organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)pyrazine-2-carbox­amide

aFundaçao Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 September 2010; accepted 29 September 2010; online 9 October 2010)

The mol­ecule of the title compound, C11H8BrN3O, is close to planar (r.m.s. deviation of all 16 non-H atoms = 0.103 Å), a conformation stabilized by an intra­molecular N—H⋯N hydrogen bond, which generates an S(5) ring. In the crystal structure, supra­molecular chains mediated by C—H⋯O contacts (along a) are linked into a double layer via N⋯Br halogen bonds [3.207 (5) Å] and C—Br⋯π inter­actions [Br⋯ring centroid(pyrazine) = 3.446 (3) Å]. The layers stack along the b axis via weak ππ inter­actions [ring centroid(pyrazine)⋯ring centroid(benzene) distance = 3.803 (4) Å].

Related literature

For the anti­mycobacterial activity of pyrazinamide, see: Chaisson et al. (2002[Chaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc. 288, 165-166.]); Gordin et al. (2000[Gordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O'Brien, R. J. (2000). J. Am. Med. Assoc. 283, 1445-1450.]); de Souza (2006[Souza, M. V. N. de (2006). Recent Pat. Anti-Infec. Drug Discov. 1, 33-45.]). For structural studies of pyrazinamide derivatives; see: Baddeley et al. (2009[Baddeley, T. C., Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2009). Z. Kristallogr. 224, 506-514.]); Howie et al. (2010a[Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010a). Z. Kristallogr. 225, 19-28.],b[Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010b). Z. Kristallogr. 225, 158-166.],c[Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010c). Z. Kristallogr. 225, 245-252.],d[Howie, R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010d). Acta Cryst. E66, o178-o179.]). For the synthesis, see: Wardell et al. (2008[Wardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84-100.]); Vontor et al. (1989[Vontor, T., Palat, K., Danek, J. & Lycka, A. (1989). Cesk. Farm. 38, 393-397.]). For background to halogen bonding, see: Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]); Pennington et al. (2008[Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65-104.]). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of software used to analyse the shape of the mol­ecule, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8BrN3O

  • Mr = 278.11

  • Triclinic, [P \overline 1]

  • a = 5.8396 (4) Å

  • b = 7.3317 (7) Å

  • c = 13.3362 (12) Å

  • α = 101.670 (4)°

  • β = 96.728 (5)°

  • γ = 110.524 (5)°

  • V = 512.55 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.99 mm−1

  • T = 120 K

  • 0.18 × 0.10 × 0.02 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 1.000

  • 8923 measured reflections

  • 2110 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 1.18

  • 2110 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.88 (6) 2.22 (6) 2.708 (7) 115 (5)
C3—H3⋯O1i 0.95 2.39 3.177 (8) 140
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazinamide has well known anti-mycobacterial activity and is the one of the most important drugs used in tuberculosis treatment (Chaisson et al., 2002; Gordin et al., 2000; de Souza, 2006). In continuation of our studies on pyrazinamide derivatives (Wardell et al., 2008; Baddeley et al., 2009; Howie et al., 2010a,b,c,d), we report the structure of N-(4-bromophenyl)pyrazine-2-carboxamide, the title compound, (I).

The molecular structure of (I), Fig. 1, is essentially planar with the dihedral angle formed between the pyrazine and benzene rings being 10.2 (3)°; the r.m.s. deviation of all 16 non-H atoms = 0.103 Å (Spek, 2009). The observed conformation is stabilized by an intramolecular N—H···N hydrogen bond, Table 1.

An analysis of the crystal packing reveals C—H···O, N···Br, Br···π, and ππ interactions. The C—H···O contacts lead to the formation of a supramolecular chain with a flat topology along the a axis. These are sustained in the crystal packing by N···Br halogen bonding [N2···Br1 = 3.207 (5) Å for i: 1 + x, y, 1 + z] (Metrangolo et al., 2008; Pennington et al., 2008), as well as Br···π contacts [C5—Br1···Cg(N2,N3,C8–C11)ii = 3.446 (3) Å, angle at Br1 = 94.59 (18)° for ii: 1 - x, 1 - y, -z]. The resulting double layers stack along the b axis, Fig. 3, with the closest interactions between them being of the form ππ [ring centroid(N2,N3,C8–C11)···ring centroid(C2–C7)iii = 3.803 (4) Å, angle of inclination = 10.2 (3)° for iii: 1 - x, -y, -z].

Related literature top

For the antimycobacterial activity of pyrazinamide, see: Chaisson et al. (2002); Gordin et al. (2000); de Souza (2006). For structural studies of pyrazinamide derivatives; see: Baddeley et al. (2009); Howie et al. (2010a,b,c,d). For the synthesis, see: Wardell et al. (2008); Vontor et al. (1989). For background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995). For details of software used to analyse the shape of the molecule, see: Spek (2009). [Please confirm added references]

Experimental top

N-(4-Bromophenyl)pyrazine-2-carboxamide was prepared following the general procedure for N-arylpyrazine-2-carboxamides (Wardell et al., 2008). Yield: 48%; m.p. 473 K, lit. value 471–474 K (Vontor et al., 1989). The colourless plate of (I) used for the structure determination was grown from the slow evaporation of its ethanol solution.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with the distance restraint N—H = 0.88 (1) Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

Pyrazinamide has well known anti-mycobacterial activity and is the one of the most important drugs used in tuberculosis treatment (Chaisson et al., 2002; Gordin et al., 2000; de Souza, 2006). In continuation of our studies on pyrazinamide derivatives (Wardell et al., 2008; Baddeley et al., 2009; Howie et al., 2010a,b,c,d), we report the structure of N-(4-bromophenyl)pyrazine-2-carboxamide, the title compound, (I).

The molecular structure of (I), Fig. 1, is essentially planar with the dihedral angle formed between the pyrazine and benzene rings being 10.2 (3)°; the r.m.s. deviation of all 16 non-H atoms = 0.103 Å (Spek, 2009). The observed conformation is stabilized by an intramolecular N—H···N hydrogen bond, Table 1.

An analysis of the crystal packing reveals C—H···O, N···Br, Br···π, and ππ interactions. The C—H···O contacts lead to the formation of a supramolecular chain with a flat topology along the a axis. These are sustained in the crystal packing by N···Br halogen bonding [N2···Br1 = 3.207 (5) Å for i: 1 + x, y, 1 + z] (Metrangolo et al., 2008; Pennington et al., 2008), as well as Br···π contacts [C5—Br1···Cg(N2,N3,C8–C11)ii = 3.446 (3) Å, angle at Br1 = 94.59 (18)° for ii: 1 - x, 1 - y, -z]. The resulting double layers stack along the b axis, Fig. 3, with the closest interactions between them being of the form ππ [ring centroid(N2,N3,C8–C11)···ring centroid(C2–C7)iii = 3.803 (4) Å, angle of inclination = 10.2 (3)° for iii: 1 - x, -y, -z].

For the antimycobacterial activity of pyrazinamide, see: Chaisson et al. (2002); Gordin et al. (2000); de Souza (2006). For structural studies of pyrazinamide derivatives; see: Baddeley et al. (2009); Howie et al. (2010a,b,c,d). For the synthesis, see: Wardell et al. (2008); Vontor et al. (1989). For background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995). For details of software used to analyse the shape of the molecule, see: Spek (2009). [Please confirm added references]

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain in (I) aligned along the a axis. The C—H···O contacts are as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I) highlighting the stacking of double layers. The C—H···O, N···Br, and Br···π contacts are shown as orange, blue, and purple dashed lines, respectively.
N-(4-Bromophenyl)pyrazine-2-carboxamide top
Crystal data top
C11H8BrN3OZ = 2
Mr = 278.11F(000) = 276
Triclinic, P1Dx = 1.802 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8396 (4) ÅCell parameters from 22175 reflections
b = 7.3317 (7) Åθ = 2.9–27.5°
c = 13.3362 (12) ŵ = 3.99 mm1
α = 101.670 (4)°T = 120 K
β = 96.728 (5)°Plate, colourless
γ = 110.524 (5)°0.18 × 0.10 × 0.02 mm
V = 512.55 (8) Å3
Data collection top
Enraf–Nonius KappaCCD
diffractometer
2110 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode1792 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.078
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.1°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 99
Tmin = 0.764, Tmax = 1.000l = 1616
8923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2110 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
C11H8BrN3Oγ = 110.524 (5)°
Mr = 278.11V = 512.55 (8) Å3
Triclinic, P1Z = 2
a = 5.8396 (4) ÅMo Kα radiation
b = 7.3317 (7) ŵ = 3.99 mm1
c = 13.3362 (12) ÅT = 120 K
α = 101.670 (4)°0.18 × 0.10 × 0.02 mm
β = 96.728 (5)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1792 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 1.000Rint = 0.078
8923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.55 e Å3
2110 reflectionsΔρmin = 0.52 e Å3
148 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20472 (10)0.24870 (9)0.39064 (4)0.0227 (2)
O10.8942 (7)0.2880 (7)0.0884 (3)0.0259 (10)
N10.4828 (9)0.2414 (8)0.0622 (4)0.0204 (10)
H1N0.366 (9)0.234 (10)0.099 (5)0.024*
N20.9106 (9)0.2715 (8)0.3965 (4)0.0223 (11)
N30.4723 (9)0.2202 (8)0.2621 (4)0.0212 (11)
C10.6982 (10)0.2603 (8)0.1192 (4)0.0193 (12)
C20.4304 (10)0.2444 (8)0.0435 (4)0.0170 (11)
C30.1796 (10)0.1859 (9)0.0902 (5)0.0211 (12)
H30.05310.14610.05120.025*
C40.1156 (10)0.1861 (9)0.1937 (5)0.0215 (12)
H40.05490.14520.22570.026*
C50.2979 (11)0.2453 (8)0.2498 (5)0.0192 (12)
C60.5492 (11)0.3087 (9)0.2035 (5)0.0210 (12)
H60.67450.35190.24270.025*
C70.6156 (11)0.3088 (9)0.1011 (5)0.0205 (12)
H70.78680.35250.06940.025*
C80.6915 (11)0.2522 (9)0.2304 (4)0.0203 (12)
C90.9064 (11)0.2777 (9)0.2980 (5)0.0198 (12)
H91.05650.30040.27240.024*
C100.6933 (11)0.2377 (10)0.4279 (5)0.0229 (13)
H100.68700.23030.49790.028*
C110.4790 (11)0.2134 (10)0.3620 (5)0.0243 (13)
H110.33000.19090.38830.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0268 (4)0.0286 (4)0.0140 (3)0.0123 (3)0.0025 (2)0.0066 (2)
O10.021 (2)0.040 (3)0.019 (2)0.0123 (19)0.0067 (17)0.010 (2)
N10.018 (2)0.031 (3)0.013 (2)0.011 (2)0.0028 (18)0.005 (2)
N20.022 (2)0.030 (3)0.020 (3)0.013 (2)0.003 (2)0.012 (2)
N30.018 (2)0.024 (3)0.017 (3)0.005 (2)0.0011 (19)0.004 (2)
C10.020 (3)0.015 (3)0.019 (3)0.005 (2)0.003 (2)0.002 (2)
C20.025 (3)0.017 (3)0.008 (3)0.006 (2)0.003 (2)0.005 (2)
C30.016 (3)0.026 (3)0.020 (3)0.008 (2)0.005 (2)0.004 (2)
C40.019 (3)0.027 (3)0.019 (3)0.011 (2)0.002 (2)0.004 (2)
C50.026 (3)0.016 (3)0.018 (3)0.011 (2)0.005 (2)0.007 (2)
C60.023 (3)0.026 (3)0.017 (3)0.011 (2)0.009 (2)0.008 (2)
C70.018 (3)0.023 (3)0.021 (3)0.007 (2)0.000 (2)0.010 (2)
C80.026 (3)0.022 (3)0.015 (3)0.011 (2)0.004 (2)0.004 (2)
C90.022 (3)0.020 (3)0.019 (3)0.010 (2)0.007 (2)0.004 (2)
C100.029 (3)0.034 (3)0.013 (3)0.014 (3)0.012 (2)0.013 (2)
C110.024 (3)0.033 (3)0.021 (3)0.012 (3)0.014 (3)0.012 (3)
Geometric parameters (Å, º) top
Br1—C51.901 (6)C3—H30.9500
O1—C11.226 (6)C4—C51.369 (8)
N1—C11.337 (7)C4—H40.9500
N1—C21.413 (7)C5—C61.394 (8)
N1—H1N0.88 (6)C6—C71.375 (8)
N2—C91.321 (8)C6—H60.9500
N2—C101.339 (8)C7—H70.9500
N3—C111.340 (8)C8—C91.387 (8)
N3—C81.352 (8)C9—H90.9500
C1—C81.501 (8)C10—C111.376 (8)
C2—C31.398 (8)C10—H100.9500
C2—C71.402 (8)C11—H110.9500
C3—C41.387 (8)
C1—N1—C2128.5 (5)C6—C5—Br1120.2 (4)
C1—N1—H1N113 (5)C7—C6—C5120.0 (5)
C2—N1—H1N119 (5)C7—C6—H6120.0
C9—N2—C10116.0 (5)C5—C6—H6120.0
C11—N3—C8115.2 (5)C6—C7—C2120.0 (5)
O1—C1—N1125.4 (6)C6—C7—H7120.0
O1—C1—C8119.5 (5)C2—C7—H7120.0
N1—C1—C8115.1 (5)N3—C8—C9121.6 (5)
C3—C2—C7119.4 (5)N3—C8—C1118.2 (5)
C3—C2—N1117.1 (5)C9—C8—C1120.2 (5)
C7—C2—N1123.5 (5)N2—C9—C8122.6 (5)
C4—C3—C2120.0 (5)N2—C9—H9118.7
C4—C3—H3120.0C8—C9—H9118.7
C2—C3—H3120.0N2—C10—C11122.1 (5)
C5—C4—C3120.1 (5)N2—C10—H10119.0
C5—C4—H4120.0C11—C10—H10119.0
C3—C4—H4120.0N3—C11—C10122.6 (5)
C4—C5—C6120.6 (6)N3—C11—H11118.7
C4—C5—Br1119.1 (4)C10—C11—H11118.7
C2—N1—C1—O11.4 (10)N1—C2—C7—C6179.5 (6)
C2—N1—C1—C8179.5 (5)C11—N3—C8—C90.6 (8)
C1—N1—C2—C3169.0 (5)C11—N3—C8—C1179.6 (5)
C1—N1—C2—C713.3 (9)O1—C1—C8—N3179.6 (5)
C7—C2—C3—C42.0 (9)N1—C1—C8—N32.2 (8)
N1—C2—C3—C4179.8 (5)O1—C1—C8—C90.6 (8)
C2—C3—C4—C50.6 (9)N1—C1—C8—C9177.6 (5)
C3—C4—C5—C61.0 (9)C10—N2—C9—C80.4 (9)
C3—C4—C5—Br1178.8 (4)N3—C8—C9—N20.3 (9)
C4—C5—C6—C71.2 (9)C1—C8—C9—N2179.9 (5)
Br1—C5—C6—C7179.0 (4)C9—N2—C10—C110.8 (9)
C5—C6—C7—C20.2 (9)C8—N3—C11—C100.2 (9)
C3—C2—C7—C61.8 (9)N2—C10—C11—N30.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.88 (6)2.22 (6)2.708 (7)115 (5)
C3—H3···O1i0.952.393.177 (8)140
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H8BrN3O
Mr278.11
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.8396 (4), 7.3317 (7), 13.3362 (12)
α, β, γ (°)101.670 (4), 96.728 (5), 110.524 (5)
V3)512.55 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.99
Crystal size (mm)0.18 × 0.10 × 0.02
Data collection
DiffractometerEnraf–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.764, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8923, 2110, 1792
Rint0.078
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.18
No. of reflections2110
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.52

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.88 (6)2.22 (6)2.708 (7)115 (5)
C3—H3···O1i0.952.393.177 (8)140
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray Crystallographic Service at the University of Southampton, England, and the valuable assistance of the staff there are gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBaddeley, T. C., Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2009). Z. Kristallogr. 224, 506–514.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc. 288, 165–166.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O'Brien, R. J. (2000). J. Am. Med. Assoc. 283, 1445–1450.  Web of Science CrossRef CAS Google Scholar
First citationHowie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010a). Z. Kristallogr. 225, 19–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010b). Z. Kristallogr. 225, 158–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010c). Z. Kristallogr. 225, 245–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010d). Acta Cryst. E66, o178–o179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65–104.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2006). Recent Pat. Anti-Infec. Drug Discov. 1, 33–45.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVontor, T., Palat, K., Danek, J. & Lycka, A. (1989). Cesk. Farm. 38, 393–397.  CAS Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84–100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds