metal-organic compounds
Diaquabis(1,10-phenanthroline-κ2N,N′)manganese(II) sulfate hexahydrate
aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn
In the title compound, [Mn(C12H8N2)2(H2O)2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010) via intermolecular π–π stacking interactions with a mean interplanar distance of 3.410 (6) along [100] and 3.465 (5) Å along [001]. The sulfate anions and uncoordinated water molecules are interconnected between these layers by hydrogen bonds, forming negatively charged layers which are linked to the positive layers through O—H⋯O hydrogen bonds, forming a three-dimensional architecture. Both the positive and negative sheets are stacked along [010] in an ⋯ABAB⋯ sequence, the A layers being shifted by 1/2a along [100] with respect to the B layers. One of the uncoordinated water molecules is equally disordered over two positions.
Related literature
For general background, see: Sangeetha & Maitra (2005); Lehn (2007); Stang & Olenyuk (1997). For related structures, see: Devereux et al. (2000); Zheng et al. (2003); Zhang et al. (2003, 2005).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S160053681004211X/gw2091sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004211X/gw2091Isup2.hkl
MnSO4.H2O (0.2253 g, 1.330 mmol), H2NCH2COOH (0.1009 g, 1.330 mmol) and 1,10-phenanthroline mono-hydrate (0.2644 g, 1.330 mmol) were completely dissolved in 20 ml mixed solvent of H2O and CH3OH (Vw:Ve = 1:1) under stirring. The resulting yellow solution was further stirred for 5 min forming yellowish precipitate. After the suspension was filtrated, the filtrate was allowed to stand at room temperature. The yellow transparent crystals were obtained 10 days later.
H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
Construction of supramolecular architectures with interesting physical properties have been one of the most active fields in supramolecular chemistry, coordination chemistry and materials science owing to their potential use as new functional materials (Sangeetha et al., 2005; Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Stang et al., 1997). Here, we report a Mn(II) complex {[Mn(H2O)2(C12H8N2)]SO4}.6H2O.
The π–π stacking interactions play vital roles in assembling the complex cations into two-dimensional positively charged layers parallel to (010) (Fig. 2). What's more, the sulfate anions and crystal water molecules form two-dimensional negatively charged layer parallel to (010) (Fig. 3) through extensive hydrogen bonds (Table 2).
contains a [Mn(H2O)2(C12H8N2)]2+ cation, one sulfate anion and six lattice H2O molecules (Fig. 1). In the complex cations, the coordination geometry about the Mn atom is best considered as distorted octahedral, defined by four N atoms of two 1,10-phenanthroline (phen) ligands and two H2O molecules at the cis positions. The [Mn(H2O)2(C12H8N2)]2+ cation can be found in several previously reported complexes (Devereux et al., 2000; Zheng et al., 2003; Zhang et al., 2003; Zhang et al., 2005), with a similar coordination geometry. The Mn-N bond distances fall in the range 2.250 (4) to 2.318 (4) Å, and the Mn-O bond distances are 2.146 (3) and 2.177 (3) Å (Zheng et al., 2003), respectively (Table 1). The cisoid and transoid angles about the central Mn atom vary from 74.06 (1) - 107.21 (2)° and 156.21 (2) - 166.50 (2)° (Table 1), respectively. All the bonding parameters are normal according to the similar coordination geometries reported. This fact indicates that the octahedral coordination of Mn atoms is severely distorted. Around the central Mn atom, both chelating phen planes orientate nearly perpendicularly to each other dihedral angle: 86.29 (8)°. The complex cations are arranged in such a way that each phen ligand containing N1 and N2 atoms are sandwiched by two symmetry-related, antiparallel phen ligands from different cations with the distances of 3.410 (6) Å forming a chain along the [100] direction, and along the [001] direction the phen ligand containing N3 and N4 atoms face to only one symmetry-related phen of the cation in next chain with the distance of 3.465 (5) Å. This implies that significant intermolecularAs shown in Fig. 4, the the positive and negative two-dimensional sheets arrange alternatively and the two coordinational water molecules in the positive layers share their H atoms with O3 and O5 in sulfate anions and O7 of one lattic water molecule (Table 2) forming three-dimensional architecture. Hence, the
is further stabilized by interlayer hydrogen bonds. Both the positive and negative two-dimensional sheets are stack along the [010] direction in an ···ABAB··· sequence, and the layers A is shifted by a along the [100] direction with respect to the layers B (Fig. 4).For general background, see: Sangeetha et al. (2005); Lehn (2007); Stang et al. (1997). For related structures, see: Devereux et al. (2000); Zheng et al. (2003); Zhang et al. (2003, 2005).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability level. | |
Fig. 2. The positively charged two-dimensional layer of the complex cations pallel to (010). | |
Fig. 3. The negatively charged two-dimensional layer of the sulfate anions and crystal water molecules pallel to (010). | |
Fig. 4. The three-dimensional structure of the title compound. |
[Mn(C12H8N2)2(H2O)2]SO4·6H2O | Z = 2 |
Mr = 655.54 | F(000) = 682 |
Triclinic, P1 | Dx = 1.533 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.153 (2) Å | Cell parameters from 13888 reflections |
b = 12.086 (2) Å | θ = 3.0–27.5° |
c = 13.309 (3) Å | µ = 0.61 mm−1 |
α = 109.55 (3)° | T = 293 K |
β = 91.79 (3)° | Block, yellow |
γ = 110.56 (3)° | 0.29 × 0.24 × 0.19 mm |
V = 1420.2 (5) Å3 |
Rigaku R-AXIS RAPID diffractometer | 6388 independent reflections |
Radiation source: fine-focus sealed tube | 5780 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 0 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −15→15 |
Tmin = 0.680, Tmax = 0.843 | l = −17→17 |
13888 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0566P)2 + 3.5944P] where P = (Fo2 + 2Fc2)/3 |
6388 reflections | (Δ/σ)max = 0.001 |
382 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Mn(C12H8N2)2(H2O)2]SO4·6H2O | γ = 110.56 (3)° |
Mr = 655.54 | V = 1420.2 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.153 (2) Å | Mo Kα radiation |
b = 12.086 (2) Å | µ = 0.61 mm−1 |
c = 13.309 (3) Å | T = 293 K |
α = 109.55 (3)° | 0.29 × 0.24 × 0.19 mm |
β = 91.79 (3)° |
Rigaku R-AXIS RAPID diffractometer | 6388 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 5780 reflections with I > 2σ(I) |
Tmin = 0.680, Tmax = 0.843 | Rint = 0.022 |
13888 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.56 e Å−3 |
6388 reflections | Δρmin = −0.58 e Å−3 |
382 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn | 0.74982 (5) | 0.06218 (4) | 0.25508 (3) | 0.01016 (12) | |
O1 | 0.7338 (2) | 0.2453 (2) | 0.33132 (17) | 0.0170 (4) | |
H1B | 0.6970 | 0.2809 | 0.2994 | 0.020* | |
H1C | 0.7792 | 0.3034 | 0.3923 | 0.020* | |
O2 | 0.5755 (2) | 0.0179 (2) | 0.13690 (17) | 0.0160 (4) | |
H2B | 0.5868 | 0.0808 | 0.1178 | 0.019* | |
H2C | 0.5332 | −0.0509 | 0.0822 | 0.019* | |
N3 | 0.8118 (3) | −0.1022 (2) | 0.15971 (19) | 0.0121 (5) | |
N4 | 0.9536 (3) | 0.1485 (2) | 0.1978 (2) | 0.0123 (5) | |
C13 | 0.7410 (3) | −0.2248 (3) | 0.1397 (2) | 0.0150 (6) | |
H13A | 0.6498 | −0.2503 | 0.1569 | 0.018* | |
C14 | 0.7967 (3) | −0.3184 (3) | 0.0935 (2) | 0.0174 (6) | |
H14A | 0.7435 | −0.4034 | 0.0811 | 0.021* | |
C15 | 0.9308 (3) | −0.2821 (3) | 0.0672 (2) | 0.0173 (6) | |
H15A | 0.9698 | −0.3424 | 0.0371 | 0.021* | |
C16 | 1.0095 (3) | −0.1523 (3) | 0.0864 (2) | 0.0147 (6) | |
C17 | 1.1511 (3) | −0.1066 (3) | 0.0616 (2) | 0.0166 (6) | |
H17A | 1.1942 | −0.1635 | 0.0311 | 0.020* | |
C18 | 1.2219 (3) | 0.0193 (3) | 0.0826 (2) | 0.0178 (6) | |
H18A | 1.3137 | 0.0474 | 0.0670 | 0.021* | |
C19 | 1.1588 (3) | 0.1097 (3) | 0.1280 (2) | 0.0144 (6) | |
C20 | 1.2288 (3) | 0.2411 (3) | 0.1497 (2) | 0.0175 (6) | |
H20A | 1.3209 | 0.2732 | 0.1356 | 0.021* | |
C21 | 1.1596 (3) | 0.3203 (3) | 0.1916 (3) | 0.0186 (6) | |
H21A | 1.2036 | 0.4066 | 0.2047 | 0.022* | |
C22 | 1.0223 (3) | 0.2718 (3) | 0.2150 (2) | 0.0149 (6) | |
H22A | 0.9770 | 0.3274 | 0.2437 | 0.018* | |
C23 | 1.0203 (3) | 0.0679 (3) | 0.1537 (2) | 0.0115 (5) | |
C24 | 0.9445 (3) | −0.0657 (3) | 0.1328 (2) | 0.0112 (5) | |
N1 | 0.6023 (3) | −0.0581 (2) | 0.3357 (2) | 0.0127 (5) | |
N2 | 0.8784 (3) | 0.1072 (2) | 0.4174 (2) | 0.0130 (5) | |
C1 | 0.4671 (3) | −0.1373 (3) | 0.2970 (3) | 0.0165 (6) | |
H1A | 0.4259 | −0.1441 | 0.2307 | 0.020* | |
C2 | 0.3832 (3) | −0.2111 (3) | 0.3509 (3) | 0.0204 (6) | |
H2A | 0.2891 | −0.2655 | 0.3208 | 0.024* | |
C3 | 0.4425 (4) | −0.2017 (3) | 0.4487 (3) | 0.0193 (6) | |
H3A | 0.3889 | −0.2502 | 0.4855 | 0.023* | |
C4 | 0.5847 (3) | −0.1184 (3) | 0.4934 (2) | 0.0163 (6) | |
C5 | 0.6523 (4) | −0.1002 (3) | 0.5975 (3) | 0.0205 (7) | |
H5A | 0.6034 | −0.1484 | 0.6362 | 0.025* | |
C6 | 0.7860 (4) | −0.0138 (3) | 0.6393 (3) | 0.0209 (7) | |
H6A | 0.8266 | −0.0014 | 0.7077 | 0.025* | |
C7 | 0.8677 (3) | 0.0597 (3) | 0.5812 (2) | 0.0154 (6) | |
C8 | 1.0075 (3) | 0.1515 (3) | 0.6232 (2) | 0.0190 (6) | |
H8A | 1.0509 | 0.1678 | 0.6920 | 0.023* | |
C9 | 1.0791 (3) | 0.2168 (3) | 0.5617 (3) | 0.0186 (6) | |
H9A | 1.1716 | 0.2772 | 0.5880 | 0.022* | |
C10 | 1.0105 (3) | 0.1909 (3) | 0.4585 (2) | 0.0153 (6) | |
H10A | 1.0602 | 0.2346 | 0.4170 | 0.018* | |
C11 | 0.8066 (3) | 0.0417 (3) | 0.4773 (2) | 0.0124 (5) | |
C12 | 0.6609 (3) | −0.0479 (3) | 0.4332 (2) | 0.0122 (5) | |
S | 0.63189 (8) | 0.32046 (7) | 0.10157 (6) | 0.01227 (16) | |
O3 | 0.5795 (2) | 0.1805 (2) | 0.04230 (18) | 0.0182 (5) | |
O4 | 0.5424 (2) | 0.3715 (2) | 0.05688 (18) | 0.0192 (5) | |
O5 | 0.6208 (3) | 0.3446 (2) | 0.21746 (18) | 0.0213 (5) | |
O6 | 0.7820 (2) | 0.3794 (2) | 0.09130 (18) | 0.0196 (5) | |
O7 | 0.8819 (2) | 0.4348 (2) | 0.53612 (18) | 0.0210 (5) | |
H7A | 0.9164 | 0.4367 | 0.5964 | 0.025* | |
H7B | 0.8201 | 0.4683 | 0.5535 | 0.025* | |
O8 | 1.0157 (3) | 0.5572 (2) | 0.25819 (19) | 0.0246 (5) | |
H8B | 0.9358 | 0.5072 | 0.2170 | 0.029* | |
H8C | 1.0653 | 0.5711 | 0.2094 | 0.029* | |
O11 | 0.8003 (3) | 0.3984 (3) | −0.1132 (2) | 0.0327 (6) | |
H11A | 0.7345 | 0.4124 | −0.1264 | 0.039* | |
H11B | 0.7949 | 0.3809 | −0.0561 | 0.039* | |
O10 | 1.3026 (3) | 0.4366 (3) | 0.4498 (3) | 0.0414 (7) | |
H10C | 1.3469 | 0.4538 | 0.5125 | 0.050* | |
H10B | 1.3551 | 0.4521 | 0.4037 | 0.050* | |
O9 | 0.5397 (3) | 0.5248 (3) | 0.3499 (3) | 0.0487 (9) | |
H9B | 0.5623 | 0.4683 | 0.3043 | 0.058* | |
H9C | 0.5554 | 0.5789 | 0.3190 | 0.058* | |
O12A | 0.4571 (6) | 0.5666 (5) | 0.1826 (4) | 0.0202 (8) | 0.50 |
O12B | 0.4397 (6) | 0.5565 (5) | 0.1271 (4) | 0.0202 (8) | 0.50 |
H12A | 0.4689 | 0.4981 | 0.1028 | 0.024* | |
H12B | 0.4618 | 0.5773 | 0.0720 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0099 (2) | 0.0115 (2) | 0.0100 (2) | 0.00457 (16) | 0.00130 (15) | 0.00454 (17) |
O1 | 0.0218 (11) | 0.0155 (10) | 0.0132 (10) | 0.0094 (9) | −0.0018 (8) | 0.0028 (8) |
O2 | 0.0177 (11) | 0.0131 (10) | 0.0150 (10) | 0.0055 (8) | −0.0044 (8) | 0.0039 (8) |
N3 | 0.0123 (11) | 0.0120 (11) | 0.0107 (11) | 0.0039 (9) | 0.0007 (9) | 0.0035 (9) |
N4 | 0.0121 (11) | 0.0124 (11) | 0.0114 (11) | 0.0043 (9) | 0.0003 (9) | 0.0038 (9) |
C13 | 0.0130 (14) | 0.0153 (14) | 0.0148 (14) | 0.0039 (11) | 0.0007 (11) | 0.0051 (12) |
C14 | 0.0202 (15) | 0.0123 (14) | 0.0171 (14) | 0.0051 (12) | −0.0022 (12) | 0.0039 (12) |
C15 | 0.0218 (15) | 0.0186 (15) | 0.0144 (14) | 0.0131 (13) | 0.0020 (12) | 0.0041 (12) |
C16 | 0.0149 (14) | 0.0193 (14) | 0.0100 (13) | 0.0081 (12) | −0.0003 (11) | 0.0042 (11) |
C17 | 0.0167 (14) | 0.0248 (16) | 0.0143 (14) | 0.0140 (13) | 0.0032 (11) | 0.0080 (12) |
C18 | 0.0104 (13) | 0.0289 (17) | 0.0152 (14) | 0.0084 (12) | 0.0035 (11) | 0.0084 (13) |
C19 | 0.0126 (14) | 0.0193 (14) | 0.0109 (13) | 0.0054 (12) | −0.0001 (11) | 0.0059 (11) |
C20 | 0.0131 (14) | 0.0203 (15) | 0.0154 (14) | 0.0004 (12) | 0.0025 (11) | 0.0084 (12) |
C21 | 0.0181 (15) | 0.0168 (14) | 0.0176 (15) | 0.0011 (12) | 0.0011 (12) | 0.0082 (12) |
C22 | 0.0179 (14) | 0.0128 (13) | 0.0130 (13) | 0.0045 (11) | 0.0009 (11) | 0.0052 (11) |
C23 | 0.0117 (13) | 0.0147 (13) | 0.0075 (12) | 0.0053 (11) | 0.0000 (10) | 0.0031 (11) |
C24 | 0.0110 (13) | 0.0135 (13) | 0.0066 (12) | 0.0045 (11) | −0.0020 (10) | 0.0011 (10) |
N1 | 0.0136 (12) | 0.0128 (11) | 0.0113 (11) | 0.0057 (10) | 0.0026 (9) | 0.0034 (9) |
N2 | 0.0148 (12) | 0.0116 (11) | 0.0129 (11) | 0.0059 (10) | 0.0017 (9) | 0.0040 (10) |
C1 | 0.0144 (14) | 0.0187 (15) | 0.0146 (14) | 0.0046 (12) | 0.0028 (11) | 0.0057 (12) |
C2 | 0.0153 (15) | 0.0183 (15) | 0.0209 (15) | 0.0014 (12) | 0.0066 (12) | 0.0041 (13) |
C3 | 0.0207 (16) | 0.0143 (14) | 0.0199 (15) | 0.0034 (12) | 0.0088 (12) | 0.0059 (12) |
C4 | 0.0198 (15) | 0.0159 (14) | 0.0157 (14) | 0.0086 (12) | 0.0069 (12) | 0.0067 (12) |
C5 | 0.0278 (17) | 0.0248 (16) | 0.0161 (15) | 0.0123 (14) | 0.0088 (13) | 0.0133 (13) |
C6 | 0.0261 (17) | 0.0300 (17) | 0.0148 (14) | 0.0149 (14) | 0.0055 (13) | 0.0138 (14) |
C7 | 0.0185 (15) | 0.0191 (14) | 0.0124 (13) | 0.0110 (12) | 0.0029 (11) | 0.0064 (12) |
C8 | 0.0205 (15) | 0.0238 (16) | 0.0134 (14) | 0.0112 (13) | −0.0028 (12) | 0.0051 (13) |
C9 | 0.0149 (14) | 0.0182 (15) | 0.0193 (15) | 0.0064 (12) | −0.0039 (12) | 0.0035 (12) |
C10 | 0.0158 (14) | 0.0146 (14) | 0.0137 (14) | 0.0059 (12) | 0.0006 (11) | 0.0033 (11) |
C11 | 0.0153 (14) | 0.0128 (13) | 0.0107 (13) | 0.0076 (11) | 0.0014 (11) | 0.0040 (11) |
C12 | 0.0139 (13) | 0.0126 (13) | 0.0120 (13) | 0.0070 (11) | 0.0042 (11) | 0.0045 (11) |
S | 0.0131 (3) | 0.0125 (3) | 0.0120 (3) | 0.0064 (3) | 0.0007 (3) | 0.0041 (3) |
O3 | 0.0199 (11) | 0.0144 (10) | 0.0170 (11) | 0.0047 (9) | −0.0016 (9) | 0.0043 (9) |
O4 | 0.0209 (11) | 0.0241 (12) | 0.0194 (11) | 0.0146 (10) | 0.0030 (9) | 0.0102 (10) |
O5 | 0.0306 (13) | 0.0261 (12) | 0.0143 (11) | 0.0182 (11) | 0.0062 (9) | 0.0080 (10) |
O6 | 0.0126 (10) | 0.0210 (11) | 0.0210 (11) | 0.0021 (9) | −0.0005 (9) | 0.0076 (9) |
O7 | 0.0192 (11) | 0.0223 (12) | 0.0174 (11) | 0.0058 (9) | 0.0032 (9) | 0.0049 (9) |
O8 | 0.0263 (13) | 0.0234 (12) | 0.0177 (11) | 0.0059 (10) | −0.0017 (10) | 0.0044 (10) |
O11 | 0.0397 (16) | 0.0380 (15) | 0.0203 (12) | 0.0122 (13) | 0.0049 (11) | 0.0135 (12) |
O10 | 0.0307 (15) | 0.0387 (16) | 0.0402 (17) | 0.0067 (13) | 0.0160 (13) | 0.0033 (14) |
O9 | 0.0339 (16) | 0.0243 (14) | 0.077 (2) | 0.0142 (12) | 0.0268 (16) | 0.0006 (15) |
O12A | 0.0231 (17) | 0.0188 (15) | 0.025 (2) | 0.0113 (13) | 0.011 (2) | 0.012 (2) |
O12B | 0.0231 (17) | 0.0188 (15) | 0.025 (2) | 0.0113 (13) | 0.011 (2) | 0.012 (2) |
Mn—O2 | 2.119 (2) | C1—C2 | 1.403 (4) |
Mn—O1 | 2.171 (2) | C1—H1A | 0.9300 |
Mn—N4 | 2.251 (3) | C2—C3 | 1.368 (5) |
Mn—N1 | 2.264 (3) | C2—H2A | 0.9300 |
Mn—N3 | 2.279 (3) | C3—C4 | 1.405 (5) |
Mn—N2 | 2.282 (3) | C3—H3A | 0.9300 |
O1—H1B | 0.8549 | C4—C12 | 1.413 (4) |
O1—H1C | 0.8553 | C4—C5 | 1.439 (4) |
O2—H2B | 0.8511 | C5—C6 | 1.345 (5) |
O2—H2C | 0.8548 | C5—H5A | 0.9300 |
N3—C13 | 1.326 (4) | C6—C7 | 1.434 (4) |
N3—C24 | 1.362 (4) | C6—H6A | 0.9300 |
N4—C22 | 1.337 (4) | C7—C8 | 1.410 (5) |
N4—C23 | 1.363 (4) | C7—C11 | 1.413 (4) |
C13—C14 | 1.409 (4) | C8—C9 | 1.374 (5) |
C13—H13A | 0.9300 | C8—H8A | 0.9300 |
C14—C15 | 1.372 (5) | C9—C10 | 1.402 (4) |
C14—H14A | 0.9300 | C9—H9A | 0.9300 |
C15—C16 | 1.415 (4) | C10—H10A | 0.9300 |
C15—H15A | 0.9300 | C11—C12 | 1.449 (4) |
C16—C24 | 1.411 (4) | S—O6 | 1.471 (2) |
C16—C17 | 1.440 (4) | S—O4 | 1.471 (2) |
C17—C18 | 1.358 (5) | S—O5 | 1.486 (2) |
C17—H17A | 0.9300 | S—O3 | 1.488 (2) |
C18—C19 | 1.430 (4) | O7—H7A | 0.8553 |
C18—H18A | 0.9300 | O7—H7B | 0.8584 |
C19—C23 | 1.413 (4) | O8—H8B | 0.8548 |
C19—C20 | 1.413 (4) | O8—H8C | 0.8587 |
C20—C21 | 1.364 (5) | O11—H11A | 0.7729 |
C20—H20A | 0.9300 | O11—H11B | 0.8533 |
C21—C22 | 1.399 (4) | O10—H10C | 0.8590 |
C21—H21A | 0.9300 | O10—H10B | 0.8503 |
C22—H22A | 0.9300 | O9—H9B | 0.8535 |
C23—C24 | 1.445 (4) | O9—H9C | 0.8577 |
N1—C1 | 1.330 (4) | O12A—H12A | 1.1482 |
N1—C12 | 1.359 (4) | O12B—H12A | 0.8306 |
N2—C10 | 1.324 (4) | O12B—H12B | 0.8628 |
N2—C11 | 1.358 (4) | ||
O2—Mn—O1 | 86.91 (9) | C19—C23—C24 | 119.4 (3) |
O2—Mn—N4 | 108.48 (9) | N3—C24—C16 | 122.8 (3) |
O1—Mn—N4 | 92.43 (9) | N3—C24—C23 | 117.7 (3) |
O2—Mn—N1 | 90.40 (9) | C16—C24—C23 | 119.5 (3) |
O1—Mn—N1 | 102.38 (9) | C1—N1—C12 | 117.8 (3) |
N4—Mn—N1 | 156.70 (9) | C1—N1—Mn | 126.8 (2) |
O2—Mn—N3 | 95.75 (9) | C12—N1—Mn | 115.40 (19) |
O1—Mn—N3 | 165.99 (9) | C10—N2—C11 | 118.4 (3) |
N4—Mn—N3 | 73.66 (9) | C10—N2—Mn | 127.0 (2) |
N1—Mn—N3 | 91.38 (9) | C11—N2—Mn | 114.51 (19) |
O2—Mn—N2 | 160.56 (9) | N1—C1—C2 | 123.5 (3) |
O1—Mn—N2 | 85.55 (9) | N1—C1—H1A | 118.3 |
N4—Mn—N2 | 89.74 (9) | C2—C1—H1A | 118.3 |
N1—Mn—N2 | 73.81 (10) | C3—C2—C1 | 118.8 (3) |
N3—Mn—N2 | 95.89 (9) | C3—C2—H2A | 120.6 |
Mn—O1—H1B | 125.4 | C1—C2—H2A | 120.6 |
Mn—O1—H1C | 127.7 | C2—C3—C4 | 119.8 (3) |
H1B—O1—H1C | 105.3 | C2—C3—H3A | 120.1 |
Mn—O2—H2B | 110.5 | C4—C3—H3A | 120.1 |
Mn—O2—H2C | 128.3 | C3—C4—C12 | 117.4 (3) |
H2B—O2—H2C | 108.8 | C3—C4—C5 | 122.8 (3) |
C13—N3—C24 | 118.0 (3) | C12—C4—C5 | 119.7 (3) |
C13—N3—Mn | 127.2 (2) | C6—C5—C4 | 120.4 (3) |
C24—N3—Mn | 114.30 (18) | C6—C5—H5A | 119.8 |
C22—N4—C23 | 118.0 (3) | C4—C5—H5A | 119.8 |
C22—N4—Mn | 126.4 (2) | C5—C6—C7 | 121.9 (3) |
C23—N4—Mn | 115.07 (19) | C5—C6—H6A | 119.0 |
N3—C13—C14 | 123.4 (3) | C7—C6—H6A | 119.0 |
N3—C13—H13A | 118.3 | C8—C7—C11 | 117.4 (3) |
C14—C13—H13A | 118.3 | C8—C7—C6 | 123.2 (3) |
C15—C14—C13 | 118.9 (3) | C11—C7—C6 | 119.4 (3) |
C15—C14—H14A | 120.6 | C9—C8—C7 | 119.5 (3) |
C13—C14—H14A | 120.6 | C9—C8—H8A | 120.3 |
C14—C15—C16 | 119.5 (3) | C7—C8—H8A | 120.3 |
C14—C15—H15A | 120.2 | C8—C9—C10 | 119.0 (3) |
C16—C15—H15A | 120.2 | C8—C9—H9A | 120.5 |
C24—C16—C15 | 117.4 (3) | C10—C9—H9A | 120.5 |
C24—C16—C17 | 119.7 (3) | N2—C10—C9 | 123.2 (3) |
C15—C16—C17 | 122.9 (3) | N2—C10—H10A | 118.4 |
C18—C17—C16 | 120.3 (3) | C9—C10—H10A | 118.4 |
C18—C17—H17A | 119.9 | N2—C11—C7 | 122.5 (3) |
C16—C17—H17A | 119.9 | N2—C11—C12 | 118.4 (3) |
C17—C18—C19 | 121.7 (3) | C7—C11—C12 | 119.1 (3) |
C17—C18—H18A | 119.2 | N1—C12—C4 | 122.7 (3) |
C19—C18—H18A | 119.2 | N1—C12—C11 | 117.8 (3) |
C23—C19—C20 | 117.5 (3) | C4—C12—C11 | 119.5 (3) |
C23—C19—C18 | 119.4 (3) | O6—S—O4 | 110.88 (14) |
C20—C19—C18 | 123.1 (3) | O6—S—O5 | 109.53 (14) |
C21—C20—C19 | 119.1 (3) | O4—S—O5 | 109.66 (13) |
C21—C20—H20A | 120.4 | O6—S—O3 | 109.29 (14) |
C19—C20—H20A | 120.4 | O4—S—O3 | 109.25 (14) |
C20—C21—C22 | 120.1 (3) | O5—S—O3 | 108.16 (14) |
C20—C21—H21A | 120.0 | H7A—O7—H7B | 103.2 |
C22—C21—H21A | 120.0 | H8B—O8—H8C | 98.4 |
N4—C22—C21 | 122.6 (3) | H11A—O11—H11B | 109.4 |
N4—C22—H22A | 118.7 | H10C—O10—H10B | 115.7 |
C21—C22—H22A | 118.7 | H9B—O9—H9C | 100.2 |
N4—C23—C19 | 122.7 (3) | H12A—O12B—H12B | 88.5 |
N4—C23—C24 | 117.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O5 | 0.86 | 1.82 | 2.670 (4) | 174 |
O1—H1C···O7 | 0.86 | 1.99 | 2.843 (3) | 178 |
O2—H2B···O3 | 0.85 | 1.83 | 2.656 (3) | 164 |
O2—H2C···O3i | 0.86 | 1.84 | 2.684 (3) | 168 |
O7—H7A···O8ii | 0.86 | 2.00 | 2.856 (3) | 176 |
O7—H7B···O10ii | 0.86 | 1.98 | 2.799 (4) | 160 |
O8—H8B···O6 | 0.86 | 2.01 | 2.842 (4) | 165 |
O8—H8C···O11iii | 0.86 | 1.93 | 2.778 (4) | 171 |
O9—H9B···O5 | 0.85 | 1.85 | 2.704 (4) | 174 |
O9—H9C···O12A | 0.86 | 1.98 | 2.617 (7) | 131 |
O10—H10B···O9iv | 0.85 | 2.04 | 2.836 (5) | 157 |
O10—H10C···O9ii | 0.86 | 2.02 | 2.875 (5) | 172 |
O11—H11A···O12Bv | 0.77 | 1.93 | 2.691 (7) | 166 |
O11—H11B···O6 | 0.85 | 1.98 | 2.813 (4) | 167 |
O12A—H12A···O4 | 1.15 | 1.87 | 2.827 (6) | 138 |
O12B—H12B···O4v | 0.86 | 2.01 | 2.851 (6) | 164 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C12H8N2)2(H2O)2]SO4·6H2O |
Mr | 655.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.153 (2), 12.086 (2), 13.309 (3) |
α, β, γ (°) | 109.55 (3), 91.79 (3), 110.56 (3) |
V (Å3) | 1420.2 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.29 × 0.24 × 0.19 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.680, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13888, 6388, 5780 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.147, 1.19 |
No. of reflections | 6388 |
No. of parameters | 382 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.58 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O5 | 0.86 | 1.82 | 2.670 (4) | 174 |
O1—H1C···O7 | 0.86 | 1.99 | 2.843 (3) | 178 |
O2—H2B···O3 | 0.85 | 1.83 | 2.656 (3) | 164 |
O2—H2C···O3i | 0.86 | 1.84 | 2.684 (3) | 168 |
O7—H7A···O8ii | 0.86 | 2.00 | 2.856 (3) | 176 |
O7—H7B···O10ii | 0.86 | 1.98 | 2.799 (4) | 160 |
O8—H8B···O6 | 0.86 | 2.01 | 2.842 (4) | 165 |
O8—H8C···O11iii | 0.86 | 1.93 | 2.778 (4) | 171 |
O9—H9B···O5 | 0.85 | 1.85 | 2.704 (4) | 174 |
O9—H9C···O12A | 0.86 | 1.98 | 2.617 (7) | 131 |
O10—H10B···O9iv | 0.85 | 2.04 | 2.836 (5) | 157 |
O10—H10C···O9ii | 0.86 | 2.02 | 2.875 (5) | 172 |
O11—H11A···O12Bv | 0.77 | 1.93 | 2.691 (7) | 166 |
O11—H11B···O6 | 0.85 | 1.98 | 2.813 (4) | 167 |
O12A—H12A···O4 | 1.15 | 1.87 | 2.827 (6) | 138 |
O12B—H12B···O4v | 0.86 | 2.01 | 2.851 (6) | 164 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y+1, −z. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Scince and Technology Department of Zhejiang Province (grant No. 2006 C21105), the Scientific Research Fund of Ningbo University (grant No. XYL09078) and the Education Department of Zhejiang Province. Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.
References
Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lehn, J. M. (2007). Chem. Soc. Rev. 36, 151–160. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sangeetha, N. M. & Maitra, U. (2005). Chem. Soc. Rev. 34, 821–836. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502–518. Web of Science CrossRef CAS Google Scholar
Zhang, X. F., Huand, D. G., Chen, F., Chen, C. N. & Liu, Q. T. (2003). Chin. J. Struct. Chem. 22, 525–528. CAS Google Scholar
Zhang, L.-P., Zhu, L.-G. & Cai, G.-Q. (2005). Acta Cryst. E61, m2634–m2636. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, Y. Q., Lin, J. L. & Chen, B. Y. (2003). J. Mol. Struct. 646, 51–159. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Construction of supramolecular architectures with interesting physical properties have been one of the most active fields in supramolecular chemistry, coordination chemistry and materials science owing to their potential use as new functional materials (Sangeetha et al., 2005; Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Stang et al., 1997). Here, we report a Mn(II) complex {[Mn(H2O)2(C12H8N2)]SO4}.6H2O.
The asymmetric unit contains a [Mn(H2O)2(C12H8N2)]2+ cation, one sulfate anion and six lattice H2O molecules (Fig. 1). In the complex cations, the coordination geometry about the Mn atom is best considered as distorted octahedral, defined by four N atoms of two 1,10-phenanthroline (phen) ligands and two H2O molecules at the cis positions. The [Mn(H2O)2(C12H8N2)]2+ cation can be found in several previously reported complexes (Devereux et al., 2000; Zheng et al., 2003; Zhang et al., 2003; Zhang et al., 2005), with a similar coordination geometry. The Mn-N bond distances fall in the range 2.250 (4) to 2.318 (4) Å, and the Mn-O bond distances are 2.146 (3) and 2.177 (3) Å (Zheng et al., 2003), respectively (Table 1). The cisoid and transoid angles about the central Mn atom vary from 74.06 (1) - 107.21 (2)° and 156.21 (2) - 166.50 (2)° (Table 1), respectively. All the bonding parameters are normal according to the similar coordination geometries reported. This fact indicates that the octahedral coordination of Mn atoms is severely distorted. Around the central Mn atom, both chelating phen planes orientate nearly perpendicularly to each other dihedral angle: 86.29 (8)°. The complex cations are arranged in such a way that each phen ligand containing N1 and N2 atoms are sandwiched by two symmetry-related, antiparallel phen ligands from different cations with the distances of 3.410 (6) Å forming a chain along the [100] direction, and along the [001] direction the phen ligand containing N3 and N4 atoms face to only one symmetry-related phen of the cation in next chain with the distance of 3.465 (5) Å. This implies that significant intermolecular π–π stacking interactions play vital roles in assembling the complex cations into two-dimensional positively charged layers parallel to (010) (Fig. 2). What's more, the sulfate anions and crystal water molecules form two-dimensional negatively charged layer parallel to (010) (Fig. 3) through extensive hydrogen bonds (Table 2).
As shown in Fig. 4, the the positive and negative two-dimensional sheets arrange alternatively and the two coordinational water molecules in the positive layers share their H atoms with O3 and O5 in sulfate anions and O7 of one lattic water molecule (Table 2) forming three-dimensional architecture. Hence, the crystal structure is further stabilized by interlayer hydrogen bonds. Both the positive and negative two-dimensional sheets are stack along the [010] direction in an ···ABAB··· sequence, and the layers A is shifted by a along the [100] direction with respect to the layers B (Fig. 4).