metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato]magnesium(II) hexa­hydrate

aThe Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, People's Republic of China, and bScientific and Technical Department, Harbin Medical University, Harbin, 150086, People's Republic of China
*Correspondence e-mail: yinwenzhe@126.com

(Received 11 September 2010; accepted 1 October 2010; online 13 October 2010)

In the title compound, [Mg(C16H17FN3O3)2(H2O)2]·6H2O, the Mg2+ ion (site symmetry [\overline{1}]) exhibits a distorted MgO6 octa­hedral geometry defined by two O,O-bidentate 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazin­yl)-3-quinoline-carb­oxyl­ate (norf) anions and two water mol­ecules. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing.

Related literature

For the cadmium, zinc and cobalt(II) complexes of the norf anion, see: Chen et al. (2001[Chen, Z.-F., Xiong, R.-G., Zhang, J., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2001). Inorg. Chem. 40, 4075-4077.]), Wang et al. (2004[Wang, Y.-C., Zhao, H., Ye, Q., Chen, Z.-F., Xiong, R.-G. & Fun, H.-K. (2004). Inorg. Chim. Acta. 357, 4303-4308.]) and An et al. (2007[An, Z., Xu, W. & Wang, R.-S. (2007). Acta Cryst. E63, m507-m508.]), respectively. For background to the medicinal uses of Norfloxacin [H-norf or 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazin­yl)-3-quinoline carb­oxy­lic acid], which is used to treat infections, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 41-55.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C16H17FN3O3)2(H2O)2]·6H2O

  • Mr = 805.09

  • Triclinic, [P \overline 1]

  • a = 5.0944 (10) Å

  • b = 13.785 (3) Å

  • c = 14.351 (3) Å

  • α = 112.06 (3)°

  • β = 97.59 (3)°

  • γ = 93.74 (3)°

  • V = 918.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 7196 measured reflections

  • 3203 independent reflections

  • 1774 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.249

  • S = 1.00

  • 3203 reflections

  • 278 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O2 2.001 (3)
Mg1—O1 2.085 (3)
Mg1—O1W 2.094 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2Wi 0.86 2.20 2.787 (7) 126
O1W—H1W⋯O2W 0.82 (1) 1.97 (1) 2.786 (6) 175 (3)
O1W—H2W⋯O1ii 0.82 (2) 2.09 (2) 2.901 (5) 175 (2)
O2W—H3W⋯O3iii 0.82 (5) 1.98 (5) 2.749 (6) 156 (4)
O2W—H4W⋯N1iv 0.82 (2) 2.36 (4) 3.121 (7) 154 (5)
O3W—H5W⋯O3iii 0.82 (4) 2.18 (4) 2.835 (6) 137 (5)
O3W—H6W⋯O4W 0.81 (15) 2.3 (2) 2.890 (8) 131 (19)
O4W—H8W⋯O3Wv 0.82 (4) 2.31 (4) 2.888 (8) 128 (4)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) x-1, y-1, z; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Norfloxacin (H-norf, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl) -3-quinoline carboxylic acid) is member of the class of quinolones that is used to treat infections (Mizuki et al., 1996). Cadmium(II), zinc(II) and cobalt(II) derivatives of norf have been reported (Chen et al., 2001; Wang et al., 2004; An et al.,2007).

The title magnesium(II)-containing complex of norf, (I), is reported here.(Fig. 1).

The structure of (I) is built up from Mg2+ cations, norf ligands, coordinated water molecules, uncoordinated water molecules (Fig. 1). The manganese geometry is a slightly distorted octahedron.

The components of (I) are linked by O—H···O and O—H···N hydrogen bonds involving all the potential donors, generating a three-dimensional supramolecular network.

Related literature top

For the cadmium, zinc and cobalt(II) complexes of the norf anion, see: Chen et al. (2001), Wang et al. (2004) and An et al. (2007), respectively. For background to the medicinal uses of Norfloxacin [H-norf or 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid], which is used to treat infections, see: Mizuki et al. (1996).

Experimental top

A mixture of Mg(NO3)2.2H2O (0.5 mmol), H-norf(0.6 mmol), and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon reactor and kept at 433 K for 72 h under autogenous pressure. Upon cooling, colorless blocks of (I) were obtained from the reaction mixture.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The H atoms on the N and water molecules were located in a difference map and refined with a distance restraint of N—H = 0.90 (1) Å, O—H = 0.85 (1) Å,and the constraint Uiso(H) = 1.5Ueq(N,O).

Structure description top

Norfloxacin (H-norf, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl) -3-quinoline carboxylic acid) is member of the class of quinolones that is used to treat infections (Mizuki et al., 1996). Cadmium(II), zinc(II) and cobalt(II) derivatives of norf have been reported (Chen et al., 2001; Wang et al., 2004; An et al.,2007).

The title magnesium(II)-containing complex of norf, (I), is reported here.(Fig. 1).

The structure of (I) is built up from Mg2+ cations, norf ligands, coordinated water molecules, uncoordinated water molecules (Fig. 1). The manganese geometry is a slightly distorted octahedron.

The components of (I) are linked by O—H···O and O—H···N hydrogen bonds involving all the potential donors, generating a three-dimensional supramolecular network.

For the cadmium, zinc and cobalt(II) complexes of the norf anion, see: Chen et al. (2001), Wang et al. (2004) and An et al. (2007), respectively. For background to the medicinal uses of Norfloxacin [H-norf or 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid], which is used to treat infections, see: Mizuki et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the Mg coordination with 50% displacement ellipsoids. Symmetry code: (i) -x, -y, 1 - z.
Diaquabis[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylato]magnesium(II) hexahydrate top
Crystal data top
[Mg(C16H17FN3O3)2(H2O)2]·6H2OZ = 1
Mr = 805.09F(000) = 426
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0944 (10) ÅCell parameters from 3203 reflections
b = 13.785 (3) Åθ = 3.1–25.0°
c = 14.351 (3) ŵ = 0.14 mm1
α = 112.06 (3)°T = 295 K
β = 97.59 (3)°Block, colorless
γ = 93.74 (3)°0.12 × 0.10 × 0.08 mm
V = 918.6 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube1774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 56
Tmin = 0.984, Tmax = 0.989k = 1615
7196 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.130P)2 + 1.1685P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.38 e Å3
14 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mg(C16H17FN3O3)2(H2O)2]·6H2Oγ = 93.74 (3)°
Mr = 805.09V = 918.6 (3) Å3
Triclinic, P1Z = 1
a = 5.0944 (10) ÅMo Kα radiation
b = 13.785 (3) ŵ = 0.14 mm1
c = 14.351 (3) ÅT = 295 K
α = 112.06 (3)°0.12 × 0.10 × 0.08 mm
β = 97.59 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1774 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.053
7196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06514 restraints
wR(F2) = 0.249H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.38 e Å3
3203 reflectionsΔρmin = 0.41 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6643 (11)1.0494 (5)0.1860 (4)0.0542 (15)
H1A0.83741.02500.17800.065*
H1B0.59321.06000.12490.065*
C20.4804 (10)0.9679 (4)0.1990 (4)0.0434 (12)
H2A0.30510.99100.20430.052*
H2B0.46220.90210.13990.052*
C30.6286 (11)1.0513 (4)0.3807 (4)0.0485 (13)
H3A0.70951.03960.44010.058*
H3B0.45821.07650.39320.058*
C40.8076 (12)1.1339 (4)0.3651 (5)0.0563 (15)
H4A0.82671.20000.42390.068*
H4B0.98331.11170.35840.068*
C50.4638 (9)0.8637 (3)0.3026 (3)0.0347 (11)
C60.2314 (9)0.8028 (4)0.2407 (4)0.0379 (11)
H60.14840.82130.18910.046*
C70.1195 (9)0.7150 (3)0.2534 (3)0.0336 (11)
C80.2283 (9)0.6871 (3)0.3335 (3)0.0333 (11)
C90.4682 (9)0.7473 (4)0.3948 (3)0.0360 (11)
H90.55190.72960.44690.043*
C100.5770 (9)0.8300 (4)0.3787 (4)0.0385 (11)
C110.1060 (8)0.6013 (3)0.3537 (3)0.0324 (10)
C120.1318 (9)0.5427 (4)0.2836 (3)0.0370 (11)
C130.2237 (10)0.5729 (4)0.2062 (4)0.0390 (12)
H130.37320.53210.16010.047*
C140.2863 (10)0.4475 (4)0.2873 (4)0.0413 (12)
C150.2428 (10)0.6777 (4)0.1028 (4)0.0435 (12)
H15A0.23410.75350.12290.052*
H15B0.42970.64880.08530.052*
C160.1147 (13)0.6332 (5)0.0103 (4)0.0629 (16)
H16A0.06750.66490.02550.094*
H16B0.20940.64800.04440.094*
H16C0.12010.55830.00970.094*
F10.8150 (5)0.8827 (2)0.4368 (2)0.0517 (8)
Mg10.00000.50000.50000.0334 (6)
N10.6945 (10)1.1490 (3)0.2742 (4)0.0570 (13)
H10.65181.20770.27250.068*
N20.5853 (8)0.9511 (3)0.2908 (3)0.0410 (10)
N30.1186 (8)0.6557 (3)0.1905 (3)0.0392 (10)
O10.2033 (6)0.5828 (3)0.4305 (2)0.0373 (8)
O20.2364 (6)0.4254 (3)0.3645 (2)0.0440 (9)
O30.4641 (8)0.3955 (3)0.2116 (3)0.0572 (11)
O1W0.2550 (7)0.3831 (3)0.4608 (3)0.0438 (9)
O2W0.2443 (8)0.2500 (3)0.2582 (3)0.0632 (12)
O3W0.5868 (10)0.2135 (4)0.0401 (3)0.0759 (13)
O4W0.0637 (12)0.1102 (5)0.0279 (6)0.1083 (19)
H3W0.292 (7)0.302 (3)0.247 (5)0.080*
H7W0.027 (14)0.105 (5)0.0312 (14)0.080*
H1W0.241 (5)0.3441 (18)0.4005 (5)0.080*
H5W0.660 (10)0.263 (3)0.092 (3)0.080*
H4W0.0823 (16)0.237 (4)0.253 (5)0.080*
H6W0.51 (5)0.166 (11)0.050 (5)0.080*
H2W0.407 (2)0.3970 (11)0.4929 (19)0.08 (2)*
H8W0.008 (8)0.155 (3)0.069 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (3)0.070 (4)0.059 (4)0.008 (3)0.013 (3)0.045 (3)
C20.049 (3)0.044 (3)0.041 (3)0.000 (2)0.006 (2)0.022 (2)
C30.056 (3)0.042 (3)0.039 (3)0.008 (3)0.000 (2)0.011 (2)
C40.059 (3)0.047 (3)0.059 (4)0.009 (3)0.006 (3)0.025 (3)
C50.040 (3)0.034 (2)0.030 (3)0.002 (2)0.004 (2)0.015 (2)
C60.047 (3)0.036 (3)0.034 (3)0.000 (2)0.004 (2)0.018 (2)
C70.038 (3)0.030 (2)0.030 (3)0.002 (2)0.000 (2)0.011 (2)
C80.036 (2)0.034 (2)0.028 (2)0.003 (2)0.0006 (19)0.012 (2)
C90.035 (2)0.042 (3)0.032 (3)0.001 (2)0.000 (2)0.018 (2)
C100.041 (3)0.040 (3)0.033 (3)0.000 (2)0.001 (2)0.014 (2)
C110.031 (2)0.037 (2)0.029 (2)0.002 (2)0.0013 (19)0.015 (2)
C120.040 (3)0.037 (3)0.033 (3)0.004 (2)0.001 (2)0.016 (2)
C130.044 (3)0.039 (3)0.033 (3)0.002 (2)0.004 (2)0.017 (2)
C140.053 (3)0.038 (3)0.030 (3)0.006 (2)0.001 (2)0.015 (2)
C150.049 (3)0.048 (3)0.037 (3)0.004 (2)0.007 (2)0.024 (2)
C160.076 (4)0.073 (4)0.045 (3)0.023 (3)0.001 (3)0.030 (3)
F10.0444 (16)0.0568 (18)0.0516 (19)0.0141 (14)0.0135 (13)0.0289 (15)
Mg10.0354 (12)0.0384 (12)0.0304 (12)0.0011 (10)0.0002 (9)0.0205 (10)
N10.068 (3)0.041 (3)0.068 (3)0.006 (2)0.007 (3)0.030 (2)
N20.053 (3)0.039 (2)0.033 (2)0.0024 (19)0.0064 (19)0.0177 (19)
N30.045 (2)0.039 (2)0.035 (2)0.0019 (19)0.0020 (18)0.0209 (19)
O10.0381 (17)0.0481 (19)0.0322 (18)0.0006 (15)0.0023 (14)0.0247 (15)
O20.0458 (19)0.049 (2)0.038 (2)0.0101 (16)0.0070 (15)0.0251 (16)
O30.072 (3)0.051 (2)0.042 (2)0.020 (2)0.0172 (19)0.0236 (18)
O1W0.042 (2)0.048 (2)0.044 (2)0.0087 (17)0.0063 (16)0.0205 (17)
O2W0.056 (2)0.059 (3)0.075 (3)0.011 (2)0.010 (2)0.030 (2)
O3W0.089 (3)0.071 (3)0.057 (3)0.015 (3)0.009 (2)0.013 (2)
O4W0.093 (4)0.090 (4)0.151 (6)0.023 (3)0.041 (4)0.049 (4)
Geometric parameters (Å, º) top
C1—N11.458 (8)C12—C131.366 (6)
C1—C21.498 (6)C12—C141.508 (6)
C1—H1A0.9700C13—N31.335 (6)
C1—H1B0.9700C13—H130.9300
C2—N21.461 (6)C14—O21.254 (5)
C2—H2A0.9700C14—O31.259 (6)
C2—H2B0.9700C15—N31.476 (6)
C3—N21.472 (6)C15—C161.495 (8)
C3—C41.512 (7)C15—H15A0.9700
C3—H3A0.9700C15—H15B0.9700
C3—H3B0.9700C16—H16A0.9600
C4—N11.449 (7)C16—H16B0.9600
C4—H4A0.9700C16—H16C0.9600
C4—H4B0.9700Mg1—O2i2.001 (3)
C5—C61.389 (6)Mg1—O22.001 (3)
C5—N21.394 (5)Mg1—O1i2.085 (3)
C5—C101.412 (6)Mg1—O12.085 (3)
C6—C71.388 (6)Mg1—O1Wi2.094 (3)
C6—H60.9300Mg1—O1W2.094 (3)
C7—C81.403 (6)N1—H10.8600
C7—N31.408 (6)O1W—H1W0.820 (10)
C8—C91.411 (6)O1W—H2W0.818 (17)
C8—C111.443 (6)O2W—H3W0.82 (5)
C9—C101.345 (6)O2W—H4W0.821 (16)
C9—H90.9300O3W—H5W0.82 (4)
C10—F11.362 (5)O3W—H6W0.81 (15)
C11—O11.268 (5)O4W—H8W0.82 (4)
C11—C121.439 (6)O4W—H7W0.82 (3)
N1—C1—C2110.5 (4)N3—C13—C12126.0 (4)
N1—C1—H1A109.5N3—C13—H13117.0
C2—C1—H1A109.5C12—C13—H13117.0
N1—C1—H1B109.5O2—C14—O3123.8 (4)
C2—C1—H1B109.5O2—C14—C12119.4 (4)
H1A—C1—H1B108.1O3—C14—C12116.7 (4)
N2—C2—C1110.1 (4)N3—C15—C16113.9 (4)
N2—C2—H2A109.6N3—C15—H15A108.8
C1—C2—H2A109.6C16—C15—H15A108.8
N2—C2—H2B109.6N3—C15—H15B108.8
C1—C2—H2B109.6C16—C15—H15B108.8
H2A—C2—H2B108.1H15A—C15—H15B107.7
N2—C3—C4111.2 (4)C15—C16—H16A109.5
N2—C3—H3A109.4C15—C16—H16B109.5
C4—C3—H3A109.4H16A—C16—H16B109.5
N2—C3—H3B109.4C15—C16—H16C109.5
C4—C3—H3B109.4H16A—C16—H16C109.5
H3A—C3—H3B108.0H16B—C16—H16C109.5
N1—C4—C3110.0 (4)O2i—Mg1—O2180.0
N1—C4—H4A109.7O2i—Mg1—O1i86.80 (12)
C3—C4—H4A109.7O2—Mg1—O1i93.20 (13)
N1—C4—H4B109.7O2i—Mg1—O193.20 (13)
C3—C4—H4B109.7O2—Mg1—O186.80 (12)
H4A—C4—H4B108.2O1i—Mg1—O1180.0
C6—C5—N2123.6 (4)O2i—Mg1—O1Wi90.04 (15)
C6—C5—C10115.4 (4)O2—Mg1—O1Wi89.96 (15)
N2—C5—C10121.0 (4)O1i—Mg1—O1Wi90.47 (13)
C5—C6—C7122.0 (4)O1—Mg1—O1Wi89.53 (13)
C5—C6—H6119.0O2i—Mg1—O1W89.96 (15)
C7—C6—H6119.0O2—Mg1—O1W90.04 (14)
C6—C7—C8121.3 (4)O1i—Mg1—O1W89.53 (13)
C6—C7—N3120.7 (4)O1—Mg1—O1W90.47 (13)
C8—C7—N3117.9 (4)O1Wi—Mg1—O1W180.0
C7—C8—C9116.7 (4)C4—N1—C1109.6 (4)
C7—C8—C11122.8 (4)C4—N1—H1125.2
C9—C8—C11120.5 (4)C1—N1—H1125.2
C10—C9—C8120.6 (4)C5—N2—C2116.5 (4)
C10—C9—H9119.7C5—N2—C3116.4 (4)
C8—C9—H9119.7C2—N2—C3110.4 (4)
C9—C10—F1118.5 (4)C13—N3—C7119.1 (4)
C9—C10—C5123.9 (4)C13—N3—C15119.2 (4)
F1—C10—C5117.6 (4)C7—N3—C15121.4 (4)
O1—C11—C12123.8 (4)C11—O1—Mg1125.9 (3)
O1—C11—C8120.5 (4)C14—O2—Mg1132.8 (3)
C12—C11—C8115.6 (4)H1W—O1W—H2W115 (2)
C13—C12—C11118.4 (4)H3W—O2W—H4W115 (5)
C13—C12—C14116.7 (4)H5W—O3W—H6W115 (7)
C11—C12—C14124.9 (4)H8W—O4W—H7W115 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2Wii0.862.202.787 (7)126
O1W—H1W···O2W0.82 (1)1.97 (1)2.786 (6)175 (3)
O1W—H2W···O1iii0.82 (2)2.09 (2)2.901 (5)175 (2)
O2W—H3W···O3iv0.82 (5)1.98 (5)2.749 (6)156 (4)
O2W—H4W···N1v0.82 (2)2.36 (4)3.121 (7)154 (5)
O3W—H5W···O3iv0.82 (4)2.18 (4)2.835 (6)137 (5)
O3W—H6W···O4W0.81 (15)2.3 (2)2.890 (8)131 (19)
O4W—H8W···O3Wvi0.82 (4)2.31 (4)2.888 (8)128 (4)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x1, y1, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(C16H17FN3O3)2(H2O)2]·6H2O
Mr805.09
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.0944 (10), 13.785 (3), 14.351 (3)
α, β, γ (°)112.06 (3), 97.59 (3), 93.74 (3)
V3)918.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7196, 3203, 1774
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.249, 1.00
No. of reflections3203
No. of parameters278
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O22.001 (3)Mg1—O1W2.094 (3)
Mg1—O12.085 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2Wi0.862.202.787 (7)126
O1W—H1W···O2W0.820 (10)1.969 (11)2.786 (6)175 (3)
O1W—H2W···O1ii0.818 (17)2.085 (16)2.901 (5)175 (2)
O2W—H3W···O3iii0.82 (5)1.98 (5)2.749 (6)156 (4)
O2W—H4W···N1iv0.821 (16)2.36 (4)3.121 (7)154 (5)
O3W—H5W···O3iii0.82 (4)2.18 (4)2.835 (6)137 (5)
O3W—H6W···O4W0.81 (15)2.3 (2)2.890 (8)131 (19)
O4W—H8W···O3Wv0.82 (4)2.31 (4)2.888 (8)128 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y1, z; (v) x1, y, z.
 

Acknowledgements

The authors acknowledge financial support by Harbin Medical University.

References

First citationAn, Z., Xu, W. & Wang, R.-S. (2007). Acta Cryst. E63, m507–m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2001). Inorg. Chem. 40, 4075–4077.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 41–55.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-C., Zhao, H., Ye, Q., Chen, Z.-F., Xiong, R.-G. & Fun, H.-K. (2004). Inorg. Chim. Acta. 357, 4303–4308.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds