organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-[(2-hy­dr­oxy-4,4-di­methyl-6-oxo­cyclo­hex-1-en-1-yl)(3-nitro­phen­yl)meth­yl]-5,5-di­methyl­cyclo­hex-2-en-1-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 September 2010; accepted 7 October 2010; online 13 October 2010)

Each of the cyclohexenone rings in the title compound, C23H27NO6, adopts a half-chair (envelope) conformation with the C atom carrying the methyl groups lying out of the plane defined by the five remaining C atoms; the O atoms lie to the same side of the mol­ecule as the respective >C(CH3)2 atoms. The hy­droxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intra­molecular O—H⋯O hydrogen bonds. In the crystal, the presence of C—H⋯O contacts leads to the formation of supra­molecular chains along the b axis. These aggregate into layers that stack along c.

Related literature

For the biological activity and uses of xanthenes, see: Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]); Pohlers & Scaiano (1997[Pohlers, G. & Scaiano, J. C. (1997). Chem. Mater. 9, 3222-3230.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]). For background to xanthenedione derivatives, see: Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). Chem. Commun. pp. 1202-1204.]); Shchekotikhin & Nikolaeva (2006[Shchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28-33.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27NO6

  • Mr = 413.46

  • Monoclinic, P 21 /n

  • a = 14.2326 (10) Å

  • b = 8.6505 (6) Å

  • c = 16.8410 (12) Å

  • β = 97.796 (1)°

  • V = 2054.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.792, Tmax = 0.862

  • 18883 measured reflections

  • 4717 independent reflections

  • 3928 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.03

  • 4717 reflections

  • 279 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O4 0.85 (1) 1.80 (1) 2.6392 (13) 167 (2)
O3—H3o⋯O2 0.86 (1) 1.75 (1) 2.5985 (13) 170 (2)
C5—H5a⋯O4i 0.99 2.34 3.2781 (16) 158
C9—H9⋯O6ii 1.00 2.56 3.3431 (16) 135
C21—H21⋯O2iii 0.95 2.44 3.3121 (16) 152
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Xanthenes are known for to possess various biological properties including anti-bacterial, anti-viral and anti-inflammatory activities (Jonathan et al., 1988). In particular, xanthenedione derivatives constitute a structural unit in several natural products (Hatakeyama et al., 1988), and they are valuable synthons because of the inherent reactivity of the in-built pyran ring (Shchekotikhin & Nikolaeva, 2006). Xanthene derivatives are also very useful and important organic compounds widely used as dyes (Hilderbrand & Weissleder, 2007), in laser technologies, and as fluorescent materials for visualization of biomolecules (Pohlers & Scaiano, 1997).

The molecular structure of the title compound, Fig. 1, features two cyclohexene rings, each with a half-chair conformation as, in each case, the C4 and C13 atoms, i.e. carrying two methyl groups, lie above the respective least-squares plane through the remaining five carbon atoms. For each ring, the O atoms lie to the same side of the molecule as the C4 or C13 atoms. The hydroxyl- and carbonyl-O atoms of one cyclohexene ring face the carbonyl- and hydroxyl-O atoms of the other to allow for the formation of intramolecular O—H···O hydrogen bonds, Table 1. The nitro group is co-planar with the benzene ring to which it is attached as seen in the O5—N1—C22—C21 torsion angle of -176.02 (11) °. The nitro-substituted benzene ring occupies a position almost side-on to both cyclohexene rings.

The most prominent intermolecular interactions in the crystal packing are of the type C—H···O, Table 1. These serve to link molecules into a supramolecular chain along the b axis, Fig. 2. The chains pack into layers in the ab plane which stack along the c axis, Fig. 3.

Related literature top

For the biological activity and uses of xanthenes, see: Jonathan et al. (1988); Pohlers & Scaiano (1997); Hilderbrand & Weissleder (2007). For background to xanthenedione derivatives, see: Hatakeyama et al. (1988); Shchekotikhin & Nikolaeva (2006).

Experimental top

A mixture of 3-nitrobenaldehyde (0.377 g, 0.0025 mol), dimedone (0.7 g, 0.005 mol) was refluxed in acetonitrile (20 ml) for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the solution was left for 2 days to precipitate the solid product. The product was recrystallized by slow evaporation of its acetonitrile solution which yielded colourless blocks of (I). Yield: 72%. M.pt. 443–445 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The O-bound H atoms were refined with the distance restraint O—H = 0.84±0.1 Å, and with Uiso(H) = 1.5Uequiv(O).

Structure description top

Xanthenes are known for to possess various biological properties including anti-bacterial, anti-viral and anti-inflammatory activities (Jonathan et al., 1988). In particular, xanthenedione derivatives constitute a structural unit in several natural products (Hatakeyama et al., 1988), and they are valuable synthons because of the inherent reactivity of the in-built pyran ring (Shchekotikhin & Nikolaeva, 2006). Xanthene derivatives are also very useful and important organic compounds widely used as dyes (Hilderbrand & Weissleder, 2007), in laser technologies, and as fluorescent materials for visualization of biomolecules (Pohlers & Scaiano, 1997).

The molecular structure of the title compound, Fig. 1, features two cyclohexene rings, each with a half-chair conformation as, in each case, the C4 and C13 atoms, i.e. carrying two methyl groups, lie above the respective least-squares plane through the remaining five carbon atoms. For each ring, the O atoms lie to the same side of the molecule as the C4 or C13 atoms. The hydroxyl- and carbonyl-O atoms of one cyclohexene ring face the carbonyl- and hydroxyl-O atoms of the other to allow for the formation of intramolecular O—H···O hydrogen bonds, Table 1. The nitro group is co-planar with the benzene ring to which it is attached as seen in the O5—N1—C22—C21 torsion angle of -176.02 (11) °. The nitro-substituted benzene ring occupies a position almost side-on to both cyclohexene rings.

The most prominent intermolecular interactions in the crystal packing are of the type C—H···O, Table 1. These serve to link molecules into a supramolecular chain along the b axis, Fig. 2. The chains pack into layers in the ab plane which stack along the c axis, Fig. 3.

For the biological activity and uses of xanthenes, see: Jonathan et al. (1988); Pohlers & Scaiano (1997); Hilderbrand & Weissleder (2007). For background to xanthenedione derivatives, see: Hatakeyama et al. (1988); Shchekotikhin & Nikolaeva (2006).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain aligned along the b axis sustained by C—H···O contacts (shown as orange dashed lines).
[Figure 3] Fig. 3. Unit-cell contents for (I) viewed in projection along the b axis showing the stacking of layers along the c axis. The C—H···O contacts are shown as orange dashed lines.
3-Hydroxy-2-[(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1- en-1-yl)(3-nitrophenyl)methyl]-5,5-dimethylcyclohex-2-en-1-one top
Crystal data top
C23H27NO6F(000) = 880
Mr = 413.46Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5854 reflections
a = 14.2326 (10) Åθ = 4.5–28.2°
b = 8.6505 (6) ŵ = 0.10 mm1
c = 16.8410 (12) ÅT = 100 K
β = 97.796 (1)°Block, colourless
V = 2054.3 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4717 independent reflections
Radiation source: fine-focus sealed tube3928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1618
Tmin = 0.792, Tmax = 0.862k = 1111
18883 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.67P]
where P = (Fo2 + 2Fc2)/3
4717 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H27NO6V = 2054.3 (3) Å3
Mr = 413.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.2326 (10) ŵ = 0.10 mm1
b = 8.6505 (6) ÅT = 100 K
c = 16.8410 (12) Å0.30 × 0.30 × 0.20 mm
β = 97.796 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4717 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3928 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.862Rint = 0.036
18883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4717 reflectionsΔρmin = 0.23 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65593 (7)0.65589 (10)0.67564 (5)0.0159 (2)
H1o0.6569 (15)0.594 (2)0.6365 (9)0.048 (6)*
O20.73862 (7)1.02234 (10)0.49100 (5)0.0170 (2)
O30.73479 (7)0.82683 (11)0.37346 (5)0.0170 (2)
H3o0.7407 (13)0.8846 (19)0.4154 (8)0.036 (5)*
O40.63116 (6)0.46796 (10)0.55110 (5)0.0163 (2)
O50.99653 (7)0.53999 (12)0.35663 (6)0.0237 (2)
O61.13360 (7)0.63202 (12)0.40630 (6)0.0259 (2)
N11.04746 (8)0.61823 (13)0.40582 (7)0.0176 (2)
C10.71426 (9)0.83167 (14)0.58531 (7)0.0129 (2)
C20.67059 (9)0.79995 (14)0.65085 (7)0.0134 (2)
C30.63844 (9)0.92120 (14)0.70461 (7)0.0153 (3)
H3A0.68980.94050.74930.018*
H3B0.58290.88170.72790.018*
C40.61160 (9)1.07463 (14)0.66175 (7)0.0149 (3)
C50.69030 (10)1.11682 (15)0.61177 (8)0.0184 (3)
H5A0.67011.20880.57880.022*
H5B0.74801.14530.64860.022*
C60.71497 (9)0.98965 (15)0.55741 (8)0.0145 (3)
C70.51615 (10)1.05773 (17)0.60799 (8)0.0217 (3)
H7A0.46691.03060.64090.032*
H7B0.52090.97610.56840.032*
H7C0.49971.15570.58030.032*
C80.60339 (10)1.20199 (15)0.72332 (8)0.0187 (3)
H8A0.55311.17540.75540.028*
H8B0.58801.30020.69550.028*
H8C0.66381.21210.75850.028*
C90.76179 (8)0.70610 (14)0.54208 (7)0.0124 (2)
H90.76920.61850.58120.015*
C100.70261 (9)0.63781 (14)0.46833 (7)0.0129 (2)
C110.69851 (9)0.69205 (14)0.39210 (8)0.0139 (3)
C120.65447 (9)0.60340 (15)0.31987 (8)0.0162 (3)
H12A0.69470.61530.27670.019*
H12B0.59160.64870.30060.019*
C130.64204 (9)0.43071 (15)0.33584 (8)0.0162 (3)
C140.59406 (10)0.41744 (16)0.41182 (8)0.0189 (3)
H14A0.52810.45560.39990.023*
H14B0.59130.30700.42680.023*
C150.64394 (9)0.50637 (14)0.48217 (7)0.0140 (2)
C160.57961 (10)0.35702 (17)0.26472 (8)0.0228 (3)
H16A0.57180.24670.27520.034*
H16B0.60970.36980.21610.034*
H16C0.51740.40740.25730.034*
C170.73790 (10)0.34775 (15)0.34742 (8)0.0201 (3)
H17A0.72820.23780.35770.030*
H17B0.77860.39320.39310.030*
H17C0.76830.35920.29890.030*
C180.86411 (8)0.74648 (14)0.53038 (7)0.0130 (2)
C190.91956 (9)0.84390 (15)0.58406 (8)0.0156 (3)
H190.89120.89490.62480.019*
C201.01514 (9)0.86788 (15)0.57927 (8)0.0175 (3)
H201.05090.93500.61650.021*
C211.05918 (9)0.79508 (15)0.52075 (8)0.0171 (3)
H211.12450.81050.51700.021*
C221.00352 (9)0.69910 (15)0.46819 (7)0.0150 (3)
C230.90774 (9)0.67322 (14)0.47154 (7)0.0144 (3)
H230.87240.60620.43400.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (5)0.0135 (4)0.0154 (4)0.0009 (4)0.0058 (4)0.0015 (3)
O20.0193 (5)0.0155 (5)0.0174 (4)0.0004 (4)0.0067 (4)0.0025 (3)
O30.0208 (5)0.0146 (4)0.0161 (5)0.0015 (4)0.0048 (4)0.0019 (4)
O40.0186 (5)0.0138 (4)0.0176 (4)0.0009 (3)0.0067 (4)0.0010 (3)
O50.0225 (5)0.0281 (5)0.0216 (5)0.0016 (4)0.0070 (4)0.0041 (4)
O60.0152 (5)0.0308 (6)0.0342 (6)0.0022 (4)0.0126 (4)0.0012 (5)
N10.0169 (6)0.0171 (5)0.0204 (6)0.0040 (4)0.0078 (4)0.0052 (4)
C10.0115 (6)0.0124 (6)0.0151 (6)0.0015 (4)0.0027 (5)0.0000 (4)
C20.0113 (6)0.0141 (6)0.0146 (6)0.0008 (5)0.0012 (4)0.0017 (5)
C30.0167 (6)0.0159 (6)0.0140 (6)0.0006 (5)0.0048 (5)0.0002 (5)
C40.0151 (6)0.0155 (6)0.0142 (6)0.0017 (5)0.0029 (5)0.0015 (5)
C50.0225 (7)0.0127 (6)0.0216 (6)0.0015 (5)0.0091 (5)0.0001 (5)
C60.0113 (6)0.0149 (6)0.0176 (6)0.0000 (5)0.0035 (5)0.0001 (5)
C70.0183 (7)0.0257 (7)0.0201 (7)0.0054 (5)0.0003 (5)0.0049 (5)
C80.0190 (6)0.0175 (6)0.0198 (6)0.0019 (5)0.0042 (5)0.0034 (5)
C90.0123 (6)0.0120 (6)0.0134 (6)0.0007 (4)0.0036 (4)0.0010 (4)
C100.0106 (5)0.0126 (6)0.0158 (6)0.0013 (5)0.0029 (5)0.0004 (5)
C110.0110 (6)0.0130 (6)0.0183 (6)0.0019 (4)0.0045 (5)0.0010 (5)
C120.0159 (6)0.0179 (6)0.0149 (6)0.0005 (5)0.0021 (5)0.0010 (5)
C130.0161 (6)0.0173 (6)0.0153 (6)0.0027 (5)0.0028 (5)0.0012 (5)
C140.0181 (6)0.0199 (7)0.0194 (6)0.0062 (5)0.0051 (5)0.0017 (5)
C150.0120 (6)0.0133 (6)0.0173 (6)0.0029 (5)0.0042 (5)0.0002 (5)
C160.0231 (7)0.0258 (7)0.0191 (7)0.0059 (6)0.0012 (5)0.0037 (6)
C170.0226 (7)0.0164 (6)0.0214 (7)0.0025 (5)0.0034 (5)0.0026 (5)
C180.0118 (6)0.0134 (6)0.0145 (6)0.0019 (5)0.0036 (5)0.0047 (4)
C190.0167 (6)0.0157 (6)0.0145 (6)0.0018 (5)0.0028 (5)0.0015 (5)
C200.0162 (6)0.0170 (6)0.0185 (6)0.0020 (5)0.0005 (5)0.0020 (5)
C210.0131 (6)0.0175 (6)0.0209 (6)0.0007 (5)0.0030 (5)0.0059 (5)
C220.0142 (6)0.0145 (6)0.0173 (6)0.0039 (5)0.0058 (5)0.0049 (5)
C230.0145 (6)0.0138 (6)0.0152 (6)0.0005 (5)0.0030 (5)0.0023 (5)
Geometric parameters (Å, º) top
O1—C21.3395 (15)C9—H91.0000
O1—H1o0.851 (9)C10—C111.3607 (17)
O2—C61.2436 (15)C10—C151.4481 (17)
O3—C111.3299 (15)C11—C121.5014 (18)
O3—H3o0.860 (9)C12—C131.5323 (18)
O4—C151.2443 (15)C12—H12A0.9900
O5—N11.2275 (15)C12—H12B0.9900
O6—N11.2308 (14)C13—C171.5304 (18)
N1—C221.4704 (16)C13—C161.5303 (18)
C1—C21.3662 (17)C13—C141.5343 (18)
C1—C61.4456 (17)C14—C151.5072 (18)
C1—C91.5169 (16)C14—H14A0.9900
C2—C31.4971 (17)C14—H14B0.9900
C3—C41.5341 (17)C16—H16A0.9800
C3—H3A0.9900C16—H16B0.9800
C3—H3B0.9900C16—H16C0.9800
C4—C81.5282 (17)C17—H17A0.9800
C4—C51.5337 (18)C17—H17B0.9800
C4—C71.5340 (18)C17—H17C0.9800
C5—C61.5029 (17)C18—C231.3913 (17)
C5—H5A0.9900C18—C191.3988 (18)
C5—H5B0.9900C19—C201.3893 (18)
C7—H7A0.9800C19—H190.9500
C7—H7B0.9800C20—C211.3886 (19)
C7—H7C0.9800C20—H200.9500
C8—H8A0.9800C21—C221.3821 (19)
C8—H8B0.9800C21—H210.9500
C8—H8C0.9800C22—C231.3902 (18)
C9—C101.5223 (17)C23—H230.9500
C9—C181.5360 (16)
C2—O1—H1o109.0 (14)O3—C11—C12112.91 (11)
C11—O3—H3o108.3 (13)C10—C11—C12123.24 (11)
O6—N1—O5123.66 (11)C11—C12—C13113.65 (10)
O6—N1—C22117.97 (11)C11—C12—H12A108.8
O5—N1—C22118.36 (11)C13—C12—H12A108.8
C2—C1—C6118.45 (11)C11—C12—H12B108.8
C2—C1—C9121.69 (11)C13—C12—H12B108.8
C6—C1—C9119.85 (11)H12A—C12—H12B107.7
O1—C2—C1123.08 (11)C17—C13—C16108.50 (11)
O1—C2—C3112.96 (10)C17—C13—C12110.94 (11)
C1—C2—C3123.90 (11)C16—C13—C12109.71 (11)
C2—C3—C4113.50 (10)C17—C13—C14110.40 (11)
C2—C3—H3A108.9C16—C13—C14110.16 (11)
C4—C3—H3A108.9C12—C13—C14107.12 (11)
C2—C3—H3B108.9C15—C14—C13113.70 (11)
C4—C3—H3B108.9C15—C14—H14A108.8
H3A—C3—H3B107.7C13—C14—H14A108.8
C8—C4—C5109.24 (11)C15—C14—H14B108.8
C8—C4—C7109.03 (11)C13—C14—H14B108.8
C5—C4—C7110.68 (11)H14A—C14—H14B107.7
C8—C4—C3109.97 (10)O4—C15—C10121.35 (12)
C5—C4—C3108.08 (10)O4—C15—C14118.96 (11)
C7—C4—C3109.83 (11)C10—C15—C14119.65 (11)
C6—C5—C4114.11 (11)C13—C16—H16A109.5
C6—C5—H5A108.7C13—C16—H16B109.5
C4—C5—H5A108.7H16A—C16—H16B109.5
C6—C5—H5B108.7C13—C16—H16C109.5
C4—C5—H5B108.7H16A—C16—H16C109.5
H5A—C5—H5B107.6H16B—C16—H16C109.5
O2—C6—C1121.46 (12)C13—C17—H17A109.5
O2—C6—C5119.71 (11)C13—C17—H17B109.5
C1—C6—C5118.79 (11)H17A—C17—H17B109.5
C4—C7—H7A109.5C13—C17—H17C109.5
C4—C7—H7B109.5H17A—C17—H17C109.5
H7A—C7—H7B109.5H17B—C17—H17C109.5
C4—C7—H7C109.5C23—C18—C19117.87 (11)
H7A—C7—H7C109.5C23—C18—C9120.68 (11)
H7B—C7—H7C109.5C19—C18—C9121.04 (11)
C4—C8—H8A109.5C20—C19—C18121.57 (12)
C4—C8—H8B109.5C20—C19—H19119.2
H8A—C8—H8B109.5C18—C19—H19119.2
C4—C8—H8C109.5C19—C20—C21120.88 (12)
H8A—C8—H8C109.5C19—C20—H20119.6
H8B—C8—H8C109.5C21—C20—H20119.6
C1—C9—C10115.85 (10)C22—C21—C20116.90 (12)
C1—C9—C18113.02 (10)C22—C21—H21121.6
C10—C9—C18114.39 (10)C20—C21—H21121.6
C1—C9—H9103.9C21—C22—C23123.42 (12)
C10—C9—H9103.9C21—C22—N1118.75 (11)
C18—C9—H9103.9C23—C22—N1117.83 (11)
C11—C10—C15118.08 (11)C22—C23—C18119.37 (12)
C11—C10—C9125.74 (11)C22—C23—H23120.3
C15—C10—C9116.15 (10)C18—C23—H23120.3
O3—C11—C10123.83 (12)
C6—C1—C2—O1171.69 (11)C10—C11—C12—C1317.54 (17)
C9—C1—C2—O18.61 (19)C11—C12—C13—C1771.32 (14)
C6—C1—C2—C311.38 (18)C11—C12—C13—C16168.81 (11)
C9—C1—C2—C3168.32 (11)C11—C12—C13—C1449.24 (14)
O1—C2—C3—C4153.63 (11)C17—C13—C14—C1568.28 (14)
C1—C2—C3—C429.16 (17)C16—C13—C14—C15171.90 (11)
C2—C3—C4—C8166.16 (11)C12—C13—C14—C1552.62 (14)
C2—C3—C4—C546.99 (14)C11—C10—C15—O4167.09 (11)
C2—C3—C4—C773.84 (14)C9—C10—C15—O411.17 (17)
C8—C4—C5—C6171.38 (11)C11—C10—C15—C1410.51 (18)
C7—C4—C5—C668.56 (14)C9—C10—C15—C14171.23 (11)
C3—C4—C5—C651.74 (14)C13—C14—C15—O4157.72 (12)
C2—C1—C6—O2167.47 (12)C13—C14—C15—C1024.63 (17)
C9—C1—C6—O212.83 (18)C1—C9—C18—C23159.11 (11)
C2—C1—C6—C515.06 (18)C10—C9—C18—C2323.66 (16)
C9—C1—C6—C5164.65 (11)C1—C9—C18—C1928.36 (16)
C4—C5—C6—O2145.36 (12)C10—C9—C18—C19163.81 (11)
C4—C5—C6—C137.13 (16)C23—C18—C19—C200.13 (18)
C2—C1—C9—C1096.76 (14)C9—C18—C19—C20172.86 (11)
C6—C1—C9—C1083.54 (14)C18—C19—C20—C210.2 (2)
C2—C1—C9—C18128.46 (12)C19—C20—C21—C220.12 (19)
C6—C1—C9—C1851.23 (15)C20—C21—C22—C230.03 (19)
C1—C9—C10—C1188.93 (15)C20—C21—C22—N1179.31 (11)
C18—C9—C10—C1145.23 (16)O6—N1—C22—C214.50 (17)
C1—C9—C10—C1589.18 (13)O5—N1—C22—C21176.02 (11)
C18—C9—C10—C15136.66 (11)O6—N1—C22—C23174.82 (11)
C15—C10—C11—O3167.35 (11)O5—N1—C22—C234.65 (17)
C9—C10—C11—O310.7 (2)C21—C22—C23—C180.02 (19)
C15—C10—C11—C1214.28 (18)N1—C22—C23—C18179.27 (11)
C9—C10—C11—C12167.64 (11)C19—C18—C23—C220.03 (18)
O3—C11—C12—C13160.99 (11)C9—C18—C23—C22172.79 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O40.85 (1)1.80 (1)2.6392 (13)167 (2)
O3—H3o···O20.86 (1)1.75 (1)2.5985 (13)170 (2)
C5—H5a···O4i0.992.343.2781 (16)158
C9—H9···O6ii1.002.563.3431 (16)135
C21—H21···O2iii0.952.443.3121 (16)152
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC23H27NO6
Mr413.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.2326 (10), 8.6505 (6), 16.8410 (12)
β (°) 97.796 (1)
V3)2054.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.792, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
18883, 4717, 3928
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.03
No. of reflections4717
No. of parameters279
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O40.851 (9)1.802 (10)2.6392 (13)167 (2)
O3—H3o···O20.860 (9)1.747 (10)2.5985 (13)170.3 (19)
C5—H5a···O4i0.992.343.2781 (16)158
C9—H9···O6ii1.002.563.3431 (16)135
C21—H21···O2iii0.952.443.3121 (16)152
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). Chem. Commun. pp. 1202–1204.  CrossRef Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationPohlers, G. & Scaiano, J. C. (1997). Chem. Mater. 9, 3222–3230.  Web of Science CrossRef CAS Google Scholar
First citationShchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28–33.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds