonium cation, and Uiso(H) = 1.5 Ueq(O, N). All other H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Structure description top

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, also known as ferulic acid, is one of the main endogenous phenolic acids in plant kingdom (Liyama et al., 1994). Attention was paid to the structural modifications of ferulic acid owing to its extensive bioactivities including anti-platelet aggregation, anti-oxidation, anti-inflammation, anti-tumor, anti-mutagenicity, antibiosis and immunity enchancement (Hirabayashi et al., 1995; Ogiwara et al., 2002). A series of ferulic acid derivatives were designed and synthesized, such as their salts, esters, ethers and amides, and some of them show the better bioactivities than those of ferulic acid (Nomura et al., 2003; Ou et al., 2003). The molecular and crystal structure of the title compound is presented in this article.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are an ammonium cation, one singly deprotonated 3-(4-hydroxy-3-methoxyphenyl)-2-propenoate anion, and one water molecule. The molecules are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2), resulting in the formation of a three-dimensional supramolecular network.

For the biological activity of ferulic acid, see: Hirabayashi et al. (1995); Liyama et al. (1994); Nomura et al. (2003); Ogiwara et al. (2002); Ou et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing showing the hydrogen bonding interactions as broken lines.
Ammonium (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate monohydrate top
Crystal data top
NH4+·C10H9O4·H2OF(000) = 488
Mr = 229.23Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1012 reflections
a = 8.6613 (19) Åθ = 2.5–21.0°
b = 8.3282 (18) ŵ = 0.11 mm1
c = 16.457 (4) ÅT = 296 K
β = 100.525 (3)°Block, colourless
V = 1167.1 (5) Å30.30 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.2°, θmin = 2.5°
φ and ω scanh = 910
5831 measured reflectionsk = 99
2090 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.106P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2090 reflectionsΔρmax = 0.18 e Å3
166 parametersΔρmin = 0.18 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
NH4+·C10H9O4·H2OV = 1167.1 (5) Å3
Mr = 229.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6613 (19) ŵ = 0.11 mm1
b = 8.3282 (18) ÅT = 296 K
c = 16.457 (4) Å0.30 × 0.27 × 0.26 mm
β = 100.525 (3)°
Data collection top
Bruker APEXII
diffractometer
1348 reflections with I > 2σ(I)
5831 measured reflectionsRint = 0.040
2090 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0437 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
2090 reflectionsΔρmin = 0.18 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9208 (2)0.0647 (2)0.33845 (13)0.0374 (5)
C20.9382 (2)0.0503 (2)0.27793 (12)0.0361 (5)
C30.8765 (2)0.2015 (2)0.28226 (13)0.0413 (5)
H30.88840.27820.24280.050*
C40.7969 (2)0.2398 (3)0.34519 (14)0.0432 (6)
H40.75470.34210.34700.052*
C50.7786 (2)0.1292 (2)0.40548 (13)0.0387 (5)
C60.8419 (2)0.0247 (2)0.40114 (13)0.0402 (5)
H60.83060.10070.44100.048*
C70.9605 (3)0.3375 (3)0.38312 (16)0.0617 (7)
H7A1.00470.30810.43890.093*
H7B1.00940.43420.36870.093*
H7C0.84960.35500.37850.093*
C80.6979 (2)0.1798 (3)0.47158 (13)0.0438 (6)
H80.65290.28150.46500.053*
C90.6790 (2)0.1034 (3)0.53912 (13)0.0438 (6)
H90.71130.00310.54540.053*
C100.6093 (3)0.1780 (3)0.60560 (14)0.0413 (5)
O10.98669 (18)0.21136 (16)0.32848 (9)0.0492 (4)
O21.01519 (18)0.00231 (17)0.21705 (9)0.0479 (4)
H21.01250.07440.18290.072*
O30.5464 (2)0.31626 (18)0.59297 (9)0.0557 (5)
O40.61918 (18)0.10581 (17)0.67298 (9)0.0503 (4)
N10.6808 (3)0.7821 (2)0.69610 (14)0.0506 (5)
H100.674 (3)0.894 (2)0.6905 (15)0.076*
H110.595 (2)0.740 (3)0.7154 (16)0.076*
H120.685 (3)0.733 (3)0.6460 (12)0.076*
H130.764 (2)0.748 (3)0.7335 (14)0.076*
O1W0.3143 (2)0.3867 (2)0.45407 (11)0.0698 (6)
H1W0.381 (3)0.358 (3)0.4970 (14)0.105*
H2W0.340 (3)0.481 (2)0.4400 (18)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (12)0.0330 (12)0.0394 (13)0.0007 (9)0.0098 (10)0.0022 (9)
C20.0411 (12)0.0403 (12)0.0302 (12)0.0040 (10)0.0150 (10)0.0019 (9)
C30.0522 (14)0.0365 (12)0.0379 (13)0.0032 (10)0.0157 (11)0.0069 (10)
C40.0514 (14)0.0374 (12)0.0436 (14)0.0050 (10)0.0160 (11)0.0022 (10)
C50.0458 (13)0.0380 (12)0.0351 (12)0.0004 (10)0.0146 (10)0.0029 (10)
C60.0506 (13)0.0395 (12)0.0325 (12)0.0025 (10)0.0128 (10)0.0036 (10)
C70.0783 (19)0.0395 (14)0.0704 (19)0.0025 (12)0.0220 (15)0.0129 (12)
C80.0524 (14)0.0392 (12)0.0431 (14)0.0014 (10)0.0171 (11)0.0034 (10)
C90.0572 (14)0.0362 (12)0.0414 (14)0.0010 (11)0.0182 (11)0.0016 (10)
C100.0491 (14)0.0399 (13)0.0374 (13)0.0037 (11)0.0143 (11)0.0042 (11)
O10.0673 (10)0.0356 (9)0.0503 (10)0.0052 (7)0.0253 (8)0.0039 (7)
O20.0635 (10)0.0432 (9)0.0443 (10)0.0073 (8)0.0290 (8)0.0043 (7)
O30.0868 (13)0.0443 (10)0.0416 (10)0.0147 (8)0.0259 (9)0.0026 (7)
O40.0731 (11)0.0449 (9)0.0375 (9)0.0043 (8)0.0223 (8)0.0025 (7)
N10.0660 (15)0.0430 (12)0.0436 (13)0.0077 (11)0.0120 (11)0.0037 (10)
O1W0.0854 (14)0.0635 (12)0.0582 (13)0.0016 (11)0.0068 (10)0.0008 (10)
Geometric parameters (Å, º) top
C1—O11.371 (2)C7—H7C0.9600
C1—C61.378 (3)C8—C91.317 (3)
C1—C21.409 (3)C8—H80.9300
C2—O21.361 (2)C9—C101.480 (3)
C2—C31.375 (3)C9—H90.9300
C3—C41.383 (3)C10—O41.250 (2)
C3—H30.9300C10—O31.274 (2)
C4—C51.384 (3)O2—H20.8200
C4—H40.9300N1—H100.942 (17)
C5—C61.401 (3)N1—H110.927 (17)
C5—C81.458 (3)N1—H120.926 (17)
C6—H60.9300N1—H130.903 (17)
C7—O11.428 (2)O1W—H1W0.863 (16)
C7—H7A0.9600O1W—H2W0.863 (16)
C7—H7B0.9600
O1—C1—C6125.42 (19)O1—C7—H7C109.5
O1—C1—C2114.84 (18)H7A—C7—H7C109.5
C6—C1—C2119.74 (19)H7B—C7—H7C109.5
O2—C2—C3123.65 (18)C9—C8—C5129.8 (2)
O2—C2—C1116.80 (18)C9—C8—H8115.1
C3—C2—C1119.54 (18)C5—C8—H8115.1
C2—C3—C4120.12 (19)C8—C9—C10123.5 (2)
C2—C3—H3119.9C8—C9—H9118.3
C4—C3—H3119.9C10—C9—H9118.3
C3—C4—C5121.45 (19)O4—C10—O3122.48 (19)
C3—C4—H4119.3O4—C10—C9118.9 (2)
C5—C4—H4119.3O3—C10—C9118.6 (2)
C4—C5—C6118.34 (19)C1—O1—C7117.54 (17)
C4—C5—C8118.43 (19)C2—O2—H2109.5
C6—C5—C8123.21 (19)H10—N1—H11111 (2)
C1—C6—C5120.79 (19)H10—N1—H12111 (2)
C1—C6—H6119.6H11—N1—H12108 (2)
C5—C6—H6119.6H10—N1—H13114 (2)
O1—C7—H7A109.5H11—N1—H13104 (2)
O1—C7—H7B109.5H12—N1—H13108 (2)
H7A—C7—H7B109.5H1W—O1W—H2W108 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.86 (2)2.07 (2)2.918 (2)167 (3)
O1W—H1W···O30.86 (2)1.96 (2)2.817 (2)173 (3)
N1—H13···O4ii0.90 (2)2.06 (2)2.904 (3)156 (2)
N1—H12···O1Wi0.93 (2)1.93 (2)2.850 (3)175 (2)
N1—H11···O1iii0.93 (2)2.25 (2)3.043 (3)144 (2)
N1—H11···O2iii0.93 (2)2.14 (2)2.823 (2)130 (2)
N1—H10···O4iv0.94 (2)1.83 (2)2.761 (3)169 (2)
O2—H2···O3v0.821.812.594 (2)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaNH4+·C10H9O4·H2O
Mr229.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.6613 (19), 8.3282 (18), 16.457 (4)
β (°) 100.525 (3)
V3)1167.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.27 × 0.26
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5831, 2090, 1348
Rint0.040
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.01
No. of reflections2090
No. of parameters166
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.863 (16)2.071 (18)2.918 (2)167 (3)
O1W—H1W···O30.863 (16)1.958 (17)2.817 (2)173 (3)
N1—H13···O4ii0.903 (17)2.057 (19)2.904 (3)156 (2)
N1—H12···O1Wi0.926 (17)1.927 (18)2.850 (3)175 (2)
N1—H11···O1iii0.927 (17)2.25 (2)3.043 (3)144 (2)
N1—H11···O2iii0.927 (17)2.14 (2)2.823 (2)130 (2)
N1—H10···O4iv0.942 (17)1.831 (17)2.761 (3)169 (2)
O2—H2···O3v0.821.812.594 (2)160.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K. & Terasawa, K. (1995). Planta Med. 61, 221–226.  CrossRef CAS PubMed Google Scholar
First citationLiyama, K., Lam, T. B. T. & Stone, B. A. (1994). Plant Physiol. 104, 315–320.  PubMed Google Scholar
First citationNomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. & Taniguchi, H. (2003). Bioorg. Med. Chem. 11, 3807–3813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOgiwara, T., Satoh, K., Kadoma, Y., Murakami, Y., Unten, S., Atsumi, T., Sakagami, H. & Fujisawa, S. (2002). Anticancer Res. 22, 2711–2717.  Web of Science PubMed CAS Google Scholar
First citationOu, L., Kong, L. Y., Zhang, X. M. & Niwa, M. (2003). Biol. Pharm. Bull. 26, 1511–1516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds