organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17β-Hy­dr­oxy-17α-(hy­dr­oxy­meth­yl)estr-4-en-3-one

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 October 2010; accepted 8 October 2010; online 23 October 2010)

The title compound, C19H28O3, the fungal-transformed metabolite of the steroid methyl­oestrenol contains four fused rings A, B, C and D. Ring A adopts a half-chair and the trans-fused rings B and C adopt chair confirmations; the five-membered D ring is folded like an envelope. In the crystal, adjacent mol­ecules are linked by O—H⋯Ocarbon­yl and O—H⋯Ohy­droxy hydrogen bonds into a layer structure.

Related literature

For the synthesis, see: Hübner & Ponsold (1983[Hübner, M. & Ponsold, K. (1983). Rep. Exptl. Clin. Endocrinol. 81, 109-114.]); Ponsold et al. (1978a[Ponsold, K., Hübner, M., Schade, W., Oettel, M. & Freund, R. (1978a). Pharmazie, 33, 792-798.],b[Ponsold, K., Hübner, M., Wagner, H. & Schade, W. (1978b). Z. Chem. 18, 259-260.]); Szilagyi et al. (1984[Szilagyi, K., Solyom, S. & Toldy, L. (1984). Acta Chim. Hung. 116, 111-123.]). For the crystal structures of three modified17b-hy­droxy-3-oxo-17a-(halogen/pseudo­halogenometh­yl)-estra-4-ene progestagens, see: Beck et al. (1986a[Beck, G., Hübner, M., Bohl, M. & Leibnitz, P. (1986a). Cryst. Res. Technol. 21, 1035-1040.],b[Beck, G., Hübner, M., Bohl, M. & Leibnitz, P. (1986b). Cryst. Res. Technol. 21, 1041-1045.],c[Beck, G., Hübner, M. & Pfeiffer, D. (1986c). Cryst. Res. Technol. 21, 1185-1190.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28O3

  • Mr = 304.41

  • Orthorhombic, P 21 21 21

  • a = 9.9696 (6) Å

  • b = 12.5858 (8) Å

  • c = 13.3968 (8) Å

  • V = 1680.97 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 11685 measured reflections

  • 2203 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.11

  • 2203 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 (3) 1.95 (3) 2.779 (3) 171 (3)
O3—H3⋯O1ii 0.84 (3) 2.18 (3) 2.904 (3) 144 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structure modification by using microbes, cells and fungi, i.e., biotransfromation, is an excellent method for understanding the structure-activity relationship of bioactive compounds and drugs. In this study, a new compound was isolated when the estrogen drug methyloestrenolone was incubated with Aspergillus niger. This study represents the first report of the biotransformation of methyloestrenolone; the compound is 17α-(hydroxymethyl)-estr-4-en-17β-ol-3-one (Scheme I, Fig. 1). Adjacent molecules are linked by OH···Ocarbonyl and OH···Ohydroxy hydrogen bonds into a layer structure (Fig. 2). Bond dimensions are similar to those found in three other 17β-hydroxy-3-oxo-17α-(halogen/pseudohalogenomethyl)-estra-4-ene progestagens (Beck et al., 1986a,b,c).

The title compound has been obtained by conventional chemical synthesis (Hübner & Ponsold, 1983; Ponsold et al., 1978a, 1978b; Szilagyi et al., 1984).

Related literature top

For the synthesis, see: Hübner & Ponsold (1983); Ponsold et al. (1978a,b); Szilagyi et al. (1984). For the crystal structures of three modified17b-hydroxy-3-oxo-17a-(halogen/pseudohalogenomethyl)-estra-4-ene progestagens, see: Beck et al. (1986a,b,c).

Experimental top

Culture preparation

In 4 L water were dissolved glucose (40 g), peptone (20 g), yeast extract (12 g), potassium dihydrogen phosphate (20 g), sodium chloride (20 g) and glycerol (40 ml). The solution was distributed among 40 conical flasks (100 ml each); the mouths of the flasks were covered with cotton wool. The flasks were then heated at 374 K for 15 minutes. The spores of Aspergillus niger were transferred from slants grown on saboraud dextrose agar. The flasks were left on rotary shaker until there was sufficient growth of the spores. Methyloestrenolone (1 g) was distributed equally among the flasks in the form of its solution in acetone (20 ml, 0.5 ml per flask).

Fermentation of methyloestrenolone

Methyloestrenolone was also incubated with a liquid phase culture of Aspergillus niger (4 L) for 14 days. The biomass was separated by filtration and the filtrate extracted with dichloromethane The extract was dried with sodium sulfate; the solvent was evaporated to leave about 3 g of a brown gummy material. This was subjected to fractionation on a silica gel column with petroleum ether–ethyl acetate gradient solvent system. The fractions were subjected to size exclusion HPLC (GS-320, methanol, 35 minute retention time). Evaporation of the solvent gave the title compound as colorless prisms of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were freely refined.

The absolute configuration was assumed to be that of methyloestrenolone itself; 1656 Friedel pairs were merged.

Structure description top

Structure modification by using microbes, cells and fungi, i.e., biotransfromation, is an excellent method for understanding the structure-activity relationship of bioactive compounds and drugs. In this study, a new compound was isolated when the estrogen drug methyloestrenolone was incubated with Aspergillus niger. This study represents the first report of the biotransformation of methyloestrenolone; the compound is 17α-(hydroxymethyl)-estr-4-en-17β-ol-3-one (Scheme I, Fig. 1). Adjacent molecules are linked by OH···Ocarbonyl and OH···Ohydroxy hydrogen bonds into a layer structure (Fig. 2). Bond dimensions are similar to those found in three other 17β-hydroxy-3-oxo-17α-(halogen/pseudohalogenomethyl)-estra-4-ene progestagens (Beck et al., 1986a,b,c).

The title compound has been obtained by conventional chemical synthesis (Hübner & Ponsold, 1983; Ponsold et al., 1978a, 1978b; Szilagyi et al., 1984).

For the synthesis, see: Hübner & Ponsold (1983); Ponsold et al. (1978a,b); Szilagyi et al. (1984). For the crystal structures of three modified17b-hydroxy-3-oxo-17a-(halogen/pseudohalogenomethyl)-estra-4-ene progestagens, see: Beck et al. (1986a,b,c).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecuylar structure of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Layer structure.
17β-Hydroxy-17α-(hydroxymethyl)estr-4-en-3-one top
Crystal data top
C19H28O3F(000) = 664
Mr = 304.41Dx = 1.203 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2043 reflections
a = 9.9696 (6) Åθ = 2.5–21.3°
b = 12.5858 (8) ŵ = 0.08 mm1
c = 13.3968 (8) ÅT = 295 K
V = 1680.97 (18) Å3Prism, colorless
Z = 40.35 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1799 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 1212
11685 measured reflectionsk = 1516
2203 independent reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0486P]
where P = (Fo2 + 2Fc2)/3
2203 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H28O3V = 1680.97 (18) Å3
Mr = 304.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9696 (6) ŵ = 0.08 mm1
b = 12.5858 (8) ÅT = 295 K
c = 13.3968 (8) Å0.35 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1799 reflections with I > 2σ(I)
11685 measured reflectionsRint = 0.047
2203 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.19 e Å3
2203 reflectionsΔρmin = 0.28 e Å3
207 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5961 (3)1.11961 (17)1.13914 (18)0.0682 (7)
O20.39264 (19)0.32100 (16)1.04677 (15)0.0492 (5)
O30.6378 (2)0.26561 (14)0.97416 (16)0.0462 (5)
C10.6147 (3)0.8388 (2)1.17666 (19)0.0464 (7)
H1A0.51760.83851.17220.056*
H1B0.64080.79061.22970.056*
C20.6631 (3)0.9507 (2)1.2017 (2)0.0506 (7)
H2A0.62350.97341.26430.061*
H2B0.75980.95031.20970.061*
C30.6256 (3)1.0271 (2)1.1211 (2)0.0451 (6)
C40.6340 (3)0.9862 (2)1.0191 (2)0.0420 (6)
H40.61851.03280.96660.050*
C50.6628 (2)0.88515 (19)0.99789 (19)0.0356 (6)
C60.6928 (3)0.8510 (2)0.89256 (19)0.0438 (7)
H6A0.78930.84800.88390.053*
H6B0.65840.90440.84710.053*
C70.6336 (3)0.74360 (19)0.86388 (19)0.0445 (7)
H7A0.66890.72200.79950.053*
H7B0.53700.74990.85790.053*
C80.6673 (3)0.65901 (18)0.94171 (18)0.0333 (5)
H80.76510.65320.94680.040*
C90.6117 (3)0.69403 (18)1.04371 (16)0.0310 (5)
H90.51530.70641.03500.037*
C100.6743 (3)0.80063 (18)1.07782 (17)0.0329 (5)
H100.77010.78791.08900.040*
C110.6269 (3)0.60786 (18)1.12419 (19)0.0393 (6)
H11A0.72090.60151.14180.047*
H11B0.57850.62981.18350.047*
C120.5748 (3)0.49914 (18)1.09091 (16)0.0342 (6)
H12A0.59400.44701.14230.041*
H12B0.47820.50261.08260.041*
C130.6389 (2)0.46399 (18)0.99316 (17)0.0306 (5)
C140.6106 (3)0.55026 (19)0.91475 (17)0.0336 (5)
H140.51290.55840.91160.040*
C150.6536 (4)0.4988 (2)0.8161 (2)0.0542 (8)
H15A0.74880.50870.80440.065*
H15B0.60400.52850.76040.065*
C160.6199 (3)0.3807 (2)0.8303 (2)0.0525 (7)
H16A0.69730.33730.81400.063*
H16B0.54660.36050.78670.063*
C170.5796 (2)0.36350 (19)0.94063 (18)0.0343 (5)
C180.7903 (3)0.4452 (2)1.0088 (2)0.0494 (7)
H18B0.82910.50601.04120.074*
H18C0.83290.43450.94540.074*
H18D0.80330.38351.04980.074*
C190.4282 (3)0.3522 (2)0.9490 (2)0.0419 (6)
H19A0.38570.41950.93310.050*
H19B0.39680.29960.90160.050*
H20.3200 (19)0.288 (2)1.041 (2)0.065 (10)*
H30.595 (4)0.242 (3)1.023 (2)0.098 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0825 (17)0.0374 (11)0.0847 (16)0.0077 (11)0.0139 (13)0.0098 (11)
O20.0399 (11)0.0470 (11)0.0606 (13)0.0140 (9)0.0059 (9)0.0023 (9)
O30.0407 (11)0.0276 (9)0.0702 (15)0.0056 (8)0.0070 (10)0.0029 (9)
C10.0666 (19)0.0341 (14)0.0384 (14)0.0083 (13)0.0058 (13)0.0056 (11)
C20.064 (2)0.0374 (14)0.0500 (17)0.0081 (14)0.0078 (15)0.0113 (12)
C30.0394 (14)0.0333 (14)0.0627 (17)0.0052 (12)0.0067 (13)0.0055 (12)
C40.0438 (15)0.0303 (13)0.0520 (15)0.0035 (11)0.0025 (13)0.0058 (11)
C50.0342 (13)0.0307 (12)0.0418 (14)0.0074 (10)0.0000 (11)0.0038 (10)
C60.0580 (17)0.0341 (14)0.0395 (14)0.0086 (13)0.0047 (12)0.0086 (11)
C70.0672 (19)0.0362 (14)0.0300 (13)0.0089 (14)0.0019 (13)0.0038 (10)
C80.0377 (12)0.0302 (12)0.0319 (12)0.0034 (10)0.0021 (10)0.0003 (9)
C90.0335 (12)0.0270 (11)0.0326 (12)0.0035 (10)0.0008 (10)0.0013 (9)
C100.0375 (13)0.0287 (12)0.0325 (13)0.0033 (10)0.0022 (10)0.0002 (9)
C110.0582 (17)0.0310 (12)0.0288 (12)0.0027 (12)0.0022 (12)0.0035 (9)
C120.0461 (15)0.0276 (12)0.0291 (12)0.0033 (11)0.0013 (10)0.0052 (9)
C130.0276 (12)0.0288 (11)0.0354 (13)0.0004 (10)0.0002 (10)0.0006 (9)
C140.0392 (13)0.0312 (12)0.0305 (12)0.0036 (11)0.0015 (10)0.0007 (9)
C150.085 (2)0.0407 (15)0.0373 (15)0.0107 (16)0.0157 (15)0.0060 (12)
C160.071 (2)0.0397 (15)0.0470 (16)0.0072 (15)0.0116 (15)0.0112 (13)
C170.0348 (12)0.0263 (12)0.0417 (13)0.0010 (10)0.0006 (11)0.0003 (10)
C180.0350 (15)0.0390 (15)0.074 (2)0.0006 (12)0.0044 (14)0.0035 (14)
C190.0380 (13)0.0345 (14)0.0532 (15)0.0042 (11)0.0071 (12)0.0012 (12)
Geometric parameters (Å, º) top
O1—C31.225 (3)C9—C101.549 (3)
O2—C191.413 (3)C9—H90.9800
O2—H20.84 (3)C10—H100.9800
O3—C171.434 (3)C11—C121.530 (3)
O3—H30.84 (3)C11—H11A0.9700
C1—C21.526 (4)C11—H11B0.9700
C1—C101.529 (3)C12—C131.523 (3)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.493 (4)C13—C141.537 (3)
C2—H2A0.9700C13—C181.543 (3)
C2—H2B0.9700C13—C171.563 (3)
C3—C41.463 (4)C14—C151.533 (3)
C4—C51.334 (4)C14—H140.9800
C4—H40.9300C15—C161.536 (4)
C5—C61.505 (4)C15—H15A0.9700
C5—C101.514 (3)C15—H15B0.9700
C6—C71.524 (3)C16—C171.546 (4)
C6—H6A0.9700C16—H16A0.9700
C6—H6B0.9700C16—H16B0.9700
C7—C81.527 (3)C17—C191.520 (3)
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C141.524 (3)C18—H18D0.9600
C8—C91.539 (3)C19—H19A0.9700
C8—H80.9800C19—H19B0.9700
C9—C111.537 (3)
C19—O2—H2106 (2)C12—C11—H11A108.9
C17—O3—H3110 (3)C9—C11—H11A108.9
C2—C1—C10111.0 (2)C12—C11—H11B108.9
C2—C1—H1A109.4C9—C11—H11B108.9
C10—C1—H1A109.4H11A—C11—H11B107.8
C2—C1—H1B109.4C13—C12—C11111.6 (2)
C10—C1—H1B109.4C13—C12—H12A109.3
H1A—C1—H1B108.0C11—C12—H12A109.3
C3—C2—C1110.9 (2)C13—C12—H12B109.3
C3—C2—H2A109.5C11—C12—H12B109.3
C1—C2—H2A109.5H12A—C12—H12B108.0
C3—C2—H2B109.5C12—C13—C14107.80 (19)
C1—C2—H2B109.5C12—C13—C18109.8 (2)
H2A—C2—H2B108.1C14—C13—C18112.4 (2)
O1—C3—C4122.2 (3)C12—C13—C17117.6 (2)
O1—C3—C2122.0 (3)C14—C13—C17101.23 (18)
C4—C3—C2115.7 (2)C18—C13—C17107.9 (2)
C5—C4—C3123.2 (3)C8—C14—C15118.7 (2)
C5—C4—H4118.4C8—C14—C13113.9 (2)
C3—C4—H4118.4C15—C14—C13103.9 (2)
C4—C5—C6121.0 (2)C8—C14—H14106.5
C4—C5—C10122.3 (2)C15—C14—H14106.5
C6—C5—C10116.6 (2)C13—C14—H14106.5
C5—C6—C7114.4 (2)C14—C15—C16103.9 (2)
C5—C6—H6A108.7C14—C15—H15A111.0
C7—C6—H6A108.7C16—C15—H15A111.0
C5—C6—H6B108.7C14—C15—H15B111.0
C7—C6—H6B108.7C16—C15—H15B111.0
H6A—C6—H6B107.6H15A—C15—H15B109.0
C6—C7—C8111.2 (2)C15—C16—C17108.1 (2)
C6—C7—H7A109.4C15—C16—H16A110.1
C8—C7—H7A109.4C17—C16—H16A110.1
C6—C7—H7B109.4C15—C16—H16B110.1
C8—C7—H7B109.4C17—C16—H16B110.1
H7A—C7—H7B108.0H16A—C16—H16B108.4
C14—C8—C7112.5 (2)O3—C17—C19107.4 (2)
C14—C8—C9109.51 (19)O3—C17—C16108.3 (2)
C7—C8—C9109.1 (2)C19—C17—C16110.0 (2)
C14—C8—H8108.5O3—C17—C13113.66 (19)
C7—C8—H8108.5C19—C17—C13114.7 (2)
C9—C8—H8108.5C16—C17—C13102.65 (19)
C11—C9—C8112.66 (19)C13—C18—H18B109.5
C11—C9—C10111.39 (19)C13—C18—H18C109.5
C8—C9—C10111.39 (19)H18B—C18—H18C109.5
C11—C9—H9107.0C13—C18—H18D109.5
C8—C9—H9107.0H18B—C18—H18D109.5
C10—C9—H9107.0H18C—C18—H18D109.5
C5—C10—C1111.2 (2)O2—C19—C17110.1 (2)
C5—C10—C9111.69 (19)O2—C19—H19A109.6
C1—C10—C9111.8 (2)C17—C19—H19A109.6
C5—C10—H10107.3O2—C19—H19B109.6
C1—C10—H10107.3C17—C19—H19B109.6
C9—C10—H10107.3H19A—C19—H19B108.2
C12—C11—C9113.1 (2)
C10—C1—C2—C358.7 (3)C11—C12—C13—C1865.7 (3)
C1—C2—C3—O1145.9 (3)C11—C12—C13—C17170.4 (2)
C1—C2—C3—C437.6 (4)C7—C8—C14—C1559.1 (3)
O1—C3—C4—C5178.4 (3)C9—C8—C14—C15179.4 (2)
C2—C3—C4—C55.1 (4)C7—C8—C14—C13178.2 (2)
C3—C4—C5—C6169.7 (3)C9—C8—C14—C1356.7 (3)
C3—C4—C5—C107.0 (4)C12—C13—C14—C860.2 (3)
C4—C5—C6—C7140.6 (3)C18—C13—C14—C860.9 (3)
C10—C5—C6—C742.5 (3)C17—C13—C14—C8175.7 (2)
C5—C6—C7—C850.0 (3)C12—C13—C14—C15169.2 (2)
C6—C7—C8—C14179.5 (2)C18—C13—C14—C1569.7 (3)
C6—C7—C8—C958.8 (3)C17—C13—C14—C1545.2 (2)
C14—C8—C9—C1150.0 (3)C8—C14—C15—C16161.0 (2)
C7—C8—C9—C11173.5 (2)C13—C14—C15—C1633.4 (3)
C14—C8—C9—C10175.97 (19)C14—C15—C16—C178.6 (3)
C7—C8—C9—C1060.5 (3)C15—C16—C17—O3139.3 (3)
C4—C5—C10—C114.6 (4)C15—C16—C17—C19103.6 (3)
C6—C5—C10—C1168.6 (2)C15—C16—C17—C1318.8 (3)
C4—C5—C10—C9140.3 (2)C12—C13—C17—O387.4 (3)
C6—C5—C10—C942.9 (3)C14—C13—C17—O3155.4 (2)
C2—C1—C10—C546.5 (3)C18—C13—C17—O337.3 (3)
C2—C1—C10—C9172.2 (2)C12—C13—C17—C1936.6 (3)
C11—C9—C10—C5178.6 (2)C14—C13—C17—C1980.5 (2)
C8—C9—C10—C551.9 (3)C18—C13—C17—C19161.3 (2)
C11—C9—C10—C156.0 (3)C12—C13—C17—C16155.8 (2)
C8—C9—C10—C1177.2 (2)C14—C13—C17—C1638.7 (2)
C8—C9—C11—C1250.1 (3)C18—C13—C17—C1679.5 (3)
C10—C9—C11—C12176.1 (2)O3—C17—C19—O253.7 (3)
C9—C11—C12—C1354.1 (3)C16—C17—C19—O2171.4 (2)
C11—C12—C13—C1456.9 (3)C13—C17—C19—O273.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.84 (3)1.95 (3)2.779 (3)171 (3)
O3—H3···O1ii0.84 (3)2.18 (3)2.904 (3)144 (4)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H28O3
Mr304.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.9696 (6), 12.5858 (8), 13.3968 (8)
V3)1680.97 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11685, 2203, 1799
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.11
No. of reflections2203
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.84 (3)1.95 (3)2.779 (3)171 (3)
O3—H3···O1ii0.84 (3)2.18 (3)2.904 (3)144 (4)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x, y1, z.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan for supporting this study through an Indigenous Research Grant for PhDs, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeck, G., Hübner, M., Bohl, M. & Leibnitz, P. (1986a). Cryst. Res. Technol. 21, 1035–1040.  Google Scholar
First citationBeck, G., Hübner, M., Bohl, M. & Leibnitz, P. (1986b). Cryst. Res. Technol. 21, 1041–1045.  Google Scholar
First citationBeck, G., Hübner, M. & Pfeiffer, D. (1986c). Cryst. Res. Technol. 21, 1185–1190.  Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHübner, M. & Ponsold, K. (1983). Rep. Exptl. Clin. Endocrinol. 81, 109–114.  Google Scholar
First citationPonsold, K., Hübner, M., Schade, W., Oettel, M. & Freund, R. (1978a). Pharmazie, 33, 792–798.  CAS PubMed Web of Science Google Scholar
First citationPonsold, K., Hübner, M., Wagner, H. & Schade, W. (1978b). Z. Chem. 18, 259–260.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzilagyi, K., Solyom, S. & Toldy, L. (1984). Acta Chim. Hung. 116, 111–123.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds