organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­­oxy­benzyl­­idene)-4-methyl­thiosemicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 27 September 2010; accepted 29 September 2010; online 9 October 2010)

The title compound, C10H13N3OS, was prepared by the reaction of 4-meth­oxy­benzaldehyde and 4-methyl­thio­semicarbazide. The dihedral angle between the benzene ring and the thio­urea unit is 8.64 (7)° and an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The dimers are linked into (001) sheets by further N—H⋯S links.

Related literature

For background to Schiff bases, see: Casas et al. (2000[Casas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3OS

  • Mr = 223.29

  • Orthorhombic, P b c a

  • a = 13.397 (3) Å

  • b = 9.1271 (18) Å

  • c = 18.799 (4) Å

  • V = 2298.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 20742 measured reflections

  • 2627 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.146

  • S = 0.94

  • 2627 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.86 2.28 2.661 (2) 107
N1—H1A⋯S1i 0.86 2.86 3.4718 (18) 130
N2—H2A⋯S1ii 0.86 2.59 3.4359 (17) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base have attracted much attention because they can be utilized as effective ligands to be coordination compounds in coordination chemistry. (Casas et al., 2000). As part of our research for new Schiff-base compounds we synthesized the title compound (I), and describe its structure here. In the molecule structure, the dihedral angle between the benzene ring and the thiourea unit is [8.64 (7)°].

Bond lengths and angles agree with those observed in related compounds (Li & Jian, 2010).

Related literature top

For background to Schiff bases, see: Casas et al. (2000). For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-methylthiosemicarbazide (0.1 mol) and 4-methoxybenzaldehyde (0.1 mol) was stirred in refluxing ethanol (30 mL) for 2 h to afford the title compound (0.090 mol, yield 90%). Colourless bars of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Structure description top

Schiff-base have attracted much attention because they can be utilized as effective ligands to be coordination compounds in coordination chemistry. (Casas et al., 2000). As part of our research for new Schiff-base compounds we synthesized the title compound (I), and describe its structure here. In the molecule structure, the dihedral angle between the benzene ring and the thiourea unit is [8.64 (7)°].

Bond lengths and angles agree with those observed in related compounds (Li & Jian, 2010).

For background to Schiff bases, see: Casas et al. (2000). For a related structure, see: Li & Jian (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
1-(4-Methoxybenzylidene)-4-methylthiosemicarbazide top
Crystal data top
C10H13N3OSDx = 1.290 Mg m3
Mr = 223.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2650 reflections
a = 13.397 (3) Åθ = 3.2–27.2°
b = 9.1271 (18) ŵ = 0.26 mm1
c = 18.799 (4) ÅT = 293 K
V = 2298.6 (8) Å3Bar, colorless
Z = 80.25 × 0.22 × 0.18 mm
F(000) = 944
Data collection top
Bruker SMART CCD area-detector
diffractometer
1746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
phi and ω scansh = 1717
20742 measured reflectionsk = 1111
2627 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2627 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H13N3OSV = 2298.6 (8) Å3
Mr = 223.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.397 (3) ŵ = 0.26 mm1
b = 9.1271 (18) ÅT = 293 K
c = 18.799 (4) Å0.25 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1746 reflections with I > 2σ(I)
20742 measured reflectionsRint = 0.061
2627 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.94Δρmax = 0.17 e Å3
2627 reflectionsΔρmin = 0.29 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89733 (4)1.04305 (5)0.58910 (3)0.0579 (2)
C70.89674 (13)0.2105 (2)0.33447 (9)0.0442 (4)
N30.88845 (12)0.66880 (17)0.48831 (8)0.0467 (4)
C40.92228 (14)0.4806 (2)0.40190 (10)0.0456 (4)
O10.88816 (11)0.08431 (16)0.29666 (7)0.0577 (4)
N20.91161 (12)0.80887 (17)0.50939 (9)0.0509 (4)
H2A0.95580.85770.48620.061*
C80.85569 (15)0.2343 (2)0.40146 (9)0.0483 (5)
H8A0.81970.16060.42400.058*
C20.86618 (14)0.8710 (2)0.56577 (10)0.0450 (4)
N10.79800 (13)0.79216 (17)0.59919 (8)0.0567 (5)
H1A0.78480.70610.58310.068*
C90.86880 (15)0.3681 (2)0.43415 (10)0.0484 (5)
H9A0.84120.38360.47890.058*
C30.93581 (15)0.6236 (2)0.43363 (10)0.0505 (5)
H3B0.98190.68660.41290.061*
C50.96339 (16)0.4532 (2)0.33528 (10)0.0550 (5)
H5A1.00060.52590.31300.066*
C100.83329 (19)0.0329 (2)0.32630 (13)0.0661 (6)
H10A0.83370.11430.29400.099*
H10B0.76570.00230.33450.099*
H10C0.86310.06190.37060.099*
C60.95017 (17)0.3214 (2)0.30188 (10)0.0584 (5)
H6A0.97730.30630.25690.070*
C10.7442 (2)0.8428 (3)0.66153 (12)0.0832 (8)
H1B0.69850.76810.67690.125*
H1C0.70770.93010.64990.125*
H1D0.79070.86360.69900.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0564 (4)0.0466 (3)0.0707 (4)0.0056 (2)0.0113 (2)0.0107 (2)
C70.0415 (9)0.0505 (10)0.0405 (9)0.0008 (7)0.0004 (7)0.0047 (8)
N30.0450 (9)0.0478 (9)0.0473 (8)0.0012 (7)0.0014 (7)0.0062 (7)
C40.0398 (10)0.0524 (10)0.0446 (10)0.0010 (8)0.0011 (8)0.0025 (8)
O10.0616 (9)0.0578 (8)0.0537 (8)0.0079 (6)0.0076 (6)0.0105 (7)
N20.0492 (10)0.0480 (9)0.0557 (9)0.0070 (7)0.0083 (7)0.0079 (7)
C80.0510 (11)0.0498 (10)0.0441 (10)0.0016 (9)0.0055 (8)0.0060 (8)
C20.0393 (9)0.0470 (10)0.0488 (10)0.0024 (8)0.0009 (8)0.0009 (8)
N10.0623 (11)0.0511 (9)0.0568 (10)0.0110 (8)0.0156 (8)0.0102 (8)
C90.0512 (11)0.0553 (11)0.0386 (9)0.0006 (9)0.0067 (8)0.0011 (8)
C30.0456 (11)0.0534 (11)0.0524 (11)0.0051 (9)0.0023 (9)0.0020 (9)
C50.0572 (12)0.0587 (12)0.0492 (10)0.0129 (9)0.0156 (9)0.0027 (9)
C100.0698 (16)0.0533 (12)0.0751 (14)0.0098 (10)0.0038 (12)0.0050 (10)
C60.0602 (13)0.0689 (13)0.0462 (10)0.0105 (10)0.0168 (9)0.0102 (9)
C10.099 (2)0.0764 (14)0.0739 (14)0.0251 (14)0.0394 (15)0.0209 (13)
Geometric parameters (Å, º) top
S1—C21.683 (2)C2—N11.322 (2)
C7—O11.358 (2)N1—C11.451 (3)
C7—C61.383 (3)N1—H1A0.8600
C7—C81.391 (3)C9—H9A0.9300
N3—C31.277 (2)C3—H3B0.9300
N3—N21.374 (2)C5—C61.368 (3)
C4—C51.391 (3)C5—H5A0.9300
C4—C91.391 (3)C10—H10A0.9600
C4—C31.446 (3)C10—H10B0.9600
O1—C101.413 (2)C10—H10C0.9600
N2—C21.347 (2)C6—H6A0.9300
N2—H2A0.8600C1—H1B0.9600
C8—C91.378 (3)C1—H1C0.9600
C8—H8A0.9300C1—H1D0.9600
O1—C7—C6115.63 (16)C4—C9—H9A119.2
O1—C7—C8124.96 (17)N3—C3—C4124.16 (18)
C6—C7—C8119.40 (17)N3—C3—H3B117.9
C3—N3—N2114.88 (16)C4—C3—H3B117.9
C5—C4—C9117.63 (17)C6—C5—C4121.34 (17)
C5—C4—C3118.95 (17)C6—C5—H5A119.3
C9—C4—C3123.42 (17)C4—C5—H5A119.3
C7—O1—C10118.68 (15)O1—C10—H10A109.5
C2—N2—N3121.08 (16)O1—C10—H10B109.5
C2—N2—H2A119.5H10A—C10—H10B109.5
N3—N2—H2A119.5O1—C10—H10C109.5
C9—C8—C7119.47 (18)H10A—C10—H10C109.5
C9—C8—H8A120.3H10B—C10—H10C109.5
C7—C8—H8A120.3C5—C6—C7120.48 (17)
N1—C2—N2117.22 (17)C5—C6—H6A119.8
N1—C2—S1123.74 (15)C7—C6—H6A119.8
N2—C2—S1119.04 (15)N1—C1—H1B109.5
C2—N1—C1123.65 (17)N1—C1—H1C109.5
C2—N1—H1A118.2H1B—C1—H1C109.5
C1—N1—H1A118.2N1—C1—H1D109.5
C8—C9—C4121.67 (17)H1B—C1—H1D109.5
C8—C9—H9A119.2H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.282.661 (2)107
N1—H1A···S1i0.862.863.4718 (18)130
N2—H2A···S1ii0.862.593.4359 (17)169
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N3OS
Mr223.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.397 (3), 9.1271 (18), 18.799 (4)
V3)2298.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20742, 2627, 1746
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.146, 0.94
No. of reflections2627
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.282.661 (2)107
N1—H1A···S1i0.862.863.4718 (18)130
N2—H2A···S1ii0.862.593.4359 (17)169
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y+2, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds