metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[3-(di­methyl­ammonio)­propyl­imino­methyl-κN]-6-meth­­oxy­phenolato-κO1}bis­­(thio­cyanato-κN)nickel(II)

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan Henan 467000, People's Republic of China
*Correspondence e-mail: pdsuchemistry@163.com

(Received 24 September 2010; accepted 24 September 2010; online 2 October 2010)

The asymmetric unit of the title complex, [Ni(NCS)2(C13H20N2O2)2], consists of two half-mol­ecules, both of which are completed by crystallographic inversion symmetry (Ni2+ site symmetry = [\overline{1}] in both cases). Both metal ions are six-coordinated in distorted trans-NiO2N4 geometries arising from two N,O-bidentate Schiff base ligands and two N-bonded thio­cyanate ions. The mol­ecular conformations are reinforced by two intra­molecular N—H⋯O hydrogen bonds.

Related literature

For related structures and background references, see: Xue et al. (2010a[Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010a). Acta Cryst. E66, m1172-m1173.],b[Xue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010b). Acta Cryst. E66, m1274.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C13H20N2O2)2]

  • Mr = 647.49

  • Monoclinic, P 21 /c

  • a = 16.228 (2) Å

  • b = 15.642 (2) Å

  • c = 13.3912 (18) Å

  • β = 113.132 (2)°

  • V = 3126.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.857

  • 17748 measured reflections

  • 6772 independent reflections

  • 4916 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.02

  • 6772 reflections

  • 385 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0403 (13)
Ni1—N3 2.0809 (18)
Ni1—N1 2.1102 (16)
Ni2—O3 2.0336 (14)
Ni2—N4 2.0990 (15)
Ni2—N6 2.1577 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (1) 1.78 (1) 2.668 (2) 167 (3)
N5—H5A⋯O3ii 0.90 (1) 1.96 (2) 2.764 (2) 149 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported a few Schiff base complexes (Xue et al., 2010a,b). In this paper, a new nickel(II) complex with the Schiff base 2-[(3-dimethylammoniopropylimino)methyl]-6-methoxyphenol, is reported.

The complex is a centrosymmetric mononuclear nickel(II) complex, as shown in Fig. 1. The Ni atom, lying on the inversion center, is six-coordinated in an octahedral geometry, with two phenolate O and two imine N atoms from two Schiff base ligands defining the basal plane, and with two thiocyanate N atoms occupying the axial positions. The two amine N atoms are protonated, and form intramolecular N–H···O hydrogen bonds (Table 1) with the phenolate O atoms. The slight distortion of the octahedral coordination can be observed from the coordinate bond lengths and angles (Table 2).

Related literature top

For related structures and background references, see: Xue et al. (2010a,b).

Experimental top

3-Methoxysalicylaldehyde (152 mg, 1.0 mmol), N,N-dimethylpropane-1,3-diamine (102 mg, 1.0 mmol), ammonium thiocyanate (76 mg, 1.0 mmol), and nickel acetate tetrahydrate (249 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding green blocks of (I).

Refinement top

H2 and H5A were located from a difference Fourier map and refined isotropically, with N–H distances restrained to 0.90 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Structure description top

Recently, we have reported a few Schiff base complexes (Xue et al., 2010a,b). In this paper, a new nickel(II) complex with the Schiff base 2-[(3-dimethylammoniopropylimino)methyl]-6-methoxyphenol, is reported.

The complex is a centrosymmetric mononuclear nickel(II) complex, as shown in Fig. 1. The Ni atom, lying on the inversion center, is six-coordinated in an octahedral geometry, with two phenolate O and two imine N atoms from two Schiff base ligands defining the basal plane, and with two thiocyanate N atoms occupying the axial positions. The two amine N atoms are protonated, and form intramolecular N–H···O hydrogen bonds (Table 1) with the phenolate O atoms. The slight distortion of the octahedral coordination can be observed from the coordinate bond lengths and angles (Table 2).

For related structures and background references, see: Xue et al. (2010a,b).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 30% probability displacement ellipsoids.
Bis{2-[3-(dimethylammonio)propyliminomethyl-κN]-6-methoxyphenolato- κO1}bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C13H20N2O2)2]F(000) = 1368
Mr = 647.49Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5211 reflections
a = 16.228 (2) Åθ = 2.6–27.2°
b = 15.642 (2) ŵ = 0.80 mm1
c = 13.3912 (18) ÅT = 298 K
β = 113.132 (2)°Block, green
V = 3126.0 (7) Å30.23 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6772 independent reflections
Radiation source: fine-focus sealed tube4916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1820
Tmin = 0.838, Tmax = 0.857k = 1919
17748 measured reflectionsl = 177
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.616P]
where P = (Fo2 + 2Fc2)/3
6772 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(NCS)2(C13H20N2O2)2]V = 3126.0 (7) Å3
Mr = 647.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.228 (2) ŵ = 0.80 mm1
b = 15.642 (2) ÅT = 298 K
c = 13.3912 (18) Å0.23 × 0.23 × 0.20 mm
β = 113.132 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6772 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4916 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.857Rint = 0.026
17748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
6772 reflectionsΔρmin = 0.38 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.03134 (10)
Ni20.00000.50000.00000.03281 (10)
S10.28158 (5)0.31526 (5)0.26156 (5)0.0710 (2)
S20.18778 (4)0.75758 (4)0.05566 (5)0.05524 (17)
O10.48274 (9)0.43998 (8)0.12568 (11)0.0399 (3)
O20.54271 (11)0.39569 (10)0.33999 (13)0.0592 (4)
O30.01284 (9)0.51671 (8)0.15603 (11)0.0395 (3)
O40.02789 (11)0.52191 (10)0.33375 (13)0.0528 (4)
N10.38379 (10)0.57261 (10)0.02589 (13)0.0341 (4)
N20.50658 (12)0.73003 (11)0.11985 (15)0.0408 (4)
N30.41756 (12)0.41330 (11)0.11307 (15)0.0452 (4)
N40.11950 (10)0.42923 (10)0.05634 (13)0.0347 (4)
N50.00617 (11)0.31873 (10)0.21919 (14)0.0398 (4)
N60.08080 (12)0.61079 (11)0.00524 (15)0.0443 (4)
C10.37093 (12)0.53225 (12)0.14375 (15)0.0328 (4)
C20.44253 (13)0.47353 (12)0.18471 (16)0.0337 (4)
C30.46936 (14)0.44942 (13)0.29512 (17)0.0408 (5)
C40.42342 (15)0.47622 (14)0.35629 (17)0.0441 (5)
H40.44170.45770.42780.053*
C50.35069 (15)0.53011 (15)0.31371 (18)0.0456 (5)
H50.31950.54730.35560.055*
C60.32498 (13)0.55794 (13)0.20875 (17)0.0395 (5)
H60.27620.59460.17980.047*
C70.62574 (17)0.4410 (2)0.3822 (2)0.0724 (8)
H7A0.63070.47650.32640.109*
H7B0.67440.40090.40670.109*
H7C0.62790.47600.44210.109*
C80.34179 (13)0.57118 (12)0.03718 (16)0.0357 (4)
H80.28630.59820.01190.043*
C90.34050 (14)0.62316 (14)0.12656 (17)0.0428 (5)
H9A0.27670.61150.15680.051*
H9B0.36430.60520.17930.051*
C100.35530 (15)0.71901 (14)0.10719 (19)0.0491 (6)
H10A0.32740.74800.17640.059*
H10B0.32460.73750.06170.059*
C110.45174 (15)0.74753 (13)0.05485 (18)0.0472 (5)
H11A0.45290.80850.04120.057*
H11B0.47960.71920.01490.057*
C120.60227 (16)0.75222 (18)0.0561 (2)0.0653 (7)
H12A0.63660.74080.09900.098*
H12B0.62500.71840.00890.098*
H12C0.60690.81170.03730.098*
C130.47408 (16)0.77696 (15)0.22516 (18)0.0542 (6)
H13A0.47620.83740.21170.081*
H13B0.41350.76020.26830.081*
H13C0.51160.76350.26340.081*
C140.14218 (13)0.42832 (12)0.24865 (16)0.0359 (5)
C150.06605 (13)0.47581 (12)0.24231 (16)0.0361 (5)
C160.04936 (15)0.48005 (13)0.33849 (17)0.0424 (5)
C170.10847 (17)0.44819 (14)0.43617 (18)0.0512 (6)
H170.09650.45430.49830.061*
C180.18630 (16)0.40673 (14)0.44204 (18)0.0517 (6)
H180.22750.38670.50820.062*
C190.20132 (14)0.39593 (13)0.34964 (17)0.0453 (5)
H190.25210.36630.35330.054*
C200.10592 (18)0.46990 (19)0.2910 (2)0.0693 (8)
H20A0.11030.44530.22340.104*
H20B0.15800.50420.27900.104*
H20C0.10220.42510.34160.104*
C210.16576 (13)0.41259 (12)0.15670 (17)0.0376 (5)
H210.22130.38730.17230.045*
C220.16275 (13)0.40526 (13)0.01820 (17)0.0407 (5)
H22A0.22640.41710.01660.049*
H22B0.13830.44030.08310.049*
C230.14924 (14)0.31075 (14)0.05085 (18)0.0461 (5)
H23A0.18050.29910.09800.055*
H23B0.17720.27640.01410.055*
C240.05311 (14)0.28187 (13)0.10793 (17)0.0448 (5)
H24A0.05200.22000.11350.054*
H24B0.02030.29770.06390.054*
C250.04371 (16)0.28787 (17)0.2978 (2)0.0575 (6)
H25A0.03980.22670.30230.086*
H25B0.10530.30490.27360.086*
H25C0.01020.31210.36800.086*
C260.09173 (14)0.30137 (17)0.26210 (19)0.0568 (6)
H26A0.10170.24080.26470.085*
H26B0.11990.32480.33390.085*
H26C0.11680.32740.21540.085*
C270.36096 (14)0.37389 (13)0.17575 (16)0.0374 (5)
C280.12526 (14)0.67114 (13)0.02399 (16)0.0378 (5)
H20.5041 (18)0.6730 (7)0.132 (2)0.080*
H5A0.0166 (17)0.3749 (7)0.207 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0356 (2)0.02943 (18)0.03020 (19)0.00061 (14)0.01426 (15)0.00052 (14)
Ni20.03240 (19)0.03016 (18)0.02986 (19)0.00455 (14)0.00575 (15)0.00108 (14)
S10.0568 (4)0.1032 (6)0.0513 (4)0.0330 (4)0.0194 (3)0.0272 (4)
S20.0585 (4)0.0471 (3)0.0575 (4)0.0116 (3)0.0200 (3)0.0014 (3)
O10.0518 (9)0.0349 (7)0.0406 (8)0.0074 (6)0.0264 (7)0.0048 (6)
O20.0665 (11)0.0570 (10)0.0538 (10)0.0182 (9)0.0232 (9)0.0186 (8)
O30.0434 (8)0.0371 (7)0.0321 (7)0.0099 (6)0.0084 (6)0.0007 (6)
O40.0635 (11)0.0478 (9)0.0506 (10)0.0036 (8)0.0261 (8)0.0062 (7)
N10.0351 (9)0.0340 (8)0.0331 (9)0.0007 (7)0.0133 (7)0.0008 (7)
N20.0445 (10)0.0334 (9)0.0467 (10)0.0033 (8)0.0204 (9)0.0088 (8)
N30.0477 (11)0.0399 (10)0.0444 (10)0.0053 (8)0.0141 (9)0.0058 (8)
N40.0327 (9)0.0303 (8)0.0365 (9)0.0017 (7)0.0087 (7)0.0034 (7)
N50.0380 (9)0.0345 (9)0.0427 (10)0.0024 (8)0.0113 (8)0.0082 (8)
N60.0416 (10)0.0398 (10)0.0475 (11)0.0034 (8)0.0133 (9)0.0019 (8)
C10.0340 (10)0.0334 (9)0.0331 (10)0.0070 (8)0.0153 (9)0.0046 (8)
C20.0366 (11)0.0312 (9)0.0362 (11)0.0070 (8)0.0174 (9)0.0030 (8)
C30.0460 (12)0.0382 (11)0.0384 (12)0.0023 (9)0.0168 (10)0.0028 (9)
C40.0545 (14)0.0480 (12)0.0317 (11)0.0076 (11)0.0189 (10)0.0008 (9)
C50.0523 (14)0.0513 (12)0.0427 (13)0.0087 (11)0.0288 (11)0.0066 (11)
C60.0360 (11)0.0429 (11)0.0424 (12)0.0048 (9)0.0184 (10)0.0035 (10)
C70.0526 (16)0.108 (2)0.0479 (15)0.0185 (16)0.0110 (13)0.0012 (15)
C80.0307 (10)0.0389 (11)0.0377 (11)0.0003 (8)0.0136 (9)0.0002 (9)
C90.0349 (11)0.0547 (13)0.0362 (11)0.0008 (10)0.0110 (9)0.0086 (10)
C100.0525 (14)0.0508 (13)0.0524 (14)0.0144 (11)0.0296 (11)0.0155 (11)
C110.0639 (15)0.0369 (11)0.0480 (13)0.0042 (10)0.0297 (12)0.0034 (10)
C120.0496 (14)0.0718 (17)0.0665 (17)0.0102 (13)0.0141 (13)0.0197 (14)
C130.0613 (15)0.0538 (14)0.0496 (14)0.0080 (12)0.0240 (12)0.0166 (11)
C140.0361 (11)0.0297 (10)0.0343 (11)0.0036 (8)0.0056 (9)0.0014 (8)
C150.0415 (11)0.0263 (9)0.0331 (11)0.0025 (8)0.0068 (9)0.0021 (8)
C160.0512 (13)0.0325 (10)0.0416 (12)0.0030 (9)0.0162 (11)0.0034 (9)
C170.0718 (16)0.0454 (13)0.0335 (12)0.0090 (12)0.0176 (12)0.0002 (10)
C180.0560 (14)0.0461 (13)0.0386 (13)0.0057 (11)0.0028 (11)0.0095 (10)
C190.0406 (12)0.0386 (11)0.0443 (13)0.0019 (9)0.0035 (10)0.0066 (10)
C200.0624 (17)0.0702 (17)0.086 (2)0.0055 (14)0.0402 (16)0.0064 (16)
C210.0303 (10)0.0284 (9)0.0460 (12)0.0010 (8)0.0064 (9)0.0015 (9)
C220.0343 (11)0.0443 (12)0.0393 (11)0.0029 (9)0.0098 (9)0.0033 (9)
C230.0415 (12)0.0449 (12)0.0443 (12)0.0087 (10)0.0086 (10)0.0061 (10)
C240.0496 (13)0.0352 (11)0.0458 (12)0.0050 (10)0.0145 (10)0.0024 (9)
C250.0553 (15)0.0642 (16)0.0575 (15)0.0057 (12)0.0269 (12)0.0116 (13)
C260.0411 (12)0.0712 (16)0.0525 (14)0.0069 (12)0.0123 (11)0.0120 (13)
C270.0397 (11)0.0398 (11)0.0367 (11)0.0031 (9)0.0194 (10)0.0008 (9)
C280.0386 (11)0.0380 (11)0.0357 (11)0.0089 (9)0.0134 (9)0.0035 (9)
Geometric parameters (Å, º) top
Ni1—O12.0403 (13)C7—H7B0.9600
Ni1—O1i2.0403 (13)C7—H7C0.9600
Ni1—N3i2.0809 (18)C8—H80.9300
Ni1—N32.0809 (18)C9—C101.524 (3)
Ni1—N12.1102 (16)C9—H9A0.9700
Ni1—N1i2.1102 (16)C9—H9B0.9700
Ni2—O3ii2.0336 (14)C10—C111.509 (3)
Ni2—O32.0336 (14)C10—H10A0.9700
Ni2—N42.0990 (15)C10—H10B0.9700
Ni2—N4ii2.0990 (15)C11—H11A0.9700
Ni2—N62.1577 (19)C11—H11B0.9700
Ni2—N6ii2.1577 (19)C12—H12A0.9600
S1—C271.630 (2)C12—H12B0.9600
S2—C281.643 (2)C12—H12C0.9600
O1—C21.316 (2)C13—H13A0.9600
O2—C31.386 (3)C13—H13B0.9600
O2—C71.428 (3)C13—H13C0.9600
O3—C151.306 (2)C14—C191.410 (3)
O4—C161.394 (3)C14—C151.415 (3)
O4—C201.422 (3)C14—C211.447 (3)
N1—C81.277 (2)C15—C161.418 (3)
N1—C91.481 (2)C16—C171.376 (3)
N2—C121.489 (3)C17—C181.394 (3)
N2—C131.490 (3)C17—H170.9300
N2—C111.494 (3)C18—C191.362 (3)
N2—H20.906 (10)C18—H180.9300
N3—C271.150 (2)C19—H190.9300
N4—C211.283 (2)C20—H20A0.9600
N4—C221.477 (3)C20—H20B0.9600
N5—C261.487 (3)C20—H20C0.9600
N5—C251.488 (3)C21—H210.9300
N5—C241.497 (3)C22—C231.533 (3)
N5—H5A0.897 (10)C22—H22A0.9700
N6—C281.154 (3)C22—H22B0.9700
C1—C61.409 (3)C23—C241.512 (3)
C1—C21.412 (3)C23—H23A0.9700
C1—C81.450 (3)C23—H23B0.9700
C2—C31.418 (3)C24—H24A0.9700
C3—C41.372 (3)C24—H24B0.9700
C4—C51.378 (3)C25—H25A0.9600
C4—H40.9300C25—H25B0.9600
C5—C61.371 (3)C25—H25C0.9600
C5—H50.9300C26—H26A0.9600
C6—H60.9300C26—H26B0.9600
C7—H7A0.9600C26—H26C0.9600
O1—Ni1—O1i180.00 (7)C10—C9—H9B109.1
O1—Ni1—N3i87.54 (6)H9A—C9—H9B107.8
O1i—Ni1—N3i92.46 (6)C11—C10—C9115.79 (18)
O1—Ni1—N392.46 (6)C11—C10—H10A108.3
O1i—Ni1—N387.54 (6)C9—C10—H10A108.3
N3i—Ni1—N3180.00 (7)C11—C10—H10B108.3
O1—Ni1—N188.84 (6)C9—C10—H10B108.3
O1i—Ni1—N191.16 (6)H10A—C10—H10B107.4
N3i—Ni1—N192.66 (6)N2—C11—C10114.93 (18)
N3—Ni1—N187.34 (6)N2—C11—H11A108.5
O1—Ni1—N1i91.16 (6)C10—C11—H11A108.5
O1i—Ni1—N1i88.84 (6)N2—C11—H11B108.5
N3i—Ni1—N1i87.34 (6)C10—C11—H11B108.5
N3—Ni1—N1i92.66 (6)H11A—C11—H11B107.5
N1—Ni1—N1i180.00 (7)N2—C12—H12A109.5
O3ii—Ni2—O3180.000 (13)N2—C12—H12B109.5
O3ii—Ni2—N490.50 (6)H12A—C12—H12B109.5
O3—Ni2—N489.50 (6)N2—C12—H12C109.5
O3ii—Ni2—N4ii89.50 (6)H12A—C12—H12C109.5
O3—Ni2—N4ii90.50 (6)H12B—C12—H12C109.5
N4—Ni2—N4ii180.0N2—C13—H13A109.5
O3ii—Ni2—N687.27 (6)N2—C13—H13B109.5
O3—Ni2—N692.73 (6)H13A—C13—H13B109.5
N4—Ni2—N687.02 (6)N2—C13—H13C109.5
N4ii—Ni2—N692.98 (6)H13A—C13—H13C109.5
O3ii—Ni2—N6ii92.73 (6)H13B—C13—H13C109.5
O3—Ni2—N6ii87.27 (6)C19—C14—C15119.7 (2)
N4—Ni2—N6ii92.98 (6)C19—C14—C21116.57 (19)
N4ii—Ni2—N6ii87.02 (6)C15—C14—C21123.70 (17)
N6—Ni2—N6ii180.0O3—C15—C14124.64 (19)
C2—O1—Ni1124.97 (12)O3—C15—C16118.99 (19)
C3—O2—C7112.77 (19)C14—C15—C16116.35 (18)
C15—O3—Ni2127.67 (13)C17—C16—O4119.5 (2)
C16—O4—C20113.10 (18)C17—C16—C15122.4 (2)
C8—N1—C9115.21 (16)O4—C16—C15118.04 (19)
C8—N1—Ni1123.83 (13)C16—C17—C18120.0 (2)
C9—N1—Ni1120.71 (13)C16—C17—H17120.0
C12—N2—C13109.21 (17)C18—C17—H17120.0
C12—N2—C11110.42 (18)C19—C18—C17119.2 (2)
C13—N2—C11112.99 (17)C19—C18—H18120.4
C12—N2—H2107.2 (17)C17—C18—H18120.4
C13—N2—H2109.6 (18)C18—C19—C14122.0 (2)
C11—N2—H2107.2 (17)C18—C19—H19119.0
C27—N3—Ni1168.91 (17)C14—C19—H19119.0
C21—N4—C22114.76 (16)O4—C20—H20A109.5
C21—N4—Ni2124.16 (14)O4—C20—H20B109.5
C22—N4—Ni2120.55 (12)H20A—C20—H20B109.5
C26—N5—C25109.85 (17)O4—C20—H20C109.5
C26—N5—C24111.28 (18)H20A—C20—H20C109.5
C25—N5—C24112.90 (17)H20B—C20—H20C109.5
C26—N5—H5A110.2 (17)N4—C21—C14127.99 (18)
C25—N5—H5A110.1 (18)N4—C21—H21116.0
C24—N5—H5A102.3 (18)C14—C21—H21116.0
C28—N6—Ni2169.71 (18)N4—C22—C23112.64 (17)
C6—C1—C2120.01 (18)N4—C22—H22A109.1
C6—C1—C8116.18 (18)C23—C22—H22A109.1
C2—C1—C8123.79 (18)N4—C22—H22B109.1
O1—C2—C1123.56 (18)C23—C22—H22B109.1
O1—C2—C3119.90 (18)H22A—C22—H22B107.8
C1—C2—C3116.52 (18)C24—C23—C22115.85 (17)
C4—C3—O2120.12 (19)C24—C23—H23A108.3
C4—C3—C2121.65 (19)C22—C23—H23A108.3
O2—C3—C2118.21 (19)C24—C23—H23B108.3
C3—C4—C5121.2 (2)C22—C23—H23B108.3
C3—C4—H4119.4H23A—C23—H23B107.4
C5—C4—H4119.4N5—C24—C23114.12 (18)
C6—C5—C4119.0 (2)N5—C24—H24A108.7
C6—C5—H5120.5C23—C24—H24A108.7
C4—C5—H5120.5N5—C24—H24B108.7
C5—C6—C1121.4 (2)C23—C24—H24B108.7
C5—C6—H6119.3H24A—C24—H24B107.6
C1—C6—H6119.3N5—C25—H25A109.5
O2—C7—H7A109.5N5—C25—H25B109.5
O2—C7—H7B109.5H25A—C25—H25B109.5
H7A—C7—H7B109.5N5—C25—H25C109.5
O2—C7—H7C109.5H25A—C25—H25C109.5
H7A—C7—H7C109.5H25B—C25—H25C109.5
H7B—C7—H7C109.5N5—C26—H26A109.5
N1—C8—C1127.30 (18)N5—C26—H26B109.5
N1—C8—H8116.3H26A—C26—H26B109.5
C1—C8—H8116.3N5—C26—H26C109.5
N1—C9—C10112.56 (17)H26A—C26—H26C109.5
N1—C9—H9A109.1H26B—C26—H26C109.5
C10—C9—H9A109.1N3—C27—S1178.0 (2)
N1—C9—H9B109.1N6—C28—S2177.5 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (1)1.78 (1)2.668 (2)167 (3)
N5—H5A···O3ii0.90 (1)1.96 (2)2.764 (2)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C13H20N2O2)2]
Mr647.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.228 (2), 15.642 (2), 13.3912 (18)
β (°) 113.132 (2)
V3)3126.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.23 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
17748, 6772, 4916
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.02
No. of reflections6772
No. of parameters385
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.0403 (13)Ni2—O32.0336 (14)
Ni1—N32.0809 (18)Ni2—N42.0990 (15)
Ni1—N12.1102 (16)Ni2—N62.1577 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.906 (10)1.778 (12)2.668 (2)167 (3)
N5—H5A···O3ii0.897 (10)1.957 (16)2.764 (2)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010b). Acta Cryst. E66, m1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010a). Acta Cryst. E66, m1172–m1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds