organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-Benzyl­­idene]-2-hy­dr­oxy-10-methyl-8-phenyl-3,10-di­azahexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(19),12(20),13,15,17-pentaen-6-one ethanol 0.25-solvate 0.6-hydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 August 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C33H28N2O2·0.25C2H6O·0.6H2O, the piperidone ring adopts a chair conformation and the pyrrolidine ring adopts an envelope conformation. The dihedral angle between the two phenyl rings is 70.83 (16)°. One of the N atoms of the organic mol­ecule is disordered over two positions in a 0.52 (4):0.48 (4) ratio and the two solvent mol­ecules are partially occupied and show high displacement parameters. In the crystal, mol­ecules are connected by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For details of 1,3-dipolar cyclo­addition reactions, see: Lown (1984[Lown, J. W. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol, 1, p. 653. New York: Wiley.]); Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 232. San Diego: Academic Press.]); Williams & Fegley (1992[Williams, R. M. & Fegley, G. J. (1992). Tetrahedron Lett. 33, 6755-6758.]); Periyasami et al. (2009[Periyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 959-966.]); Suresh Babu & Raghunathan (2007[Suresh Babu, A. R. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 6809-6813.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C33H28N2O2·0.25C2H6O·0.6H2O

  • Mr = 506.90

  • Tetragonal, [P \overline 42_1 c ]

  • a = 19.3839 (3) Å

  • c = 14.0757 (2) Å

  • V = 5288.74 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.988

  • 23186 measured reflections

  • 4230 independent reflections

  • 3388 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.148

  • S = 1.03

  • 4230 reflections

  • 387 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O1i 0.66 (4) 2.48 (4) 3.117 (5) 164 (5)
C17—H17A⋯O2ii 0.93 2.57 3.287 (6) 134
Symmetry codes: (i) -x+1, -y, z; (ii) y, -x+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular 1,3-dipolar cycloadditions are one of the most useful processes for the construction of five-membered heterocycles containing the pyrrolidine structural unit (Lown, 1984; Tsuge et al., 1989). This method is widely used for the synthesis of natural products such as alkaloids and pharmacologically important compounds (Williams et al., 1992). 1,3-Dipolar cycloaddition of azomethine ylides with definite dipolarophiles provides a way for the synthesis of many dispiroheterocyclic systems (Periyasami et al., 2009; Suresh Babu & Raghunathan, 2007). In view of their biological importance, herein we present the results of the crystal structure determination of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The piperidone (N1/C8/C9/C23–C25) ring adopts a chair conformation [Q = 0.610 (3) Å, θ = 37.6 (3)°, φ = 57.8 (4)° ; Cremer & Pople, 1975]. The pyrrolidine ring N atom disordered over two sites with a refined occupancy ratio of 0.52 (4):0.48 (4). The major (C7/C8/C21/C22/N2A) and minor (C7/C8/C21/C22/N2B) disordered pyrrolidine rings adopt the same envelope conformation with puckering parameters Q(2) = 0.349 (5) Å, φ = 73.0 (15)° for major disordered component and Q(2) = 0.459 (6) Å, φ = 332.4 (10) for minor disordered component. The dihedral angle between the two phenyl rings (C1–C6 and C27–C32) is 70.80 (16)°.

In the crystal packing (Fig. 2), molecules are connected by intermolecular O1—H1O1···O1 and C17—H17A···O2 (Table 1) hydrogen bonds to form a three-dimensional network.

Related literature top

For details of 1,3-dipolar cycloaddition reactions, see: Lown (1984); Tsuge et al. (1989); Williams et al. (1992); Periyasami et al. (2009); Suresh Babu & Raghunathan (2007). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.364 mmol), acenaphthenequinone (0.066 g, 0.364 mmol), and sarcosine (0.032 g, 0.272 mmol) were dissolved in methanol (5 mL) and refluxed for 1 hour. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered, washed with water and recrystallised from pet.ether-ethyl acetate mixture (1:1) to reveal pale yellow blocks of (I).

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. Atom H1O1 was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [O–H = 0.66 (4)–1.1395 Å and C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C, O). A rotating group model was applied to the methyl groups. In the final refinement, the occupancies of the water molecules were fixed at 40% whereas the occupancies of the atoms of the disorder ethanol molecule were fixed at 25%. The identities of the disordered and partially occupied solvent molecules are less certain; a PLATON SQUEEZE analysis indicated an electron count close to that modelled here.

Structure description top

Intermolecular 1,3-dipolar cycloadditions are one of the most useful processes for the construction of five-membered heterocycles containing the pyrrolidine structural unit (Lown, 1984; Tsuge et al., 1989). This method is widely used for the synthesis of natural products such as alkaloids and pharmacologically important compounds (Williams et al., 1992). 1,3-Dipolar cycloaddition of azomethine ylides with definite dipolarophiles provides a way for the synthesis of many dispiroheterocyclic systems (Periyasami et al., 2009; Suresh Babu & Raghunathan, 2007). In view of their biological importance, herein we present the results of the crystal structure determination of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The piperidone (N1/C8/C9/C23–C25) ring adopts a chair conformation [Q = 0.610 (3) Å, θ = 37.6 (3)°, φ = 57.8 (4)° ; Cremer & Pople, 1975]. The pyrrolidine ring N atom disordered over two sites with a refined occupancy ratio of 0.52 (4):0.48 (4). The major (C7/C8/C21/C22/N2A) and minor (C7/C8/C21/C22/N2B) disordered pyrrolidine rings adopt the same envelope conformation with puckering parameters Q(2) = 0.349 (5) Å, φ = 73.0 (15)° for major disordered component and Q(2) = 0.459 (6) Å, φ = 332.4 (10) for minor disordered component. The dihedral angle between the two phenyl rings (C1–C6 and C27–C32) is 70.80 (16)°.

In the crystal packing (Fig. 2), molecules are connected by intermolecular O1—H1O1···O1 and C17—H17A···O2 (Table 1) hydrogen bonds to form a three-dimensional network.

For details of 1,3-dipolar cycloaddition reactions, see: Lown (1984); Tsuge et al. (1989); Williams et al. (1992); Periyasami et al. (2009); Suresh Babu & Raghunathan (2007). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids (H atoms are omitted for clarity). All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) network. Solvent molecules, minor disorder components and H atoms are not involing the hydrogen bond interactions are omitted for clarity.
5-[(E)-Benzylidene]-2-hydroxy-10-methyl-8-phenyl-3,10- diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(19),12 (20),13,15,17-pentaen-6-one ethanol 0.25-solvate 0.6-hydrate top
Crystal data top
C33H28N2O2·0.25C2H6O·0.6H2ODx = 1.273 Mg m3
Mr = 506.90Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 5795 reflections
Hall symbol: P -4 2nθ = 2.6–29.9°
a = 19.3839 (3) ŵ = 0.08 mm1
c = 14.0757 (2) ÅT = 100 K
V = 5288.74 (14) Å3Block, pale yellow
Z = 80.19 × 0.18 × 0.15 mm
F(000) = 2148
Data collection top
Bruker SMART APEXII CCD
diffractometer
4230 independent reflections
Radiation source: fine-focus sealed tube3388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2324
Tmin = 0.985, Tmax = 0.988k = 827
23186 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0762P)2 + 1.6944P]
where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C33H28N2O2·0.25C2H6O·0.6H2OZ = 8
Mr = 506.90Mo Kα radiation
Tetragonal, P421cµ = 0.08 mm1
a = 19.3839 (3) ÅT = 100 K
c = 14.0757 (2) Å0.19 × 0.18 × 0.15 mm
V = 5288.74 (14) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4230 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3388 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.041
23186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
4230 reflectionsΔρmin = 0.21 e Å3
387 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.44856 (11)0.06178 (12)0.00668 (19)0.0410 (6)
O20.54102 (12)0.33051 (11)0.07672 (15)0.0416 (5)
N10.55166 (11)0.12176 (11)0.02818 (15)0.0242 (4)
N2A0.3846 (4)0.1607 (11)0.0740 (5)0.029 (3)0.52 (4)
N2B0.3748 (4)0.1934 (11)0.0633 (5)0.025 (3)0.48 (4)
C10.48583 (15)0.19294 (15)0.33651 (18)0.0302 (6)
H1A0.46710.15040.32000.036*
C20.51981 (16)0.20036 (17)0.42318 (19)0.0364 (7)
H2A0.52360.16280.46390.044*
C30.54775 (18)0.26274 (19)0.4490 (2)0.0442 (8)
H3A0.57090.26740.50650.053*
C40.5409 (2)0.3187 (2)0.3882 (2)0.0526 (9)
H4A0.55920.36130.40540.063*
C50.50702 (19)0.31165 (17)0.3015 (2)0.0421 (8)
H5A0.50270.34960.26150.050*
C60.47963 (14)0.24860 (15)0.27427 (18)0.0277 (6)
C70.44519 (14)0.24214 (15)0.17726 (18)0.0284 (6)
H7A0.42830.28790.15910.034*
C80.49319 (14)0.21656 (14)0.09800 (17)0.0262 (5)
C90.53559 (14)0.15141 (15)0.12184 (17)0.0268 (5)
H9A0.50880.11940.15990.032*
H9B0.57740.16330.15590.032*
C100.48373 (13)0.12174 (14)0.02031 (19)0.0260 (5)
C110.48822 (14)0.13202 (16)0.12660 (18)0.0292 (6)
C120.51434 (18)0.0923 (2)0.1980 (2)0.0499 (9)
H12A0.53250.04890.18520.060*
C130.51320 (18)0.1187 (3)0.2928 (2)0.0662 (14)
H13A0.52950.09120.34210.079*
C140.48900 (18)0.1825 (3)0.3127 (2)0.0621 (13)
H14A0.49010.19840.37510.075*
C150.46233 (16)0.2252 (2)0.2412 (2)0.0434 (8)
C160.4376 (2)0.2932 (2)0.2503 (3)0.0632 (12)
H16A0.43760.31430.30960.076*
C170.4135 (2)0.3288 (2)0.1732 (3)0.0681 (13)
H17A0.39790.37370.18120.082*
C180.41177 (19)0.29897 (19)0.0814 (3)0.0497 (9)
H18A0.39450.32370.03000.060*
C190.43589 (15)0.23323 (16)0.0697 (2)0.0314 (6)
C200.46115 (14)0.19742 (16)0.14849 (18)0.0300 (6)
C210.44354 (14)0.18916 (15)0.01883 (18)0.0271 (5)
C220.38450 (14)0.19137 (16)0.16933 (18)0.0298 (6)
H22A0.34130.21540.18020.036*
H22B0.38900.15550.21690.036*
C230.54231 (15)0.26973 (15)0.05562 (19)0.0294 (6)
C240.59090 (14)0.24127 (14)0.01748 (19)0.0284 (5)
C250.60533 (13)0.16417 (14)0.01602 (19)0.0265 (5)
H25A0.64830.15640.01760.032*
H25B0.61180.14860.08090.032*
C260.61200 (15)0.28449 (15)0.0862 (2)0.0316 (6)
H26A0.59840.33030.07980.038*
C270.65392 (16)0.26835 (16)0.17032 (19)0.0335 (6)
C280.70345 (16)0.21629 (16)0.1728 (2)0.0375 (7)
H28A0.71230.19080.11810.045*
C290.73987 (19)0.20185 (18)0.2554 (3)0.0470 (9)
H29A0.77190.16620.25610.056*
C300.7285 (2)0.2406 (2)0.3369 (3)0.0536 (10)
H30A0.75260.23070.39240.064*
C310.6811 (2)0.2939 (2)0.3350 (2)0.0508 (10)
H31A0.67410.32070.38900.061*
C320.64365 (17)0.30786 (18)0.2528 (2)0.0393 (7)
H32A0.61160.34360.25240.047*
C330.31851 (14)0.15983 (19)0.0249 (2)0.0404 (7)
H33A0.32590.15500.04220.061*
H33B0.30110.11730.05020.061*
H33C0.28570.19600.03620.061*
O30.4685 (12)0.459 (2)0.8576 (13)0.22 (2)0.25
H1O30.47470.49200.90150.330*0.25
C340.4750 (7)0.4887 (8)0.7781 (11)0.046 (3)0.25
H34A0.49750.52710.80800.055*0.25
H34B0.42900.50520.76710.055*0.25
C350.50000.50000.6848 (14)0.097 (6)0.50
H35A0.49110.54670.66560.145*0.25
H35B0.54880.49160.68410.145*0.25
H35C0.47760.46890.64160.145*0.25
O1W0.4432 (8)0.4776 (9)0.629 (2)0.270 (14)0.40
H1W10.44180.47110.56910.405*0.40
H2W10.41810.46460.67610.405*0.40
O2W0.50000.50000.9514 (16)0.199 (13)0.40
H1W20.52930.54330.98840.298*0.40
H1O10.468 (2)0.035 (2)0.017 (3)0.068 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (11)0.0319 (11)0.0604 (15)0.0074 (9)0.0121 (11)0.0197 (11)
O20.0553 (14)0.0358 (11)0.0336 (11)0.0011 (10)0.0114 (10)0.0023 (9)
N10.0237 (10)0.0298 (11)0.0190 (10)0.0030 (8)0.0026 (8)0.0070 (8)
N2A0.018 (2)0.048 (8)0.021 (2)0.000 (3)0.0007 (18)0.009 (3)
N2B0.027 (3)0.040 (7)0.009 (2)0.005 (3)0.0024 (19)0.007 (3)
C10.0362 (15)0.0344 (14)0.0200 (11)0.0052 (12)0.0008 (11)0.0015 (11)
C20.0403 (16)0.0482 (17)0.0209 (12)0.0027 (14)0.0006 (11)0.0063 (13)
C30.0462 (18)0.060 (2)0.0263 (13)0.0122 (16)0.0040 (13)0.0040 (14)
C40.069 (2)0.051 (2)0.0378 (17)0.0256 (19)0.0058 (17)0.0069 (15)
C50.059 (2)0.0383 (17)0.0290 (14)0.0090 (15)0.0011 (14)0.0021 (13)
C60.0293 (13)0.0344 (14)0.0193 (11)0.0014 (11)0.0038 (10)0.0013 (11)
C70.0307 (13)0.0357 (14)0.0187 (11)0.0024 (11)0.0007 (10)0.0061 (11)
C80.0297 (13)0.0333 (14)0.0157 (10)0.0008 (11)0.0011 (10)0.0047 (10)
C90.0243 (12)0.0395 (14)0.0165 (11)0.0004 (11)0.0025 (9)0.0071 (10)
C100.0265 (12)0.0277 (12)0.0237 (11)0.0002 (10)0.0042 (10)0.0054 (11)
C110.0240 (12)0.0414 (15)0.0223 (11)0.0022 (11)0.0072 (10)0.0011 (11)
C120.0389 (18)0.073 (2)0.0373 (16)0.0196 (18)0.0158 (14)0.0229 (17)
C130.0286 (17)0.142 (4)0.0275 (15)0.022 (2)0.0098 (13)0.030 (2)
C140.0296 (16)0.141 (4)0.0155 (12)0.004 (2)0.0011 (12)0.007 (2)
C150.0315 (15)0.073 (2)0.0254 (14)0.0031 (15)0.0050 (12)0.0205 (15)
C160.061 (2)0.080 (3)0.049 (2)0.005 (2)0.019 (2)0.041 (2)
C170.074 (3)0.049 (2)0.081 (3)0.011 (2)0.033 (3)0.033 (2)
C180.0487 (19)0.0463 (19)0.054 (2)0.0187 (16)0.0187 (17)0.0037 (17)
C190.0309 (13)0.0386 (15)0.0246 (13)0.0063 (11)0.0069 (11)0.0057 (11)
C200.0282 (13)0.0411 (15)0.0208 (12)0.0005 (12)0.0009 (10)0.0090 (11)
C210.0274 (12)0.0368 (14)0.0172 (10)0.0037 (11)0.0007 (10)0.0053 (11)
C220.0296 (13)0.0415 (15)0.0183 (11)0.0030 (12)0.0026 (10)0.0027 (11)
C230.0317 (14)0.0368 (15)0.0196 (11)0.0014 (11)0.0018 (10)0.0048 (11)
C240.0306 (13)0.0342 (14)0.0204 (11)0.0058 (11)0.0015 (11)0.0033 (11)
C250.0274 (12)0.0316 (13)0.0204 (11)0.0038 (10)0.0005 (10)0.0048 (10)
C260.0353 (14)0.0341 (14)0.0255 (12)0.0071 (12)0.0003 (11)0.0021 (11)
C270.0392 (16)0.0364 (15)0.0247 (13)0.0181 (12)0.0049 (12)0.0007 (11)
C280.0391 (16)0.0344 (15)0.0389 (16)0.0152 (12)0.0100 (14)0.0003 (13)
C290.0495 (19)0.0395 (17)0.0520 (19)0.0211 (15)0.0214 (17)0.0140 (16)
C300.064 (2)0.062 (2)0.0350 (16)0.034 (2)0.0179 (16)0.0168 (16)
C310.062 (2)0.068 (2)0.0221 (13)0.030 (2)0.0047 (15)0.0038 (15)
C320.0433 (17)0.0459 (18)0.0288 (14)0.0172 (14)0.0016 (13)0.0051 (13)
C330.0262 (13)0.070 (2)0.0254 (13)0.0016 (14)0.0034 (11)0.0101 (15)
O30.17 (2)0.42 (6)0.063 (9)0.21 (3)0.005 (11)0.045 (17)
C340.045 (8)0.045 (8)0.048 (8)0.008 (6)0.007 (6)0.004 (6)
C350.132 (16)0.048 (8)0.111 (14)0.029 (10)0.0000.000
O1W0.118 (12)0.157 (16)0.54 (4)0.033 (11)0.04 (2)0.00 (2)
O2W0.25 (3)0.19 (2)0.16 (2)0.16 (2)0.0000.000
Geometric parameters (Å, º) top
O1—C101.400 (3)C17—H17A0.9300
O1—H1O10.66 (4)C18—C191.367 (4)
O2—C231.215 (4)C18—H18A0.9300
N1—C251.465 (3)C19—C201.397 (4)
N1—C91.472 (3)C19—C211.518 (4)
N1—C101.483 (3)C22—H22A0.9700
N2A—C331.456 (9)C22—H22B0.9700
N2A—C221.469 (7)C23—C241.500 (4)
N2A—C211.487 (8)C24—C261.344 (4)
N2B—C331.381 (7)C24—C251.521 (4)
N2B—C211.474 (8)C25—H25A0.9700
N2B—C221.505 (8)C25—H25B0.9700
C1—C21.394 (4)C26—C271.470 (4)
C1—C61.395 (4)C26—H26A0.9300
C1—H1A0.9300C27—C281.393 (5)
C2—C31.374 (5)C27—C321.404 (4)
C2—H2A0.9300C28—C291.389 (4)
C3—C41.389 (5)C28—H28A0.9300
C3—H3A0.9300C29—C301.389 (6)
C4—C51.393 (5)C29—H29A0.9300
C4—H4A0.9300C30—C311.384 (6)
C5—C61.386 (4)C30—H30A0.9300
C5—H5A0.9300C31—C321.393 (5)
C6—C71.525 (4)C31—H31A0.9300
C7—C81.535 (4)C32—H32A0.9300
C7—C221.538 (4)C33—H33A0.9600
C7—H7A0.9800C33—H33B0.9598
C8—C231.525 (4)C33—H33C0.9601
C8—C91.544 (4)O3—C341.27 (3)
C8—C211.565 (4)O3—C34i1.87 (3)
C9—H9A0.9700O3—H1O30.9000
C9—H9B0.9700C34—C34i1.06 (3)
C10—C111.512 (4)C34—C351.42 (2)
C10—C211.618 (4)C34—O3i1.87 (3)
C11—C121.363 (4)C34—H34A0.9596
C11—C201.406 (4)C34—H34B0.9599
C12—C131.430 (6)C35—C34i1.42 (2)
C12—H12A0.9300C35—H35A0.9600
C13—C141.353 (7)C35—H35B0.9600
C13—H13A0.9300C35—H35C0.9600
C14—C151.401 (6)O1W—H35C0.7091
C14—H14A0.9300O1W—H1W10.8579
C15—C161.410 (6)O1W—H2W10.8566
C15—C201.412 (4)O2W—O2Wii1.37 (5)
C16—C171.367 (6)O2W—H1O30.8695
C16—H16A0.9300O2W—H1W21.1395
C17—C181.415 (6)
C10—O1—H1O1116 (5)C19—C21—C10102.8 (2)
C25—N1—C9108.2 (2)C8—C21—C10102.7 (2)
C25—N1—C10115.81 (19)N2A—C22—N2B26.4 (2)
C9—N1—C10103.0 (2)N2A—C22—C7109.0 (4)
C33—N2A—C22115.9 (8)N2B—C22—C798.7 (4)
C33—N2A—C21115.6 (9)N2A—C22—H22A109.9
C22—N2A—C21109.1 (6)N2B—C22—H22A92.1
C33—N2B—C21121.5 (7)C7—C22—H22A109.9
C33—N2B—C22118.3 (7)N2A—C22—H22B109.9
C21—N2B—C22107.8 (7)N2B—C22—H22B135.7
C2—C1—C6120.7 (3)C7—C22—H22B109.9
C2—C1—H1A119.7H22A—C22—H22B108.3
C6—C1—H1A119.7O2—C23—C24122.5 (2)
C3—C2—C1120.6 (3)O2—C23—C8123.2 (3)
C3—C2—H2A119.7C24—C23—C8114.3 (2)
C1—C2—H2A119.7C26—C24—C23117.1 (3)
C2—C3—C4119.1 (3)C26—C24—C25124.5 (3)
C2—C3—H3A120.4C23—C24—C25117.9 (2)
C4—C3—H3A120.4N1—C25—C24115.3 (2)
C3—C4—C5120.6 (3)N1—C25—H25A108.5
C3—C4—H4A119.7C24—C25—H25A108.5
C5—C4—H4A119.7N1—C25—H25B108.5
C6—C5—C4120.6 (3)C24—C25—H25B108.5
C6—C5—H5A119.7H25A—C25—H25B107.5
C4—C5—H5A119.7C24—C26—C27128.0 (3)
C5—C6—C1118.4 (3)C24—C26—H26A116.0
C5—C6—C7119.2 (3)C27—C26—H26A116.0
C1—C6—C7122.4 (3)C28—C27—C32118.2 (3)
C6—C7—C8114.3 (2)C28—C27—C26123.7 (3)
C6—C7—C22116.9 (2)C32—C27—C26118.1 (3)
C8—C7—C22101.8 (2)C29—C28—C27121.1 (3)
C6—C7—H7A107.8C29—C28—H28A119.4
C8—C7—H7A107.8C27—C28—H28A119.4
C22—C7—H7A107.8C30—C29—C28120.1 (4)
C23—C8—C7116.4 (2)C30—C29—H29A119.9
C23—C8—C9107.8 (2)C28—C29—H29A119.9
C7—C8—C9115.4 (2)C31—C30—C29119.6 (3)
C23—C8—C21109.6 (2)C31—C30—H30A120.2
C7—C8—C21104.7 (2)C29—C30—H30A120.2
C9—C8—C21101.8 (2)C30—C31—C32120.5 (3)
N1—C9—C8103.74 (19)C30—C31—H31A119.8
N1—C9—H9A111.0C32—C31—H31A119.8
C8—C9—H9A111.0C31—C32—C27120.5 (3)
N1—C9—H9B111.0C31—C32—H32A119.8
C8—C9—H9B111.0C27—C32—H32A119.8
H9A—C9—H9B109.0N2B—C33—N2A27.6 (3)
O1—C10—N1107.9 (2)N2B—C33—H33A108.3
O1—C10—C11114.0 (2)N2A—C33—H33A109.7
N1—C10—C11113.8 (2)N2B—C33—H33B122.5
O1—C10—C21110.1 (2)N2A—C33—H33B98.2
N1—C10—C21105.7 (2)H33A—C33—H33B109.5
C11—C10—C21105.0 (2)N2B—C33—H33C96.6
C12—C11—C20119.1 (3)N2A—C33—H33C119.8
C12—C11—C10132.5 (3)H33A—C33—H33C109.5
C20—C11—C10108.3 (2)H33B—C33—H33C109.5
C11—C12—C13118.7 (4)C34—O3—C34i33.2 (13)
C11—C12—H12A120.6C34—O3—H1O3105.4
C13—C12—H12A120.6C34i—O3—H1O386.8
C14—C13—C12121.7 (3)C34i—C34—O3106.1 (16)
C14—C13—H13A119.1C34i—C34—C3567.9 (7)
C12—C13—H13A119.1O3—C34—C35157.4 (16)
C13—C14—C15121.3 (3)C34i—C34—O3i40.7 (9)
C13—C14—H14A119.4O3—C34—O3i77 (2)
C15—C14—H14A119.4C35—C34—O3i105.7 (12)
C14—C15—C16127.8 (3)C34i—C34—H34A42.8
C14—C15—C20116.4 (3)O3—C34—H34A90.7
C16—C15—C20115.8 (3)C35—C34—H34A97.5
C17—C16—C15121.0 (3)O3i—C34—H34A17.8
C17—C16—H16A119.5C34i—C34—H34B135.3
C15—C16—H16A119.5O3—C34—H34B101.7
C16—C17—C18121.8 (3)C35—C34—H34B96.8
C16—C17—H17A119.1O3i—C34—H34B117.4
C18—C17—H17A119.1H34A—C34—H34B103.7
C19—C18—C17118.8 (4)C34—C35—C34i44.1 (13)
C19—C18—H18A120.6C34—C35—H35A110.1
C17—C18—H18A120.6C34i—C35—H35A100.2
C18—C19—C20119.1 (3)C34—C35—H35B108.7
C18—C19—C21131.1 (3)C34i—C35—H35B72.4
C20—C19—C21109.7 (2)H35A—C35—H35B109.5
C19—C20—C11113.9 (2)C34—C35—H35C109.6
C19—C20—C15123.4 (3)C34i—C35—H35C147.0
C11—C20—C15122.7 (3)H35A—C35—H35C109.5
N2B—C21—N2A26.5 (2)H35B—C35—H35C109.5
N2B—C21—C19103.2 (7)H35C—O1W—H1W1103.6
N2A—C21—C19124.2 (7)H35C—O1W—H2W1106.1
N2B—C21—C8103.6 (3)H1W1—O1W—H2W1134.2
N2A—C21—C8103.1 (3)O2Wii—O2W—H1O3143.8
C19—C21—C8117.0 (2)O2Wii—O2W—H1W262.8
N2B—C21—C10128.7 (8)H1O3—O2W—H1W2141.4
N2A—C21—C10104.3 (8)
C6—C1—C2—C30.1 (5)C18—C19—C21—N2A69.1 (8)
C1—C2—C3—C40.9 (5)C20—C19—C21—N2A113.4 (7)
C2—C3—C4—C50.8 (6)C18—C19—C21—C861.8 (4)
C3—C4—C5—C60.2 (6)C20—C19—C21—C8115.8 (3)
C4—C5—C6—C11.1 (5)C18—C19—C21—C10173.4 (3)
C4—C5—C6—C7177.7 (3)C20—C19—C21—C104.1 (3)
C2—C1—C6—C51.1 (4)C23—C8—C21—N2B132.1 (9)
C2—C1—C6—C7177.7 (3)C7—C8—C21—N2B6.6 (9)
C5—C6—C7—C893.8 (3)C9—C8—C21—N2B114.0 (9)
C1—C6—C7—C885.0 (3)C23—C8—C21—N2A159.4 (9)
C5—C6—C7—C22147.5 (3)C7—C8—C21—N2A33.8 (9)
C1—C6—C7—C2233.7 (4)C9—C8—C21—N2A86.7 (9)
C6—C7—C8—C2378.6 (3)C23—C8—C21—C1919.4 (3)
C22—C7—C8—C23154.5 (2)C7—C8—C21—C19106.2 (3)
C6—C7—C8—C949.3 (3)C9—C8—C21—C19133.3 (2)
C22—C7—C8—C977.7 (3)C23—C8—C21—C1092.4 (2)
C6—C7—C8—C21160.3 (2)C7—C8—C21—C10142.1 (2)
C22—C7—C8—C2133.3 (3)C9—C8—C21—C1021.5 (2)
C25—N1—C9—C874.5 (2)O1—C10—C21—N2B9.4 (6)
C10—N1—C9—C848.6 (2)N1—C10—C21—N2B125.7 (6)
C23—C8—C9—N171.6 (2)C11—C10—C21—N2B113.7 (6)
C7—C8—C9—N1156.3 (2)O1—C10—C21—N2A2.6 (5)
C21—C8—C9—N143.6 (2)N1—C10—C21—N2A113.7 (4)
C25—N1—C10—O1157.8 (2)C11—C10—C21—N2A125.6 (4)
C9—N1—C10—O184.4 (3)O1—C10—C21—C19128.2 (2)
C25—N1—C10—C1130.3 (3)N1—C10—C21—C19115.5 (2)
C9—N1—C10—C11148.1 (2)C11—C10—C21—C195.1 (3)
C25—N1—C10—C2184.4 (2)O1—C10—C21—C8109.9 (2)
C9—N1—C10—C2133.4 (2)N1—C10—C21—C86.4 (2)
O1—C10—C11—C1257.4 (4)C11—C10—C21—C8127.0 (2)
N1—C10—C11—C1267.0 (4)C33—N2A—C22—N2B61.8 (13)
C21—C10—C11—C12178.0 (3)C21—N2A—C22—N2B70.8 (14)
O1—C10—C11—C20125.1 (3)C33—N2A—C22—C7132.3 (10)
N1—C10—C11—C20110.5 (3)C21—N2A—C22—C70.3 (14)
C21—C10—C11—C204.6 (3)C33—N2B—C22—N2A71.7 (15)
C20—C11—C12—C130.0 (5)C21—N2B—C22—N2A71.1 (13)
C10—C11—C12—C13177.3 (3)C33—N2B—C22—C7172.7 (13)
C11—C12—C13—C142.1 (6)C21—N2B—C22—C744.5 (12)
C12—C13—C14—C151.6 (6)C6—C7—C22—N2A146.6 (9)
C13—C14—C15—C16177.7 (4)C8—C7—C22—N2A21.3 (9)
C13—C14—C15—C201.0 (5)C6—C7—C22—N2B171.7 (8)
C14—C15—C16—C17179.4 (4)C8—C7—C22—N2B46.4 (8)
C20—C15—C16—C170.7 (6)C7—C8—C23—O25.6 (4)
C15—C16—C17—C180.5 (7)C9—C8—C23—O2137.1 (3)
C16—C17—C18—C191.0 (6)C21—C8—C23—O2112.9 (3)
C17—C18—C19—C200.3 (5)C7—C8—C23—C24176.6 (2)
C17—C18—C19—C21177.1 (3)C9—C8—C23—C2445.1 (3)
C18—C19—C20—C11176.4 (3)C21—C8—C23—C2464.8 (3)
C21—C19—C20—C111.5 (4)O2—C23—C24—C2627.3 (4)
C18—C19—C20—C151.0 (5)C8—C23—C24—C26150.5 (3)
C21—C19—C20—C15178.9 (3)O2—C23—C24—C25160.3 (3)
C12—C11—C20—C19180.0 (3)C8—C23—C24—C2521.9 (3)
C10—C11—C20—C192.2 (3)C9—N1—C25—C2450.7 (3)
C12—C11—C20—C152.6 (5)C10—N1—C25—C2464.2 (3)
C10—C11—C20—C15175.3 (3)C26—C24—C25—N1147.8 (3)
C14—C15—C20—C19179.7 (3)C23—C24—C25—N124.0 (4)
C16—C15—C20—C191.5 (5)C23—C24—C26—C27173.9 (3)
C14—C15—C20—C113.2 (5)C25—C24—C26—C272.1 (5)
C16—C15—C20—C11175.7 (3)C24—C26—C27—C2830.3 (5)
C33—N2B—C21—N2A73.1 (17)C24—C26—C27—C32150.0 (3)
C22—N2B—C21—N2A68.3 (12)C32—C27—C28—C292.5 (4)
C33—N2B—C21—C1972.3 (16)C26—C27—C28—C29177.8 (3)
C22—N2B—C21—C19146.3 (10)C27—C28—C29—C301.6 (5)
C33—N2B—C21—C8165.3 (13)C28—C29—C30—C310.5 (5)
C22—N2B—C21—C823.9 (13)C29—C30—C31—C321.6 (5)
C33—N2B—C21—C1046.4 (18)C30—C31—C32—C270.6 (5)
C22—N2B—C21—C1095.0 (8)C28—C27—C32—C311.5 (4)
C33—N2A—C21—N2B59.1 (13)C26—C27—C32—C31178.8 (3)
C22—N2A—C21—N2B73.7 (13)C21—N2B—C33—N2A70.6 (17)
C33—N2A—C21—C1917.1 (16)C22—N2B—C33—N2A66.9 (14)
C22—N2A—C21—C19115.6 (8)C22—N2A—C33—N2B67.3 (13)
C33—N2A—C21—C8153.3 (10)C21—N2A—C33—N2B62.2 (14)
C22—N2A—C21—C820.5 (13)C34i—O3—C34—C3571 (5)
C33—N2A—C21—C1099.6 (12)C34i—O3—C34—O3i28.9 (19)
C22—N2A—C21—C10127.6 (11)O3—C34—C35—C34i79 (5)
C18—C19—C21—N2B51.2 (7)O3i—C34—C35—C34i15.4 (12)
C20—C19—C21—N2B131.2 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1iii0.66 (4)2.48 (4)3.117 (5)164 (5)
C17—H17A···O2iv0.932.573.287 (6)134
Symmetry codes: (iii) x+1, y, z; (iv) y, x+1, z.

Experimental details

Crystal data
Chemical formulaC33H28N2O2·0.25C2H6O·0.6H2O
Mr506.90
Crystal system, space groupTetragonal, P421c
Temperature (K)100
a, c (Å)19.3839 (3), 14.0757 (2)
V3)5288.74 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
23186, 4230, 3388
Rint0.041
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.148, 1.03
No. of reflections4230
No. of parameters387
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1i0.66 (4)2.48 (4)3.117 (5)164 (5)
C17—H17A···O2ii0.932.573.287 (6)134.3
Symmetry codes: (i) x+1, y, z; (ii) y, x+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research grant No. 1001/PKIMIA/811016. RSK thanks Universiti Sains Malaysia for the award of post doctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLown, J. W. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol, 1, p. 653. New York: Wiley.  Google Scholar
First citationPeriyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 959–966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh Babu, A. R. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 6809–6813.  Web of Science CrossRef Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 232. San Diego: Academic Press.  Google Scholar
First citationWilliams, R. M. & Fegley, G. J. (1992). Tetrahedron Lett. 33, 6755–6758.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds