organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro­methyl-1,3-di­methyl-1H-pyrazole

aShenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, bPharmaceutical Division, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and cAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: yangguiqiu@gmail.com

(Received 29 September 2010; accepted 21 October 2010; online 31 October 2010)

The pyazole ring in the title compound, C6H9ClN2, is almost planar (r.m.s. deviation = 0.003 Å). In the crystal, mol­ecules are linked by C—H⋯N inter­actions, forming [100] chains.

Related literature

For a related structure, see: Baldy et al. (1985[Baldy, A., Elguero, J., Fawe, R., Pierrot, M. & Vincent, E. J. (1985). J. Am. Chem. Soc. 107, 5290-5291.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9ClN2

  • Mr = 144.60

  • Triclinic, [P \overline 1]

  • a = 6.5210 (7) Å

  • b = 7.3111 (7) Å

  • c = 7.9854 (8) Å

  • α = 88.383 (1)°

  • β = 77.563 (2)°

  • γ = 85.725 (2)°

  • V = 370.71 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.919

  • 1906 measured reflections

  • 1304 independent reflections

  • 1135 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.05

  • 1304 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N2i 0.97 2.50 3.446 (3) 164
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Baldy et al. (1985).

Experimental top

N,N-Dimethylformamide(0.96 g, 11 mmol) was add to a 100 ml three necked-bottle, and phosphoryl trichloride(6.13 g, 40 mmol) was added slowly under ice-bath, then added (1,3-dimethyl-1H-pyrazole-5-yl)methanol(1.26 g, 10 mmol) at room temperature in portions. The reaction mixture was heated to reflux and reacted for 6 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/5). The title product compound was obtained as a white solid (0.36 g, 22%) and recrystallised from methylene chloride to yield colourless blocks of (I).

Anal. Calcd for C6H9N2: C, 49.84; H, 6.27; N, 19.37. Found: C, 49.81; H, 6.30; N, 19.40. 1H NMR(CDCl3): 2.22(s,3H, CH3), 3.84 (s,3H, N—CH3), 4.53(s, 2H, CH2), 6.04 (s, 1H, Pyrazole-H).

Refinement top

Although all H atoms were visible in difference maps, they werefinally placed in geometrically calculated positions, with C-Hdistances in the range 0.93–0.96Å and N—H distances of 0.86 Å, andincluded in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C).

Structure description top

For a related structure, see: Baldy et al. (1985).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
5-Chloromethyl-1,3-dimethyl-1H-pyrazole top
Crystal data top
C6H9ClN2Z = 2
Mr = 144.60F(000) = 152
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Melting point = 361–364 K
a = 6.5210 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3111 (7) ÅCell parameters from 1109 reflections
c = 7.9854 (8) Åθ = 2.6–26.7°
α = 88.383 (1)°µ = 0.43 mm1
β = 77.563 (2)°T = 296 K
γ = 85.725 (2)°BLOCK, colorless
V = 370.71 (6) Å30.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1304 independent reflections
Radiation source: fine-focus sealed tube1135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 74
Tmin = 0.890, Tmax = 0.919k = 78
1906 measured reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1537P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1304 reflectionsΔρmax = 0.22 e Å3
85 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.43 (3)
Crystal data top
C6H9ClN2γ = 85.725 (2)°
Mr = 144.60V = 370.71 (6) Å3
Triclinic, P1Z = 2
a = 6.5210 (7) ÅMo Kα radiation
b = 7.3111 (7) ŵ = 0.43 mm1
c = 7.9854 (8) ÅT = 296 K
α = 88.383 (1)°0.28 × 0.22 × 0.20 mm
β = 77.563 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1304 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1135 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.919Rint = 0.011
1906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
1304 reflectionsΔρmin = 0.31 e Å3
85 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05348 (10)0.89562 (8)0.28229 (8)0.0675 (3)
N10.7203 (2)0.6178 (2)0.1574 (2)0.0414 (4)
N20.5716 (3)0.4983 (2)0.2188 (2)0.0450 (4)
C11.0872 (3)0.6828 (3)0.1664 (3)0.0509 (5)
H1A1.11410.70930.04430.061*
H1B1.20850.61020.19040.061*
C20.8994 (3)0.5757 (3)0.2144 (2)0.0408 (5)
C30.8653 (3)0.4224 (3)0.3159 (3)0.0453 (5)
H30.95930.36000.37370.054*
C40.6600 (3)0.3784 (3)0.3150 (2)0.0435 (5)
C50.5411 (4)0.2246 (3)0.4043 (3)0.0586 (6)
H5A0.39580.24400.39760.088*
H5B0.55180.21980.52240.088*
H5C0.59910.11100.35040.088*
C60.6713 (4)0.7699 (3)0.0489 (3)0.0579 (6)
H6A0.58820.86480.11870.087*
H6B0.59370.72840.03040.087*
H6C0.79970.81720.01340.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0728 (5)0.0529 (4)0.0782 (5)0.0180 (3)0.0135 (3)0.0100 (3)
N10.0373 (9)0.0436 (9)0.0435 (9)0.0058 (7)0.0085 (7)0.0046 (7)
N20.0381 (9)0.0480 (10)0.0493 (9)0.0092 (7)0.0085 (7)0.0007 (7)
C10.0387 (11)0.0513 (12)0.0616 (13)0.0059 (9)0.0065 (9)0.0068 (10)
C20.0346 (10)0.0425 (10)0.0449 (10)0.0009 (8)0.0073 (8)0.0066 (8)
C30.0455 (11)0.0434 (11)0.0487 (11)0.0015 (9)0.0157 (9)0.0001 (8)
C40.0467 (11)0.0402 (10)0.0417 (10)0.0053 (8)0.0044 (8)0.0028 (8)
C50.0652 (15)0.0492 (12)0.0589 (13)0.0133 (11)0.0054 (11)0.0036 (10)
C60.0584 (14)0.0556 (13)0.0635 (14)0.0074 (11)0.0219 (11)0.0140 (11)
Geometric parameters (Å, º) top
Cl1—C11.808 (2)C3—C41.401 (3)
N1—C21.354 (2)C3—H30.9300
N1—N21.357 (2)C4—C51.490 (3)
N1—C61.449 (3)C5—H5A0.9600
N2—C41.330 (3)C5—H5B0.9600
C1—C21.478 (3)C5—H5C0.9600
C1—H1A0.9700C6—H6A0.9600
C1—H1B0.9700C6—H6B0.9600
C2—C31.368 (3)C6—H6C0.9600
C2—N1—N2111.77 (16)N2—C4—C3110.45 (17)
C2—N1—C6128.92 (17)N2—C4—C5120.51 (19)
N2—N1—C6119.29 (16)C3—C4—C5129.03 (19)
C4—N2—N1105.36 (15)C4—C5—H5A109.5
C2—C1—Cl1111.73 (14)C4—C5—H5B109.5
C2—C1—H1A109.3H5A—C5—H5B109.5
Cl1—C1—H1A109.3C4—C5—H5C109.5
C2—C1—H1B109.3H5A—C5—H5C109.5
Cl1—C1—H1B109.3H5B—C5—H5C109.5
H1A—C1—H1B107.9N1—C6—H6A109.5
N1—C2—C3106.40 (17)N1—C6—H6B109.5
N1—C2—C1123.08 (18)H6A—C6—H6B109.5
C3—C2—C1130.52 (19)N1—C6—H6C109.5
C2—C3—C4106.02 (17)H6A—C6—H6C109.5
C2—C3—H3127.0H6B—C6—H6C109.5
C4—C3—H3127.0
C2—N1—N2—C40.5 (2)Cl1—C1—C2—C3104.4 (2)
C6—N1—N2—C4178.81 (18)N1—C2—C3—C40.1 (2)
N2—N1—C2—C30.3 (2)C1—C2—C3—C4179.3 (2)
C6—N1—C2—C3178.48 (19)N1—N2—C4—C30.4 (2)
N2—N1—C2—C1179.62 (17)N1—N2—C4—C5179.94 (17)
C6—N1—C2—C12.2 (3)C2—C3—C4—N20.2 (2)
Cl1—C1—C2—N176.5 (2)C2—C3—C4—C5179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.972.503.446 (3)164
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H9ClN2
Mr144.60
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5210 (7), 7.3111 (7), 7.9854 (8)
α, β, γ (°)88.383 (1), 77.563 (2), 85.725 (2)
V3)370.71 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.890, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
1906, 1304, 1135
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.05
No. of reflections1304
No. of parameters85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.972.503.446 (3)164
Symmetry code: (i) x+1, y, z.
 

References

First citationBaldy, A., Elguero, J., Fawe, R., Pierrot, M. & Vincent, E. J. (1985). J. Am. Chem. Soc. 107, 5290-5291.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds