organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­cyclo­hexa­necarboxamide

aAffiliated Hospital of Hebei University, Baoding 071000, People's Republic of China, bHebei Xushui County Health Bureau, Baoding 071000, People's Republic of China, and cCollege of Electronic and Information Engineering, Hebei University, Baoding 071000, People's Republic of China
*Correspondence e-mail: dbin2000@hotmail.com

(Received 29 September 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C13H17NO, the cyclo­hexane ring adopts a chair conformation and the amide C(=O)—N moiety is almost coplanar with the phenyl ring [C—N—C—O = 4.1 (2)°]. In the crystal, mol­ecules are linked to form a C(4) infinite [001] chain via N—H⋯O hydrogen bonds, unlike the cyclic motif seen in related structures.

Related literature

For hydrogen-bonding motifs in amides, see: Taylor et al. (1984[Taylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280-288.]); Leiserowitz & Schmidt (1969[Leiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372-2382.]). For related structures, see: Lemmerer & Michael (2008[Lemmerer, A. & Michael, J. P. (2008). CrystEngComm, 10, 95-102.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO

  • Mr = 203.28

  • Orthorhombic, P c a 21

  • a = 9.943 (2) Å

  • b = 11.839 (2) Å

  • c = 9.6514 (19) Å

  • V = 1136.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.24 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.993

  • 8926 measured reflections

  • 1431 independent reflections

  • 1308 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.09

  • 1431 reflections

  • 141 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (3) 1.98 (3) 2.8145 (19) 171.7 (18)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amides are an important H-bonding supramolecular synthon (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the cyclohexane group adopts a chair conformation [torsion angles: C1/C2/C3/C4 54.67 (19)°, C2/C3/C4/C5 - 55.3 (2)°]. The amide C(=O)—N moiety is almost coplanar with the phenyl ring [torsion angles: C8/N1/C7/O1 4.1 (2)°, C8/N1/C7/C6 - 175.38 (13)°]. Molecules are linked to form an infinite chain down the c axis via N—H···O hydrogen bonds (Fig. 2 and Table 1), being different from the reported secondary graph set R64(16) in 1-phenylcylcopentane- carboxamide and 1-(2-bromphenyl)cyclopentanecarboxamide (Lemmerer & Michael, 2008).

Related literature top

For hydrogen-bonding motifs in amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For related structures, see: Lemmerer & Michael (2008).

Experimental top

The title compound was prepared from cyclohexoyl chloride and aniline. Colourless blocks of (I) were grown out via recrystallization from ethanol.

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The amide H atom was located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 1.00 (aliphic CH), 0.95(aromatic CH) or 0.99Å (CH2), and Uiso(H) = 1.2 Ueq(C)]

Structure description top

The amides are an important H-bonding supramolecular synthon (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the cyclohexane group adopts a chair conformation [torsion angles: C1/C2/C3/C4 54.67 (19)°, C2/C3/C4/C5 - 55.3 (2)°]. The amide C(=O)—N moiety is almost coplanar with the phenyl ring [torsion angles: C8/N1/C7/O1 4.1 (2)°, C8/N1/C7/C6 - 175.38 (13)°]. Molecules are linked to form an infinite chain down the c axis via N—H···O hydrogen bonds (Fig. 2 and Table 1), being different from the reported secondary graph set R64(16) in 1-phenylcylcopentane- carboxamide and 1-(2-bromphenyl)cyclopentanecarboxamide (Lemmerer & Michael, 2008).

For hydrogen-bonding motifs in amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For related structures, see: Lemmerer & Michael (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The infinite chain formed via N—H···O down the c axis.
N-Phenylcyclohexanecarboxamide top
Crystal data top
C13H17NOF(000) = 440
Mr = 203.28Dx = 1.188 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3664 reflections
a = 9.943 (2) Åθ = 2.9–27.8°
b = 11.839 (2) ŵ = 0.08 mm1
c = 9.6514 (19) ÅT = 113 K
V = 1136.1 (4) Å3Block, colorless
Z = 40.24 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1431 independent reflections
Radiation source: rotating anode1308 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.4°
ω and φ scansh = 1311
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1513
Tmin = 0.982, Tmax = 0.993l = 1212
8926 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0154P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1431 reflectionsΔρmax = 0.14 e Å3
141 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.174 (16)
Crystal data top
C13H17NOV = 1136.1 (4) Å3
Mr = 203.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.943 (2) ŵ = 0.08 mm1
b = 11.839 (2) ÅT = 113 K
c = 9.6514 (19) Å0.24 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1431 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1308 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.038
8926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.14 e Å3
1431 reflectionsΔρmin = 0.12 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22562 (12)0.24856 (10)0.38081 (13)0.0311 (3)
N10.17317 (13)0.25866 (10)0.15287 (15)0.0201 (3)
C10.48835 (17)0.24779 (12)0.16381 (19)0.0254 (4)
H1A0.45120.29180.08540.031*
H1B0.51330.30140.23820.031*
C20.61342 (18)0.18387 (14)0.11590 (18)0.0282 (4)
H2A0.59040.13670.03460.034*
H2B0.68320.23870.08710.034*
C30.66924 (17)0.10871 (15)0.2307 (2)0.0344 (4)
H3A0.70320.15660.30710.041*
H3B0.74570.06420.19410.041*
C40.56207 (18)0.02845 (14)0.2867 (2)0.0334 (4)
H4A0.59960.01530.36510.040*
H4B0.53560.02550.21330.040*
C50.43777 (16)0.09411 (13)0.33568 (18)0.0259 (4)
H5A0.36810.04040.36790.031*
H5B0.46250.14340.41460.031*
C60.38120 (15)0.16622 (12)0.21778 (17)0.0218 (3)
H60.35750.11400.14010.026*
C70.25333 (16)0.22777 (12)0.25968 (16)0.0207 (3)
C80.05357 (14)0.32340 (12)0.16232 (17)0.0193 (3)
C90.03152 (16)0.31722 (13)0.27635 (18)0.0253 (4)
H90.01100.26810.35130.030*
C100.14675 (18)0.38349 (15)0.2797 (2)0.0325 (4)
H100.20450.37980.35800.039*
C110.17880 (18)0.45468 (14)0.1711 (2)0.0340 (4)
H110.25740.50020.17500.041*
C120.09518 (18)0.45894 (13)0.0565 (2)0.0300 (4)
H120.11740.50670.01930.036*
C130.02102 (16)0.39388 (13)0.05141 (18)0.0240 (3)
H130.07820.39740.02740.029*
H10.204 (2)0.2485 (15)0.072 (3)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (6)0.0522 (7)0.0143 (6)0.0088 (5)0.0021 (5)0.0028 (5)
N10.0190 (7)0.0273 (6)0.0138 (6)0.0021 (5)0.0007 (5)0.0007 (5)
C10.0241 (8)0.0280 (8)0.0241 (8)0.0058 (6)0.0028 (7)0.0048 (7)
C20.0238 (9)0.0310 (8)0.0299 (9)0.0038 (6)0.0055 (7)0.0028 (7)
C30.0240 (9)0.0374 (9)0.0418 (11)0.0083 (7)0.0003 (8)0.0062 (8)
C40.0290 (9)0.0291 (8)0.0420 (10)0.0068 (7)0.0009 (8)0.0094 (8)
C50.0234 (8)0.0268 (7)0.0275 (8)0.0017 (6)0.0010 (7)0.0065 (7)
C60.0189 (7)0.0242 (7)0.0222 (7)0.0028 (6)0.0003 (6)0.0005 (6)
C70.0194 (7)0.0238 (7)0.0188 (7)0.0006 (6)0.0015 (6)0.0007 (6)
C80.0184 (7)0.0198 (6)0.0196 (7)0.0009 (5)0.0043 (6)0.0032 (6)
C90.0230 (8)0.0303 (8)0.0226 (8)0.0025 (6)0.0014 (6)0.0008 (7)
C100.0226 (8)0.0405 (9)0.0345 (9)0.0044 (7)0.0008 (7)0.0063 (8)
C110.0249 (9)0.0279 (8)0.0493 (11)0.0073 (6)0.0079 (8)0.0078 (8)
C120.0317 (10)0.0219 (8)0.0366 (9)0.0007 (6)0.0142 (8)0.0017 (7)
C130.0232 (8)0.0252 (7)0.0236 (8)0.0040 (6)0.0063 (7)0.0014 (7)
Geometric parameters (Å, º) top
O1—C71.226 (2)C5—C61.530 (2)
N1—C71.353 (2)C5—H5A0.9900
N1—C81.4176 (19)C5—H5B0.9900
N1—H10.85 (3)C6—C71.520 (2)
C1—C21.527 (2)C6—H61.0000
C1—C61.529 (2)C8—C91.390 (2)
C1—H1A0.9900C8—C131.395 (2)
C1—H1B0.9900C9—C101.389 (2)
C2—C31.526 (2)C9—H90.9500
C2—H2A0.9900C10—C111.383 (3)
C2—H2B0.9900C10—H100.9500
C3—C41.527 (3)C11—C121.385 (3)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—C131.390 (2)
C4—C51.535 (2)C12—H120.9500
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900
C7—N1—C8126.23 (15)C6—C5—H5B109.6
C7—N1—H1116.4 (15)C4—C5—H5B109.6
C8—N1—H1116.4 (14)H5A—C5—H5B108.1
C2—C1—C6110.94 (12)C7—C6—C1111.75 (12)
C2—C1—H1A109.5C7—C6—C5112.16 (13)
C6—C1—H1A109.5C1—C6—C5110.46 (13)
C2—C1—H1B109.5C7—C6—H6107.4
C6—C1—H1B109.5C1—C6—H6107.4
H1A—C1—H1B108.0C5—C6—H6107.4
C3—C2—C1111.43 (14)O1—C7—N1122.67 (15)
C3—C2—H2A109.3O1—C7—C6122.53 (14)
C1—C2—H2A109.3N1—C7—C6114.80 (14)
C3—C2—H2B109.3C9—C8—C13119.85 (14)
C1—C2—H2B109.3C9—C8—N1122.21 (14)
H2A—C2—H2B108.0C13—C8—N1117.94 (14)
C2—C3—C4111.49 (14)C10—C9—C8119.40 (15)
C2—C3—H3A109.3C10—C9—H9120.3
C4—C3—H3A109.3C8—C9—H9120.3
C2—C3—H3B109.3C11—C10—C9121.10 (18)
C4—C3—H3B109.3C11—C10—H10119.4
H3A—C3—H3B108.0C9—C10—H10119.4
C3—C4—C5110.85 (13)C10—C11—C12119.33 (16)
C3—C4—H4A109.5C10—C11—H11120.3
C5—C4—H4A109.5C12—C11—H11120.3
C3—C4—H4B109.5C11—C12—C13120.47 (17)
C5—C4—H4B109.5C11—C12—H12119.8
H4A—C4—H4B108.1C13—C12—H12119.8
C6—C5—C4110.48 (14)C12—C13—C8119.83 (16)
C6—C5—H5A109.6C12—C13—H13120.1
C4—C5—H5A109.6C8—C13—H13120.1
C6—C1—C2—C355.5 (2)C1—C6—C7—N178.01 (17)
C1—C2—C3—C454.7 (2)C5—C6—C7—N1157.32 (13)
C2—C3—C4—C555.3 (2)C7—N1—C8—C932.8 (2)
C3—C4—C5—C656.9 (2)C7—N1—C8—C13148.20 (15)
C2—C1—C6—C7177.32 (14)C13—C8—C9—C101.4 (2)
C2—C1—C6—C557.07 (19)N1—C8—C9—C10179.54 (15)
C4—C5—C6—C7176.87 (13)C8—C9—C10—C110.6 (2)
C4—C5—C6—C157.75 (17)C9—C10—C11—C120.7 (3)
C8—N1—C7—O14.1 (2)C10—C11—C12—C131.1 (2)
C8—N1—C7—C6175.38 (13)C11—C12—C13—C80.2 (2)
C1—C6—C7—O1101.43 (19)C9—C8—C13—C121.0 (2)
C5—C6—C7—O123.2 (2)N1—C8—C13—C12179.90 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)1.98 (3)2.8145 (19)171.7 (18)
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO
Mr203.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)113
a, b, c (Å)9.943 (2), 11.839 (2), 9.6514 (19)
V3)1136.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.982, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8926, 1431, 1308
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.09
No. of reflections1431
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)1.98 (3)2.8145 (19)171.7 (18)
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

This paper was supported by the Hebei Province Health Bureau (grant No. 20090176), the Ministry of Science and Technology of the People's Republic of China Inter­national Cooperation Project (grant No. 2008DFR10530) and the Science and Technology Support Program of Hebei Province Science and Technology Department (grant No. 08243531D).

References

First citationLeiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372–2382.  CrossRef Web of Science Google Scholar
First citationLemmerer, A. & Michael, J. P. (2008). CrystEngComm, 10, 95–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280–288.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds