organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­quinolin-1-ium hydrogen sulfate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 September 2010; accepted 28 September 2010; online 2 October 2010)

The title salt, C10H7N2+·HSO4, is formed by the transfer of a proton from H2SO4 to the N atom of 2-cyano­quinoline during crystallization. The quinoline ring system is approximately planar with a maximum deviation of 0.013 (3) Å. In the crystal, the cations are linked to the anions via inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a layered network.

Related literature

For background to and the biological activity of quinoline derivatives, see: Loh et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.][Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b); Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For related structures, see: Loh et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N2+·HSO4

  • Mr = 252.24

  • Triclinic, [P \overline 1]

  • a = 7.2154 (3) Å

  • b = 8.2334 (4) Å

  • c = 9.9985 (4) Å

  • α = 110.622 (2)°

  • β = 90.982 (3)°

  • γ = 110.791 (2)°

  • V = 512.82 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.34 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.963

  • 5740 measured reflections

  • 1979 independent reflections

  • 1721 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.11

  • 1979 reflections

  • 186 parameters

  • All H-atom parameters refined

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.98 (5) 1.71 (5) 2.669 (3) 169 (4)
O4—H1O4⋯O2ii 0.67 (5) 1.97 (5) 2.641 (3) 176 (7)
C2—H2A⋯O2iii 0.91 (4) 2.53 (4) 3.320 (4) 145 (3)
C5—H5A⋯O4iv 0.98 (3) 2.52 (3) 3.475 (4) 166 (3)
C7—H7A⋯O3iv 0.94 (4) 2.41 (4) 3.338 (4) 167 (3)
C8—H8A⋯O2v 0.99 (4) 2.59 (4) 3.309 (4) 130 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z+1; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh at al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one hydrogen sulfate anion (O1–O4/S1). One proton is transferred from the hydroxyl group of hydrogen sulfate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b).

In the crystal (Fig. 2), the cations are linked by the anions via intermolecular N1—H1N1···O1, O4—H1O4···O2, C2—H2A···O2, C5—H5A···O4, C7—H7A···O3 and C8—H8A···O2 hydrogen bonds (Table 1) into a two-dimensional networks.

Related literature top

For background to and the biological activity of quinoline derivatives, see: Loh et al. (2010a,b); Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For related structures, see: Loh et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A few drops of sulfuric acid were added to a hot methanol solution (20 ml) of quinoline-2-carbonitrile (39 mg, Aldrich) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Colourless blocks of (I) appeared after a few days.

Refinement top

All H atoms were located from a difference Fourier map and refined freely with the bond lengths of C–H being 0.91 (3) to 0.99 (3) Å, N–H being 0.98 (5) Å and O–H being 0.67 (5) Å.

Structure description top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh at al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one hydrogen sulfate anion (O1–O4/S1). One proton is transferred from the hydroxyl group of hydrogen sulfate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b).

In the crystal (Fig. 2), the cations are linked by the anions via intermolecular N1—H1N1···O1, O4—H1O4···O2, C2—H2A···O2, C5—H5A···O4, C7—H7A···O3 and C8—H8A···O2 hydrogen bonds (Table 1) into a two-dimensional networks.

For background to and the biological activity of quinoline derivatives, see: Loh et al. (2010a,b); Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For related structures, see: Loh et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis.
2-Cyanoquinolin-1-ium hydrogen sulfate top
Crystal data top
C10H7N2+·HSO4Z = 2
Mr = 252.24F(000) = 260
Triclinic, P1Dx = 1.634 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2154 (3) ÅCell parameters from 2998 reflections
b = 8.2334 (4) Åθ = 2.2–27.6°
c = 9.9985 (4) ŵ = 0.32 mm1
α = 110.622 (2)°T = 100 K
β = 90.982 (3)°Block, colourless
γ = 110.791 (2)°0.34 × 0.19 × 0.12 mm
V = 512.82 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
1979 independent reflections
Radiation source: fine-focus sealed tube1721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 86
Tmin = 0.900, Tmax = 0.963k = 1010
5740 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.5522P]
where P = (Fo2 + 2Fc2)/3
1979 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C10H7N2+·HSO4γ = 110.791 (2)°
Mr = 252.24V = 512.82 (4) Å3
Triclinic, P1Z = 2
a = 7.2154 (3) ÅMo Kα radiation
b = 8.2334 (4) ŵ = 0.32 mm1
c = 9.9985 (4) ÅT = 100 K
α = 110.622 (2)°0.34 × 0.19 × 0.12 mm
β = 90.982 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1979 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1721 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.963Rint = 0.032
5740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154All H-atom parameters refined
S = 1.11Δρmax = 0.82 e Å3
1979 reflectionsΔρmin = 0.56 e Å3
186 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15454 (10)0.99553 (10)0.33365 (7)0.0141 (3)
O10.3450 (3)1.0495 (3)0.4227 (2)0.0216 (5)
O20.0561 (3)1.1258 (3)0.3966 (2)0.0184 (5)
O30.1678 (3)0.9584 (3)0.1832 (2)0.0199 (5)
O40.0149 (3)0.8001 (3)0.3345 (3)0.0213 (5)
N10.5709 (4)0.3044 (3)0.6749 (3)0.0153 (5)
N20.7421 (5)0.4421 (4)0.4025 (3)0.0341 (8)
C10.5498 (4)0.2853 (4)0.8046 (3)0.0146 (6)
C20.3903 (4)0.1311 (4)0.8119 (3)0.0171 (6)
C30.3736 (5)0.1152 (4)0.9439 (3)0.0176 (6)
C40.5161 (4)0.2496 (4)1.0697 (3)0.0178 (7)
C50.6693 (4)0.3999 (4)1.0632 (3)0.0157 (6)
C60.6915 (4)0.4236 (4)0.9298 (3)0.0151 (6)
C70.8438 (4)0.5775 (4)0.9151 (3)0.0161 (6)
C80.8587 (4)0.5909 (4)0.7818 (3)0.0164 (6)
C90.7188 (4)0.4485 (4)0.6622 (3)0.0171 (6)
C100.7297 (5)0.4459 (4)0.5172 (3)0.0224 (7)
H2A0.305 (5)0.040 (5)0.730 (4)0.017 (8)*
H3A0.266 (5)0.008 (5)0.947 (4)0.018 (8)*
H4A0.493 (5)0.226 (5)1.157 (4)0.025 (9)*
H5A0.767 (4)0.498 (4)1.148 (3)0.008 (7)*
H7A0.933 (5)0.672 (5)0.999 (4)0.016 (8)*
H8A0.964 (5)0.696 (5)0.767 (4)0.015 (8)*
H1N10.474 (6)0.211 (6)0.589 (5)0.045 (11)*
H1O40.005 (7)0.814 (7)0.402 (5)0.040 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (4)0.0150 (4)0.0056 (4)0.0016 (3)0.0029 (3)0.0015 (3)
O10.0213 (11)0.0246 (12)0.0092 (10)0.0065 (9)0.0058 (8)0.0016 (9)
O20.0221 (11)0.0209 (11)0.0133 (10)0.0093 (9)0.0018 (8)0.0069 (9)
O30.0229 (11)0.0231 (12)0.0058 (10)0.0025 (9)0.0009 (8)0.0031 (9)
O40.0286 (13)0.0204 (12)0.0079 (11)0.0045 (10)0.0005 (9)0.0028 (10)
N10.0176 (13)0.0158 (13)0.0088 (12)0.0046 (10)0.0020 (10)0.0025 (10)
N20.0415 (18)0.0289 (16)0.0134 (14)0.0059 (14)0.0036 (12)0.0070 (12)
C10.0183 (15)0.0194 (15)0.0080 (13)0.0100 (12)0.0014 (11)0.0047 (12)
C20.0155 (14)0.0167 (15)0.0130 (15)0.0041 (12)0.0030 (12)0.0013 (12)
C30.0175 (15)0.0185 (16)0.0148 (15)0.0047 (13)0.0003 (12)0.0066 (13)
C40.0218 (16)0.0229 (16)0.0113 (15)0.0116 (13)0.0031 (12)0.0063 (13)
C50.0183 (15)0.0199 (15)0.0079 (14)0.0094 (13)0.0005 (11)0.0023 (12)
C60.0159 (14)0.0145 (15)0.0122 (14)0.0051 (12)0.0019 (11)0.0030 (12)
C70.0197 (15)0.0157 (15)0.0093 (14)0.0073 (12)0.0016 (12)0.0004 (12)
C80.0154 (14)0.0162 (15)0.0134 (14)0.0033 (12)0.0013 (11)0.0039 (12)
C90.0209 (15)0.0182 (15)0.0113 (14)0.0069 (12)0.0007 (11)0.0055 (12)
C100.0259 (17)0.0183 (16)0.0134 (16)0.0001 (13)0.0026 (12)0.0040 (13)
Geometric parameters (Å, º) top
S1—O31.438 (2)C3—C41.425 (4)
S1—O11.457 (2)C3—H3A0.96 (3)
S1—O21.460 (2)C4—C51.358 (4)
S1—O41.570 (2)C4—H4A0.96 (4)
O4—H1O40.67 (5)C5—C61.418 (4)
N1—C91.333 (4)C5—H5A0.98 (3)
N1—C11.365 (4)C6—C71.408 (4)
N1—H1N10.98 (5)C7—C81.378 (4)
N2—C101.142 (4)C7—H7A0.95 (4)
C1—C21.404 (4)C8—C91.398 (4)
C1—C61.426 (4)C8—H8A0.99 (3)
C2—C31.375 (4)C9—C101.446 (4)
C2—H2A0.91 (3)
O3—S1—O1113.75 (13)C5—C4—C3120.9 (3)
O3—S1—O2113.56 (12)C5—C4—H4A124 (2)
O1—S1—O2111.77 (12)C3—C4—H4A115 (2)
O3—S1—O4104.10 (13)C4—C5—C6120.2 (3)
O1—S1—O4105.98 (13)C4—C5—H5A123.1 (17)
O2—S1—O4106.81 (13)C6—C5—H5A116.7 (17)
S1—O4—H1O4108 (4)C7—C6—C5123.5 (3)
C9—N1—C1122.0 (2)C7—C6—C1118.5 (3)
C9—N1—H1N1119 (3)C5—C6—C1118.0 (3)
C1—N1—H1N1119 (3)C8—C7—C6120.6 (3)
N1—C1—C2119.6 (3)C8—C7—H7A121 (2)
N1—C1—C6118.8 (3)C6—C7—H7A118 (2)
C2—C1—C6121.7 (3)C7—C8—C9118.4 (3)
C3—C2—C1118.2 (3)C7—C8—H8A122.8 (19)
C3—C2—H2A121 (2)C9—C8—H8A118.8 (19)
C1—C2—H2A121 (2)N1—C9—C8121.7 (3)
C2—C3—C4121.0 (3)N1—C9—C10116.2 (3)
C2—C3—H3A117 (2)C8—C9—C10122.1 (3)
C4—C3—H3A121 (2)N2—C10—C9178.2 (4)
C9—N1—C1—C2179.6 (3)C2—C1—C6—C7178.0 (3)
C9—N1—C1—C60.5 (4)N1—C1—C6—C5179.0 (2)
N1—C1—C2—C3179.7 (3)C2—C1—C6—C51.0 (4)
C6—C1—C2—C30.3 (4)C5—C6—C7—C8179.2 (3)
C1—C2—C3—C41.1 (5)C1—C6—C7—C81.9 (4)
C2—C3—C4—C51.8 (5)C6—C7—C8—C90.2 (4)
C3—C4—C5—C61.1 (4)C1—N1—C9—C81.4 (4)
C4—C5—C6—C7178.7 (3)C1—N1—C9—C10176.8 (3)
C4—C5—C6—C10.3 (4)C7—C8—C9—N11.5 (5)
N1—C1—C6—C72.0 (4)C7—C8—C9—C10176.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.98 (5)1.71 (5)2.669 (3)169 (4)
O4—H1O4···O2ii0.67 (5)1.97 (5)2.641 (3)176 (7)
C2—H2A···O2iii0.91 (4)2.53 (4)3.320 (4)145 (3)
C5—H5A···O4iv0.98 (3)2.52 (3)3.475 (4)166 (3)
C7—H7A···O3iv0.94 (4)2.41 (4)3.338 (4)167 (3)
C8—H8A···O2v0.99 (4)2.59 (4)3.309 (4)130 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H7N2+·HSO4
Mr252.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2154 (3), 8.2334 (4), 9.9985 (4)
α, β, γ (°)110.622 (2), 90.982 (3), 110.791 (2)
V3)512.82 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.34 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.900, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5740, 1979, 1721
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.11
No. of reflections1979
No. of parameters186
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.82, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.98 (5)1.71 (5)2.669 (3)169 (4)
O4—H1O4···O2ii0.67 (5)1.97 (5)2.641 (3)176 (7)
C2—H2A···O2iii0.91 (4)2.53 (4)3.320 (4)145 (3)
C5—H5A···O4iv0.98 (3)2.52 (3)3.475 (4)166 (3)
C7—H7A···O3iv0.94 (4)2.41 (4)3.338 (4)167 (3)
C8—H8A···O2v0.99 (4)2.59 (4)3.309 (4)130 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship and HM thanks USM for the award of a post doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds