organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­quinolin-1-ium nitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2010; accepted 30 September 2010; online 9 October 2010)

A proton is transferred from the nitric acid to the N atom of 2-cyano­quinoline during crystallization, resulting in the formation of the title salt, C10H7N2+·NO3. The quinolinium ring system is approximately planar, with a maximum deviation of 0.013 (3) Å. In the crystal, a very asymmetric bifurcated N—H⋯(O,O) hydrogen bond to two O atoms of an adjacent nitrate anion occurs, generating an R21(4) ring motif. C—H⋯O hydrogen bonds link the ions into sheets stacking along the a axis.

Related literature

For background to and the biological activities of quinoline derivatives, see: Loh, Quah et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.]); Loh et al. (2010[Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709.]); Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For the hydrogen-bond motif, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Loh, Quah et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.]); Loh et al. (2010[Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N2+·NO3

  • Mr = 217.19

  • Monoclinic, P 21 /c

  • a = 3.6969 (1) Å

  • b = 17.7031 (3) Å

  • c = 14.6029 (2) Å

  • β = 95.802 (1)°

  • V = 950.81 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.44 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.992

  • 16184 measured reflections

  • 2758 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.05

  • 2758 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.95 2.56 3.2376 (15) 128
N1—H1N1⋯O3 0.95 1.60 2.5432 (14) 172
C5—H5A⋯O3i 0.943 (16) 2.497 (16) 3.2835 (16) 141.0 (15)
C7—H7A⋯O2ii 0.976 (16) 2.473 (16) 3.3641 (16) 151.8 (12)
C8—H8A⋯O2iii 0.977 (18) 2.391 (19) 3.3355 (17) 162.4 (15)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh at al., 2010a,b; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (N3/O1–O3). One proton is transferred from the hydroxyl group of nitrate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. The R21(4) ring motif (Fig. 1; Bernstein et al., 1995) indicates a bifurcated hydrogen bond from N1–H1N1 to the two acceptors (O1/O3). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O1, N1—H1N1···O3, C5—H5A···O3, C7—H7A···O2 and C8—H8A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional planes stacking along the a axis.

Related literature top

For background to and the biological activities of quinoline derivatives, see: Loh, Quah et al. (2010a,b); Loh et al. (2010); Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Michael (1997) Markees et al. (1970); Campbell et al. (1988). For the hydrogen-bond motif, see: Bernstein et al. (1995). For related structures, see: Loh et al. (2010a,b); Loh et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A few drops of nitric acid were added to a hot methanol solution (20 ml) of quinoline-2-carbonitrile (39 mg, Aldrich) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Colourless plates of (I) appeared after a few days.

Refinement top

All H atoms were located from a difference Fourier map. H1N1 was fixed at its found position with bond length of N—H being 0.9481 Å. The remaining H atoms were refined freely with the bond lengths of C—H being 0.943 (17) to 0.998 (17) Å.

Structure description top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh at al., 2010a,b; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (N3/O1–O3). One proton is transferred from the hydroxyl group of nitrate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. The R21(4) ring motif (Fig. 1; Bernstein et al., 1995) indicates a bifurcated hydrogen bond from N1–H1N1 to the two acceptors (O1/O3). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O1, N1—H1N1···O3, C5—H5A···O3, C7—H7A···O2 and C8—H8A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional planes stacking along the a axis.

For background to and the biological activities of quinoline derivatives, see: Loh, Quah et al. (2010a,b); Loh et al. (2010); Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Michael (1997) Markees et al. (1970); Campbell et al. (1988). For the hydrogen-bond motif, see: Bernstein et al. (1995). For related structures, see: Loh et al. (2010a,b); Loh et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The R21(4) ring motif which indicates the bifurcated hydrogen bond is shown.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis.
2-Cyanoquinolin-1-ium nitrate top
Crystal data top
C10H7N2+·NO3F(000) = 448
Mr = 217.19Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3861 reflections
a = 3.6969 (1) Åθ = 2.7–31.0°
b = 17.7031 (3) ŵ = 0.12 mm1
c = 14.6029 (2) ÅT = 100 K
β = 95.802 (1)°Plate, colourless
V = 950.81 (3) Å30.44 × 0.18 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2758 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.951, Tmax = 0.992k = 2424
16184 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2227P]
where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H7N2+·NO3V = 950.81 (3) Å3
Mr = 217.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.6969 (1) ŵ = 0.12 mm1
b = 17.7031 (3) ÅT = 100 K
c = 14.6029 (2) Å0.44 × 0.18 × 0.07 mm
β = 95.802 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2103 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.992Rint = 0.041
16184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
2758 reflectionsΔρmin = 0.29 e Å3
170 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1851 (3)0.21342 (6)0.92466 (7)0.0314 (3)
O20.4106 (3)0.10064 (5)0.91484 (7)0.0255 (3)
O30.4296 (3)0.17922 (5)0.80150 (6)0.0258 (3)
N10.2524 (3)0.30942 (6)0.73844 (7)0.0144 (2)
H1N10.32410.26300.76720.079 (8)*
N20.1335 (4)0.17939 (7)0.58610 (8)0.0265 (3)
N30.3373 (3)0.16413 (6)0.88321 (7)0.0196 (3)
C10.3582 (3)0.37566 (7)0.78076 (8)0.0142 (3)
C20.5593 (4)0.37429 (7)0.86850 (8)0.0161 (3)
C30.6627 (4)0.44133 (7)0.90990 (9)0.0176 (3)
C40.5697 (4)0.51140 (7)0.86660 (9)0.0181 (3)
C50.3739 (4)0.51378 (7)0.78226 (9)0.0175 (3)
C60.2637 (3)0.44559 (7)0.73637 (8)0.0148 (3)
C70.0675 (4)0.44419 (7)0.64838 (9)0.0176 (3)
C80.0316 (4)0.37627 (7)0.60703 (9)0.0175 (3)
C90.0658 (4)0.30972 (7)0.65509 (8)0.0158 (3)
C100.0406 (4)0.23670 (7)0.61661 (9)0.0184 (3)
H2A0.619 (4)0.3267 (9)0.8975 (11)0.020 (4)*
H3A0.805 (5)0.4406 (9)0.9717 (12)0.023 (4)*
H4A0.649 (5)0.5595 (10)0.8975 (11)0.028 (4)*
H5A0.304 (5)0.5598 (9)0.7531 (11)0.024 (4)*
H7A0.002 (4)0.4918 (9)0.6174 (11)0.020 (4)*
H8A0.166 (5)0.3735 (10)0.5461 (13)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0486 (7)0.0188 (5)0.0295 (6)0.0018 (5)0.0167 (5)0.0018 (4)
O20.0375 (6)0.0142 (5)0.0234 (5)0.0007 (4)0.0040 (4)0.0047 (4)
O30.0438 (7)0.0173 (5)0.0170 (5)0.0075 (4)0.0072 (4)0.0026 (4)
N10.0169 (6)0.0120 (5)0.0142 (5)0.0006 (4)0.0010 (4)0.0000 (4)
N20.0331 (7)0.0217 (6)0.0237 (6)0.0029 (5)0.0020 (5)0.0014 (5)
N30.0255 (6)0.0153 (5)0.0172 (5)0.0027 (4)0.0015 (4)0.0003 (4)
C10.0146 (6)0.0126 (6)0.0159 (6)0.0002 (4)0.0035 (5)0.0005 (4)
C20.0180 (6)0.0145 (6)0.0156 (6)0.0004 (5)0.0013 (5)0.0005 (4)
C30.0164 (6)0.0187 (6)0.0177 (6)0.0017 (5)0.0020 (5)0.0024 (5)
C40.0180 (7)0.0151 (6)0.0216 (6)0.0035 (5)0.0044 (5)0.0037 (5)
C50.0200 (7)0.0128 (6)0.0204 (6)0.0002 (5)0.0053 (5)0.0002 (5)
C60.0146 (6)0.0140 (6)0.0160 (6)0.0009 (4)0.0027 (5)0.0008 (4)
C70.0185 (7)0.0166 (6)0.0177 (6)0.0030 (5)0.0023 (5)0.0023 (5)
C80.0179 (6)0.0192 (6)0.0153 (6)0.0016 (5)0.0008 (5)0.0009 (5)
C90.0157 (6)0.0159 (6)0.0158 (6)0.0003 (5)0.0017 (5)0.0016 (4)
C100.0190 (7)0.0192 (6)0.0166 (6)0.0004 (5)0.0003 (5)0.0005 (5)
Geometric parameters (Å, º) top
O1—N31.2301 (15)C3—H3A0.998 (17)
O2—N31.2347 (14)C4—C51.3646 (19)
O3—N31.3015 (14)C4—H4A0.993 (18)
N1—C91.3370 (16)C5—C61.4203 (17)
N1—C11.3642 (15)C5—H5A0.943 (17)
N1—H1N10.9481C6—C71.4104 (18)
N2—C101.1466 (18)C7—C81.3784 (18)
C1—C21.4152 (17)C7—H7A0.976 (17)
C1—C61.4243 (16)C8—C91.3998 (18)
C2—C31.3686 (18)C8—H8A0.977 (18)
C2—H2A0.959 (16)C9—C101.4480 (18)
C3—C41.4188 (18)
C9—N1—C1120.45 (10)C3—C4—H4A119.9 (10)
C9—N1—H1N1120.2C4—C5—C6120.01 (12)
C1—N1—H1N1119.3C4—C5—H5A122.1 (10)
O1—N3—O2123.76 (12)C6—C5—H5A117.9 (10)
O1—N3—O3118.74 (11)C7—C6—C5122.77 (11)
O2—N3—O3117.50 (11)C7—C6—C1118.63 (11)
N1—C1—C2119.72 (11)C5—C6—C1118.60 (12)
N1—C1—C6119.68 (11)C8—C7—C6120.25 (12)
C2—C1—C6120.60 (11)C8—C7—H7A120.5 (10)
C3—C2—C1118.87 (12)C6—C7—H7A119.2 (10)
C3—C2—H2A121.7 (10)C7—C8—C9118.10 (12)
C1—C2—H2A119.4 (10)C7—C8—H8A122.1 (10)
C2—C3—C4121.13 (12)C9—C8—H8A119.8 (10)
C2—C3—H3A119.1 (9)N1—C9—C8122.87 (11)
C4—C3—H3A119.8 (9)N1—C9—C10116.40 (11)
C5—C4—C3120.79 (12)C8—C9—C10120.72 (12)
C5—C4—H4A119.3 (10)N2—C10—C9178.33 (15)
C9—N1—C1—C2179.23 (11)C2—C1—C6—C7179.11 (11)
C9—N1—C1—C61.04 (18)N1—C1—C6—C5179.37 (11)
N1—C1—C2—C3179.94 (12)C2—C1—C6—C50.36 (18)
C6—C1—C2—C30.21 (19)C5—C6—C7—C8179.86 (12)
C1—C2—C3—C40.39 (19)C1—C6—C7—C80.40 (19)
C2—C3—C4—C50.0 (2)C6—C7—C8—C90.44 (19)
C3—C4—C5—C60.6 (2)C1—N1—C9—C80.16 (19)
C4—C5—C6—C7178.69 (12)C1—N1—C9—C10178.81 (11)
C4—C5—C6—C10.76 (19)C7—C8—C9—N10.6 (2)
N1—C1—C6—C71.15 (18)C7—C8—C9—C10177.99 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.952.563.2376 (15)128
N1—H1N1···O30.951.602.5432 (14)172
C5—H5A···O3i0.943 (16)2.497 (16)3.2835 (16)141.0 (15)
C7—H7A···O2ii0.976 (16)2.473 (16)3.3641 (16)151.8 (12)
C8—H8A···O2iii0.977 (18)2.391 (19)3.3355 (17)162.4 (15)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H7N2+·NO3
Mr217.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)3.6969 (1), 17.7031 (3), 14.6029 (2)
β (°) 95.802 (1)
V3)950.81 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.44 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.951, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
16184, 2758, 2103
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.05
No. of reflections2758
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.952.563.2376 (15)128
N1—H1N1···O30.951.602.5432 (14)172
C5—H5A···O3i0.943 (16)2.497 (16)3.2835 (16)141.0 (15)
C7—H7A···O2ii0.976 (16)2.473 (16)3.3641 (16)151.8 (12)
C8—H8A···O2iii0.977 (18)2.391 (19)3.3355 (17)162.4 (15)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (grant No. 1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds