metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) sulfate hexa­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn

(Received 9 August 2010; accepted 17 October 2010; online 23 October 2010)

In the title compound, [Mn(C12H8N2)2(H2O)2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010) via inter­molecular ππ stacking inter­actions with a mean interplanar distance of 3.410 (6) along [100] and 3.465 (5) Å along [001]. The sulfate anions and uncoordinated water mol­ecules are inter­connected between these layers by hydrogen bonds, forming negatively charged layers which are linked to the positive layers through O—H⋯O hydrogen bonds, forming a three-dimensional architecture. Both the positive and negative sheets are stacked along [010] in an ⋯ABAB⋯ sequence, the A layers being shifted by 1/2a along [100] with respect to the B layers. One of the uncoordinated water molecules is equally disordered over two positions.

Related literature

For general background, see: Sangeetha & Maitra (2005[Sangeetha, N. M. & Maitra, U. (2005). Chem. Soc. Rev. 34, 821-836.]); Lehn (2007[Lehn, J. M. (2007). Chem. Soc. Rev. 36, 151-160.]); Stang & Olenyuk (1997[Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502-518.]). For related structures, see: Devereux et al. (2000[Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205-1211.]); Zheng et al. (2003[Zheng, Y. Q., Lin, J. L. & Chen, B. Y. (2003). J. Mol. Struct. 646, 51-159.]); Zhang et al. (2003[Zhang, X. F., Huand, D. G., Chen, F., Chen, C. N. & Liu, Q. T. (2003). Chin. J. Struct. Chem. 22, 525-528.], 2005[Zhang, L.-P., Zhu, L.-G. & Cai, G.-Q. (2005). Acta Cryst. E61, m2634-m2636.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H8N2)2(H2O)2]SO4·6H2O

  • Mr = 655.54

  • Triclinic, [P \overline 1]

  • a = 10.153 (2) Å

  • b = 12.086 (2) Å

  • c = 13.309 (3) Å

  • α = 109.55 (3)°

  • β = 91.79 (3)°

  • γ = 110.56 (3)°

  • V = 1420.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.29 × 0.24 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.680, Tmax = 0.843

  • 13888 measured reflections

  • 6388 independent reflections

  • 5780 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.19

  • 6388 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O5 0.86 1.82 2.670 (4) 174
O1—H1C⋯O7 0.86 1.99 2.843 (3) 178
O2—H2B⋯O3 0.85 1.83 2.656 (3) 164
O2—H2C⋯O3i 0.86 1.84 2.684 (3) 168
O7—H7A⋯O8ii 0.86 2.00 2.856 (3) 176
O7—H7B⋯O10ii 0.86 1.98 2.799 (4) 160
O8—H8B⋯O6 0.86 2.01 2.842 (4) 165
O8—H8C⋯O11iii 0.86 1.93 2.778 (4) 171
O9—H9B⋯O5 0.85 1.85 2.704 (4) 174
O9—H9C⋯O12A 0.86 1.98 2.617 (7) 131
O10—H10B⋯O9iv 0.85 2.04 2.836 (5) 157
O10—H10C⋯O9ii 0.86 2.02 2.875 (5) 172
O11—H11A⋯O12Bv 0.77 1.93 2.691 (7) 166
O11—H11B⋯O6 0.85 1.98 2.813 (4) 167
O12A—H12A⋯O4 1.15 1.87 2.827 (6) 138
O12B—H12B⋯O4v 0.86 2.01 2.851 (6) 164
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) x+1, y, z; (v) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Construction of supramolecular architectures with interesting physical properties have been one of the most active fields in supramolecular chemistry, coordination chemistry and materials science owing to their potential use as new functional materials (Sangeetha et al., 2005; Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Stang et al., 1997). Here, we report a Mn(II) complex {[Mn(H2O)2(C12H8N2)]SO4}.6H2O.

The asymmetric unit contains a [Mn(H2O)2(C12H8N2)]2+ cation, one sulfate anion and six lattice H2O molecules (Fig. 1). In the complex cations, the coordination geometry about the Mn atom is best considered as distorted octahedral, defined by four N atoms of two 1,10-phenanthroline (phen) ligands and two H2O molecules at the cis positions. The [Mn(H2O)2(C12H8N2)]2+ cation can be found in several previously reported complexes (Devereux et al., 2000; Zheng et al., 2003; Zhang et al., 2003; Zhang et al., 2005), with a similar coordination geometry. The Mn-N bond distances fall in the range 2.250 (4) to 2.318 (4) Å, and the Mn-O bond distances are 2.146 (3) and 2.177 (3) Å (Zheng et al., 2003), respectively (Table 1). The cisoid and transoid angles about the central Mn atom vary from 74.06 (1) - 107.21 (2)° and 156.21 (2) - 166.50 (2)° (Table 1), respectively. All the bonding parameters are normal according to the similar coordination geometries reported. This fact indicates that the octahedral coordination of Mn atoms is severely distorted. Around the central Mn atom, both chelating phen planes orientate nearly perpendicularly to each other dihedral angle: 86.29 (8)°. The complex cations are arranged in such a way that each phen ligand containing N1 and N2 atoms are sandwiched by two symmetry-related, antiparallel phen ligands from different cations with the distances of 3.410 (6) Å forming a chain along the [100] direction, and along the [001] direction the phen ligand containing N3 and N4 atoms face to only one symmetry-related phen of the cation in next chain with the distance of 3.465 (5) Å. This implies that significant intermolecular ππ stacking interactions play vital roles in assembling the complex cations into two-dimensional positively charged layers parallel to (010) (Fig. 2). What's more, the sulfate anions and crystal water molecules form two-dimensional negatively charged layer parallel to (010) (Fig. 3) through extensive hydrogen bonds (Table 2).

As shown in Fig. 4, the the positive and negative two-dimensional sheets arrange alternatively and the two coordinational water molecules in the positive layers share their H atoms with O3 and O5 in sulfate anions and O7 of one lattic water molecule (Table 2) forming three-dimensional architecture. Hence, the crystal structure is further stabilized by interlayer hydrogen bonds. Both the positive and negative two-dimensional sheets are stack along the [010] direction in an ···ABAB··· sequence, and the layers A is shifted by a along the [100] direction with respect to the layers B (Fig. 4).

Related literature top

For general background, see: Sangeetha et al. (2005); Lehn (2007); Stang et al. (1997). For related structures, see: Devereux et al. (2000); Zheng et al. (2003); Zhang et al. (2003, 2005).

Experimental top

MnSO4.H2O (0.2253 g, 1.330 mmol), H2NCH2COOH (0.1009 g, 1.330 mmol) and 1,10-phenanthroline mono-hydrate (0.2644 g, 1.330 mmol) were completely dissolved in 20 ml mixed solvent of H2O and CH3OH (Vw:Ve = 1:1) under stirring. The resulting yellow solution was further stirred for 5 min forming yellowish precipitate. After the suspension was filtrated, the filtrate was allowed to stand at room temperature. The yellow transparent crystals were obtained 10 days later.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Structure description top

Construction of supramolecular architectures with interesting physical properties have been one of the most active fields in supramolecular chemistry, coordination chemistry and materials science owing to their potential use as new functional materials (Sangeetha et al., 2005; Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Stang et al., 1997). Here, we report a Mn(II) complex {[Mn(H2O)2(C12H8N2)]SO4}.6H2O.

The asymmetric unit contains a [Mn(H2O)2(C12H8N2)]2+ cation, one sulfate anion and six lattice H2O molecules (Fig. 1). In the complex cations, the coordination geometry about the Mn atom is best considered as distorted octahedral, defined by four N atoms of two 1,10-phenanthroline (phen) ligands and two H2O molecules at the cis positions. The [Mn(H2O)2(C12H8N2)]2+ cation can be found in several previously reported complexes (Devereux et al., 2000; Zheng et al., 2003; Zhang et al., 2003; Zhang et al., 2005), with a similar coordination geometry. The Mn-N bond distances fall in the range 2.250 (4) to 2.318 (4) Å, and the Mn-O bond distances are 2.146 (3) and 2.177 (3) Å (Zheng et al., 2003), respectively (Table 1). The cisoid and transoid angles about the central Mn atom vary from 74.06 (1) - 107.21 (2)° and 156.21 (2) - 166.50 (2)° (Table 1), respectively. All the bonding parameters are normal according to the similar coordination geometries reported. This fact indicates that the octahedral coordination of Mn atoms is severely distorted. Around the central Mn atom, both chelating phen planes orientate nearly perpendicularly to each other dihedral angle: 86.29 (8)°. The complex cations are arranged in such a way that each phen ligand containing N1 and N2 atoms are sandwiched by two symmetry-related, antiparallel phen ligands from different cations with the distances of 3.410 (6) Å forming a chain along the [100] direction, and along the [001] direction the phen ligand containing N3 and N4 atoms face to only one symmetry-related phen of the cation in next chain with the distance of 3.465 (5) Å. This implies that significant intermolecular ππ stacking interactions play vital roles in assembling the complex cations into two-dimensional positively charged layers parallel to (010) (Fig. 2). What's more, the sulfate anions and crystal water molecules form two-dimensional negatively charged layer parallel to (010) (Fig. 3) through extensive hydrogen bonds (Table 2).

As shown in Fig. 4, the the positive and negative two-dimensional sheets arrange alternatively and the two coordinational water molecules in the positive layers share their H atoms with O3 and O5 in sulfate anions and O7 of one lattic water molecule (Table 2) forming three-dimensional architecture. Hence, the crystal structure is further stabilized by interlayer hydrogen bonds. Both the positive and negative two-dimensional sheets are stack along the [010] direction in an ···ABAB··· sequence, and the layers A is shifted by a along the [100] direction with respect to the layers B (Fig. 4).

For general background, see: Sangeetha et al. (2005); Lehn (2007); Stang et al. (1997). For related structures, see: Devereux et al. (2000); Zheng et al. (2003); Zhang et al. (2003, 2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability level.
[Figure 2] Fig. 2. The positively charged two-dimensional layer of the complex cations pallel to (010).
[Figure 3] Fig. 3. The negatively charged two-dimensional layer of the sulfate anions and crystal water molecules pallel to (010).
[Figure 4] Fig. 4. The three-dimensional structure of the title compound.
Diaquabis(1,10-phenanthroline-κ2N,N')manganese(II) sulfate hexahydrate top
Crystal data top
[Mn(C12H8N2)2(H2O)2]SO4·6H2OZ = 2
Mr = 655.54F(000) = 682
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.153 (2) ÅCell parameters from 13888 reflections
b = 12.086 (2) Åθ = 3.0–27.5°
c = 13.309 (3) ŵ = 0.61 mm1
α = 109.55 (3)°T = 293 K
β = 91.79 (3)°Block, yellow
γ = 110.56 (3)°0.29 × 0.24 × 0.19 mm
V = 1420.2 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6388 independent reflections
Radiation source: fine-focus sealed tube5780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.680, Tmax = 0.843l = 1717
13888 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0566P)2 + 3.5944P]
where P = (Fo2 + 2Fc2)/3
6388 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Mn(C12H8N2)2(H2O)2]SO4·6H2Oγ = 110.56 (3)°
Mr = 655.54V = 1420.2 (5) Å3
Triclinic, P1Z = 2
a = 10.153 (2) ÅMo Kα radiation
b = 12.086 (2) ŵ = 0.61 mm1
c = 13.309 (3) ÅT = 293 K
α = 109.55 (3)°0.29 × 0.24 × 0.19 mm
β = 91.79 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6388 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5780 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.843Rint = 0.022
13888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.19Δρmax = 0.56 e Å3
6388 reflectionsΔρmin = 0.58 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.74982 (5)0.06218 (4)0.25508 (3)0.01016 (12)
O10.7338 (2)0.2453 (2)0.33132 (17)0.0170 (4)
H1B0.69700.28090.29940.020*
H1C0.77920.30340.39230.020*
O20.5755 (2)0.0179 (2)0.13690 (17)0.0160 (4)
H2B0.58680.08080.11780.019*
H2C0.53320.05090.08220.019*
N30.8118 (3)0.1022 (2)0.15971 (19)0.0121 (5)
N40.9536 (3)0.1485 (2)0.1978 (2)0.0123 (5)
C130.7410 (3)0.2248 (3)0.1397 (2)0.0150 (6)
H13A0.64980.25030.15690.018*
C140.7967 (3)0.3184 (3)0.0935 (2)0.0174 (6)
H14A0.74350.40340.08110.021*
C150.9308 (3)0.2821 (3)0.0672 (2)0.0173 (6)
H15A0.96980.34240.03710.021*
C161.0095 (3)0.1523 (3)0.0864 (2)0.0147 (6)
C171.1511 (3)0.1066 (3)0.0616 (2)0.0166 (6)
H17A1.19420.16350.03110.020*
C181.2219 (3)0.0193 (3)0.0826 (2)0.0178 (6)
H18A1.31370.04740.06700.021*
C191.1588 (3)0.1097 (3)0.1280 (2)0.0144 (6)
C201.2288 (3)0.2411 (3)0.1497 (2)0.0175 (6)
H20A1.32090.27320.13560.021*
C211.1596 (3)0.3203 (3)0.1916 (3)0.0186 (6)
H21A1.20360.40660.20470.022*
C221.0223 (3)0.2718 (3)0.2150 (2)0.0149 (6)
H22A0.97700.32740.24370.018*
C231.0203 (3)0.0679 (3)0.1537 (2)0.0115 (5)
C240.9445 (3)0.0657 (3)0.1328 (2)0.0112 (5)
N10.6023 (3)0.0581 (2)0.3357 (2)0.0127 (5)
N20.8784 (3)0.1072 (2)0.4174 (2)0.0130 (5)
C10.4671 (3)0.1373 (3)0.2970 (3)0.0165 (6)
H1A0.42590.14410.23070.020*
C20.3832 (3)0.2111 (3)0.3509 (3)0.0204 (6)
H2A0.28910.26550.32080.024*
C30.4425 (4)0.2017 (3)0.4487 (3)0.0193 (6)
H3A0.38890.25020.48550.023*
C40.5847 (3)0.1184 (3)0.4934 (2)0.0163 (6)
C50.6523 (4)0.1002 (3)0.5975 (3)0.0205 (7)
H5A0.60340.14840.63620.025*
C60.7860 (4)0.0138 (3)0.6393 (3)0.0209 (7)
H6A0.82660.00140.70770.025*
C70.8677 (3)0.0597 (3)0.5812 (2)0.0154 (6)
C81.0075 (3)0.1515 (3)0.6232 (2)0.0190 (6)
H8A1.05090.16780.69200.023*
C91.0791 (3)0.2168 (3)0.5617 (3)0.0186 (6)
H9A1.17160.27720.58800.022*
C101.0105 (3)0.1909 (3)0.4585 (2)0.0153 (6)
H10A1.06020.23460.41700.018*
C110.8066 (3)0.0417 (3)0.4773 (2)0.0124 (5)
C120.6609 (3)0.0479 (3)0.4332 (2)0.0122 (5)
S0.63189 (8)0.32046 (7)0.10157 (6)0.01227 (16)
O30.5795 (2)0.1805 (2)0.04230 (18)0.0182 (5)
O40.5424 (2)0.3715 (2)0.05688 (18)0.0192 (5)
O50.6208 (3)0.3446 (2)0.21746 (18)0.0213 (5)
O60.7820 (2)0.3794 (2)0.09130 (18)0.0196 (5)
O70.8819 (2)0.4348 (2)0.53612 (18)0.0210 (5)
H7A0.91640.43670.59640.025*
H7B0.82010.46830.55350.025*
O81.0157 (3)0.5572 (2)0.25819 (19)0.0246 (5)
H8B0.93580.50720.21700.029*
H8C1.06530.57110.20940.029*
O110.8003 (3)0.3984 (3)0.1132 (2)0.0327 (6)
H11A0.73450.41240.12640.039*
H11B0.79490.38090.05610.039*
O101.3026 (3)0.4366 (3)0.4498 (3)0.0414 (7)
H10C1.34690.45380.51250.050*
H10B1.35510.45210.40370.050*
O90.5397 (3)0.5248 (3)0.3499 (3)0.0487 (9)
H9B0.56230.46830.30430.058*
H9C0.55540.57890.31900.058*
O12A0.4571 (6)0.5666 (5)0.1826 (4)0.0202 (8)0.50
O12B0.4397 (6)0.5565 (5)0.1271 (4)0.0202 (8)0.50
H12A0.46890.49810.10280.024*
H12B0.46180.57730.07200.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0099 (2)0.0115 (2)0.0100 (2)0.00457 (16)0.00130 (15)0.00454 (17)
O10.0218 (11)0.0155 (10)0.0132 (10)0.0094 (9)0.0018 (8)0.0028 (8)
O20.0177 (11)0.0131 (10)0.0150 (10)0.0055 (8)0.0044 (8)0.0039 (8)
N30.0123 (11)0.0120 (11)0.0107 (11)0.0039 (9)0.0007 (9)0.0035 (9)
N40.0121 (11)0.0124 (11)0.0114 (11)0.0043 (9)0.0003 (9)0.0038 (9)
C130.0130 (14)0.0153 (14)0.0148 (14)0.0039 (11)0.0007 (11)0.0051 (12)
C140.0202 (15)0.0123 (14)0.0171 (14)0.0051 (12)0.0022 (12)0.0039 (12)
C150.0218 (15)0.0186 (15)0.0144 (14)0.0131 (13)0.0020 (12)0.0041 (12)
C160.0149 (14)0.0193 (14)0.0100 (13)0.0081 (12)0.0003 (11)0.0042 (11)
C170.0167 (14)0.0248 (16)0.0143 (14)0.0140 (13)0.0032 (11)0.0080 (12)
C180.0104 (13)0.0289 (17)0.0152 (14)0.0084 (12)0.0035 (11)0.0084 (13)
C190.0126 (14)0.0193 (14)0.0109 (13)0.0054 (12)0.0001 (11)0.0059 (11)
C200.0131 (14)0.0203 (15)0.0154 (14)0.0004 (12)0.0025 (11)0.0084 (12)
C210.0181 (15)0.0168 (14)0.0176 (15)0.0011 (12)0.0011 (12)0.0082 (12)
C220.0179 (14)0.0128 (13)0.0130 (13)0.0045 (11)0.0009 (11)0.0052 (11)
C230.0117 (13)0.0147 (13)0.0075 (12)0.0053 (11)0.0000 (10)0.0031 (11)
C240.0110 (13)0.0135 (13)0.0066 (12)0.0045 (11)0.0020 (10)0.0011 (10)
N10.0136 (12)0.0128 (11)0.0113 (11)0.0057 (10)0.0026 (9)0.0034 (9)
N20.0148 (12)0.0116 (11)0.0129 (11)0.0059 (10)0.0017 (9)0.0040 (10)
C10.0144 (14)0.0187 (15)0.0146 (14)0.0046 (12)0.0028 (11)0.0057 (12)
C20.0153 (15)0.0183 (15)0.0209 (15)0.0014 (12)0.0066 (12)0.0041 (13)
C30.0207 (16)0.0143 (14)0.0199 (15)0.0034 (12)0.0088 (12)0.0059 (12)
C40.0198 (15)0.0159 (14)0.0157 (14)0.0086 (12)0.0069 (12)0.0067 (12)
C50.0278 (17)0.0248 (16)0.0161 (15)0.0123 (14)0.0088 (13)0.0133 (13)
C60.0261 (17)0.0300 (17)0.0148 (14)0.0149 (14)0.0055 (13)0.0138 (14)
C70.0185 (15)0.0191 (14)0.0124 (13)0.0110 (12)0.0029 (11)0.0064 (12)
C80.0205 (15)0.0238 (16)0.0134 (14)0.0112 (13)0.0028 (12)0.0051 (13)
C90.0149 (14)0.0182 (15)0.0193 (15)0.0064 (12)0.0039 (12)0.0035 (12)
C100.0158 (14)0.0146 (14)0.0137 (14)0.0059 (12)0.0006 (11)0.0033 (11)
C110.0153 (14)0.0128 (13)0.0107 (13)0.0076 (11)0.0014 (11)0.0040 (11)
C120.0139 (13)0.0126 (13)0.0120 (13)0.0070 (11)0.0042 (11)0.0045 (11)
S0.0131 (3)0.0125 (3)0.0120 (3)0.0064 (3)0.0007 (3)0.0041 (3)
O30.0199 (11)0.0144 (10)0.0170 (11)0.0047 (9)0.0016 (9)0.0043 (9)
O40.0209 (11)0.0241 (12)0.0194 (11)0.0146 (10)0.0030 (9)0.0102 (10)
O50.0306 (13)0.0261 (12)0.0143 (11)0.0182 (11)0.0062 (9)0.0080 (10)
O60.0126 (10)0.0210 (11)0.0210 (11)0.0021 (9)0.0005 (9)0.0076 (9)
O70.0192 (11)0.0223 (12)0.0174 (11)0.0058 (9)0.0032 (9)0.0049 (9)
O80.0263 (13)0.0234 (12)0.0177 (11)0.0059 (10)0.0017 (10)0.0044 (10)
O110.0397 (16)0.0380 (15)0.0203 (12)0.0122 (13)0.0049 (11)0.0135 (12)
O100.0307 (15)0.0387 (16)0.0402 (17)0.0067 (13)0.0160 (13)0.0033 (14)
O90.0339 (16)0.0243 (14)0.077 (2)0.0142 (12)0.0268 (16)0.0006 (15)
O12A0.0231 (17)0.0188 (15)0.025 (2)0.0113 (13)0.011 (2)0.012 (2)
O12B0.0231 (17)0.0188 (15)0.025 (2)0.0113 (13)0.011 (2)0.012 (2)
Geometric parameters (Å, º) top
Mn—O22.119 (2)C1—C21.403 (4)
Mn—O12.171 (2)C1—H1A0.9300
Mn—N42.251 (3)C2—C31.368 (5)
Mn—N12.264 (3)C2—H2A0.9300
Mn—N32.279 (3)C3—C41.405 (5)
Mn—N22.282 (3)C3—H3A0.9300
O1—H1B0.8549C4—C121.413 (4)
O1—H1C0.8553C4—C51.439 (4)
O2—H2B0.8511C5—C61.345 (5)
O2—H2C0.8548C5—H5A0.9300
N3—C131.326 (4)C6—C71.434 (4)
N3—C241.362 (4)C6—H6A0.9300
N4—C221.337 (4)C7—C81.410 (5)
N4—C231.363 (4)C7—C111.413 (4)
C13—C141.409 (4)C8—C91.374 (5)
C13—H13A0.9300C8—H8A0.9300
C14—C151.372 (5)C9—C101.402 (4)
C14—H14A0.9300C9—H9A0.9300
C15—C161.415 (4)C10—H10A0.9300
C15—H15A0.9300C11—C121.449 (4)
C16—C241.411 (4)S—O61.471 (2)
C16—C171.440 (4)S—O41.471 (2)
C17—C181.358 (5)S—O51.486 (2)
C17—H17A0.9300S—O31.488 (2)
C18—C191.430 (4)O7—H7A0.8553
C18—H18A0.9300O7—H7B0.8584
C19—C231.413 (4)O8—H8B0.8548
C19—C201.413 (4)O8—H8C0.8587
C20—C211.364 (5)O11—H11A0.7729
C20—H20A0.9300O11—H11B0.8533
C21—C221.399 (4)O10—H10C0.8590
C21—H21A0.9300O10—H10B0.8503
C22—H22A0.9300O9—H9B0.8535
C23—C241.445 (4)O9—H9C0.8577
N1—C11.330 (4)O12A—H12A1.1482
N1—C121.359 (4)O12B—H12A0.8306
N2—C101.324 (4)O12B—H12B0.8628
N2—C111.358 (4)
O2—Mn—O186.91 (9)C19—C23—C24119.4 (3)
O2—Mn—N4108.48 (9)N3—C24—C16122.8 (3)
O1—Mn—N492.43 (9)N3—C24—C23117.7 (3)
O2—Mn—N190.40 (9)C16—C24—C23119.5 (3)
O1—Mn—N1102.38 (9)C1—N1—C12117.8 (3)
N4—Mn—N1156.70 (9)C1—N1—Mn126.8 (2)
O2—Mn—N395.75 (9)C12—N1—Mn115.40 (19)
O1—Mn—N3165.99 (9)C10—N2—C11118.4 (3)
N4—Mn—N373.66 (9)C10—N2—Mn127.0 (2)
N1—Mn—N391.38 (9)C11—N2—Mn114.51 (19)
O2—Mn—N2160.56 (9)N1—C1—C2123.5 (3)
O1—Mn—N285.55 (9)N1—C1—H1A118.3
N4—Mn—N289.74 (9)C2—C1—H1A118.3
N1—Mn—N273.81 (10)C3—C2—C1118.8 (3)
N3—Mn—N295.89 (9)C3—C2—H2A120.6
Mn—O1—H1B125.4C1—C2—H2A120.6
Mn—O1—H1C127.7C2—C3—C4119.8 (3)
H1B—O1—H1C105.3C2—C3—H3A120.1
Mn—O2—H2B110.5C4—C3—H3A120.1
Mn—O2—H2C128.3C3—C4—C12117.4 (3)
H2B—O2—H2C108.8C3—C4—C5122.8 (3)
C13—N3—C24118.0 (3)C12—C4—C5119.7 (3)
C13—N3—Mn127.2 (2)C6—C5—C4120.4 (3)
C24—N3—Mn114.30 (18)C6—C5—H5A119.8
C22—N4—C23118.0 (3)C4—C5—H5A119.8
C22—N4—Mn126.4 (2)C5—C6—C7121.9 (3)
C23—N4—Mn115.07 (19)C5—C6—H6A119.0
N3—C13—C14123.4 (3)C7—C6—H6A119.0
N3—C13—H13A118.3C8—C7—C11117.4 (3)
C14—C13—H13A118.3C8—C7—C6123.2 (3)
C15—C14—C13118.9 (3)C11—C7—C6119.4 (3)
C15—C14—H14A120.6C9—C8—C7119.5 (3)
C13—C14—H14A120.6C9—C8—H8A120.3
C14—C15—C16119.5 (3)C7—C8—H8A120.3
C14—C15—H15A120.2C8—C9—C10119.0 (3)
C16—C15—H15A120.2C8—C9—H9A120.5
C24—C16—C15117.4 (3)C10—C9—H9A120.5
C24—C16—C17119.7 (3)N2—C10—C9123.2 (3)
C15—C16—C17122.9 (3)N2—C10—H10A118.4
C18—C17—C16120.3 (3)C9—C10—H10A118.4
C18—C17—H17A119.9N2—C11—C7122.5 (3)
C16—C17—H17A119.9N2—C11—C12118.4 (3)
C17—C18—C19121.7 (3)C7—C11—C12119.1 (3)
C17—C18—H18A119.2N1—C12—C4122.7 (3)
C19—C18—H18A119.2N1—C12—C11117.8 (3)
C23—C19—C20117.5 (3)C4—C12—C11119.5 (3)
C23—C19—C18119.4 (3)O6—S—O4110.88 (14)
C20—C19—C18123.1 (3)O6—S—O5109.53 (14)
C21—C20—C19119.1 (3)O4—S—O5109.66 (13)
C21—C20—H20A120.4O6—S—O3109.29 (14)
C19—C20—H20A120.4O4—S—O3109.25 (14)
C20—C21—C22120.1 (3)O5—S—O3108.16 (14)
C20—C21—H21A120.0H7A—O7—H7B103.2
C22—C21—H21A120.0H8B—O8—H8C98.4
N4—C22—C21122.6 (3)H11A—O11—H11B109.4
N4—C22—H22A118.7H10C—O10—H10B115.7
C21—C22—H22A118.7H9B—O9—H9C100.2
N4—C23—C19122.7 (3)H12A—O12B—H12B88.5
N4—C23—C24117.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O50.861.822.670 (4)174
O1—H1C···O70.861.992.843 (3)178
O2—H2B···O30.851.832.656 (3)164
O2—H2C···O3i0.861.842.684 (3)168
O7—H7A···O8ii0.862.002.856 (3)176
O7—H7B···O10ii0.861.982.799 (4)160
O8—H8B···O60.862.012.842 (4)165
O8—H8C···O11iii0.861.932.778 (4)171
O9—H9B···O50.851.852.704 (4)174
O9—H9C···O12A0.861.982.617 (7)131
O10—H10B···O9iv0.852.042.836 (5)157
O10—H10C···O9ii0.862.022.875 (5)172
O11—H11A···O12Bv0.771.932.691 (7)166
O11—H11B···O60.851.982.813 (4)167
O12A—H12A···O41.151.872.827 (6)138
O12B—H12B···O4v0.862.012.851 (6)164
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C12H8N2)2(H2O)2]SO4·6H2O
Mr655.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.153 (2), 12.086 (2), 13.309 (3)
α, β, γ (°)109.55 (3), 91.79 (3), 110.56 (3)
V3)1420.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.29 × 0.24 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.680, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
13888, 6388, 5780
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.19
No. of reflections6388
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.58

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O50.861.822.670 (4)174
O1—H1C···O70.861.992.843 (3)178
O2—H2B···O30.851.832.656 (3)164
O2—H2C···O3i0.861.842.684 (3)168
O7—H7A···O8ii0.862.002.856 (3)176
O7—H7B···O10ii0.861.982.799 (4)160
O8—H8B···O60.862.012.842 (4)165
O8—H8C···O11iii0.861.932.778 (4)171
O9—H9B···O50.851.852.704 (4)174
O9—H9C···O12A0.861.982.617 (7)131
O10—H10B···O9iv0.852.042.836 (5)157
O10—H10C···O9ii0.862.022.875 (5)172
O11—H11A···O12Bv0.771.932.691 (7)166
O11—H11B···O60.851.982.813 (4)167
O12A—H12A···O41.151.872.827 (6)138
O12B—H12B···O4v0.862.012.851 (6)164
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Scince and Technology Department of Zhejiang Province (grant No. 2006 C21105), the Scientific Research Fund of Ningbo University (grant No. XYL09078) and the Education Department of Zhejiang Province. Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationDevereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLehn, J. M. (2007). Chem. Soc. Rev. 36, 151–160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSangeetha, N. M. & Maitra, U. (2005). Chem. Soc. Rev. 34, 821–836.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502–518.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X. F., Huand, D. G., Chen, F., Chen, C. N. & Liu, Q. T. (2003). Chin. J. Struct. Chem. 22, 525–528.  CAS Google Scholar
First citationZhang, L.-P., Zhu, L.-G. & Cai, G.-Q. (2005). Acta Cryst. E61, m2634–m2636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y. Q., Lin, J. L. & Chen, B. Y. (2003). J. Mol. Struct. 646, 51–159.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds