organic compounds
3-(4-Methoxybenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione
aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com
In the title molecule, C17H18O5, which was prepared by the reaction of (R)-1,5-dioxaspiro[5.5]undecane-2,4-dione and 4-methoxybenzaldehyde with ethanol, the 1,3-dioxane ring is in a distorted with the spiro C atom forming the flap. The is stabilized by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008). For a related structure, see: Zeng et al. (2009). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810040675/hb5678sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040675/hb5678Isup2.hkl
A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303 K. After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 4-methoxybenzaldehyde (8.16 g, 0.06 mol) was added. The solution was then filtered and concentrated. Colourless blocks of (I) were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.
The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We have recently reported the
of (Z)-3-(3-phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is reported here.The 1,3-dioxane ring is in a distored
with atom C11 atom common to the cyclohexane forming the flap. The cyclohexane exists in a distorted chair comformation, with the puckering parameters Q=0.552Å, theta=175.1°, Phi=39.2°; The is stabilized by weak intra and intermolecular C—H···O hydrogen bonds (Table 1).For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008). For a related structure, see: Zeng et al. (2009). For puckering parameters, see: Cremer & Pople (1975).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms. |
C17H18O5 | F(000) = 640 |
Mr = 302.31 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2450 reflections |
a = 15.723 (3) Å | θ = 3.2–27.5° |
b = 10.531 (2) Å | µ = 0.10 mm−1 |
c = 9.2029 (18) Å | T = 293 K |
β = 90.00 (3)° | Block, colorless |
V = 1523.8 (5) Å3 | 0.25 × 0.16 × 0.10 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2450 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 27.5°, θmin = 3.2° |
phi and ω scans | h = −20→20 |
14509 measured reflections | k = −11→13 |
3493 independent reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0988P)2 + 0.1666P] where P = (Fo2 + 2Fc2)/3 |
3493 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
C17H18O5 | V = 1523.8 (5) Å3 |
Mr = 302.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.723 (3) Å | µ = 0.10 mm−1 |
b = 10.531 (2) Å | T = 293 K |
c = 9.2029 (18) Å | 0.25 × 0.16 × 0.10 mm |
β = 90.00 (3)° |
Bruker SMART CCD diffractometer | 2450 reflections with I > 2σ(I) |
14509 measured reflections | Rint = 0.057 |
3493 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.34 e Å−3 |
3493 reflections | Δρmin = −0.41 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O5 | 0.35323 (7) | 0.60512 (11) | 0.18736 (14) | 0.0621 (4) | |
O4 | 0.27576 (8) | 0.50924 (12) | 0.37464 (12) | 0.0613 (4) | |
O3 | 0.14427 (8) | 0.56348 (16) | 0.42086 (13) | 0.0767 (4) | |
C12 | 0.20204 (11) | 0.56349 (17) | 0.33460 (18) | 0.0573 (4) | |
O1 | −0.22145 (8) | 0.60711 (16) | 0.16227 (16) | 0.0799 (5) | |
C9 | 0.20107 (11) | 0.62557 (17) | 0.1912 (2) | 0.0591 (4) | |
C11 | 0.34102 (10) | 0.49138 (15) | 0.26925 (17) | 0.0520 (4) | |
C5 | 0.04075 (11) | 0.64170 (17) | 0.13577 (19) | 0.0596 (4) | |
O2 | 0.29512 (10) | 0.73591 (18) | 0.0312 (2) | 0.1155 (7) | |
C2 | −0.13524 (11) | 0.61345 (19) | 0.15722 (19) | 0.0612 (4) | |
C17 | 0.31883 (13) | 0.38211 (18) | 0.1710 (2) | 0.0663 (5) | |
H17A | 0.2690 | 0.4036 | 0.1141 | 0.080* | |
H17B | 0.3054 | 0.3080 | 0.2293 | 0.080* | |
C4 | −0.01498 (12) | 0.72360 (19) | 0.0631 (2) | 0.0696 (5) | |
H4A | 0.0072 | 0.7881 | 0.0054 | 0.084* | |
C6 | 0.00472 (12) | 0.54299 (19) | 0.2157 (2) | 0.0661 (5) | |
H6A | 0.0402 | 0.4856 | 0.2628 | 0.079* | |
C13 | 0.42224 (12) | 0.4727 (2) | 0.3519 (2) | 0.0744 (6) | |
H13A | 0.4141 | 0.4065 | 0.4239 | 0.089* | |
H13B | 0.4364 | 0.5505 | 0.4027 | 0.089* | |
C8 | 0.13114 (12) | 0.66335 (18) | 0.1175 (2) | 0.0669 (5) | |
H8A | 0.1438 | 0.7143 | 0.0378 | 0.080* | |
C7 | −0.08152 (12) | 0.5284 (2) | 0.2265 (2) | 0.0668 (5) | |
H7A | −0.1040 | 0.4617 | 0.2803 | 0.080* | |
C10 | 0.28435 (12) | 0.66098 (19) | 0.1279 (2) | 0.0707 (5) | |
C3 | −0.10110 (13) | 0.7112 (2) | 0.0747 (2) | 0.0725 (5) | |
H3A | −0.1368 | 0.7681 | 0.0274 | 0.087* | |
C15 | 0.4723 (2) | 0.3234 (3) | 0.1548 (4) | 0.1182 (11) | |
H15A | 0.5187 | 0.3067 | 0.0880 | 0.142* | |
H15B | 0.4637 | 0.2483 | 0.2139 | 0.142* | |
C14 | 0.49532 (14) | 0.4363 (3) | 0.2527 (3) | 0.1001 (9) | |
H14A | 0.5445 | 0.4144 | 0.3112 | 0.120* | |
H14B | 0.5104 | 0.5085 | 0.1926 | 0.120* | |
C16 | 0.39229 (19) | 0.3516 (3) | 0.0700 (3) | 0.1034 (9) | |
H16A | 0.3777 | 0.2787 | 0.0107 | 0.124* | |
H16B | 0.4023 | 0.4231 | 0.0058 | 0.124* | |
C1 | −0.25940 (14) | 0.5094 (3) | 0.2471 (3) | 0.1045 (9) | |
H1A | −0.3202 | 0.5159 | 0.2409 | 0.157* | |
H1B | −0.2420 | 0.5182 | 0.3466 | 0.157* | |
H1C | −0.2416 | 0.4280 | 0.2110 | 0.157* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O5 | 0.0527 (7) | 0.0513 (7) | 0.0822 (8) | −0.0017 (5) | 0.0135 (6) | 0.0140 (5) |
O4 | 0.0618 (7) | 0.0751 (8) | 0.0470 (6) | −0.0023 (6) | 0.0115 (5) | −0.0021 (5) |
O3 | 0.0619 (8) | 0.1095 (12) | 0.0587 (7) | −0.0099 (7) | 0.0195 (6) | −0.0150 (7) |
C12 | 0.0573 (9) | 0.0596 (10) | 0.0549 (9) | −0.0089 (8) | 0.0141 (7) | −0.0117 (7) |
O1 | 0.0530 (8) | 0.1061 (12) | 0.0808 (9) | −0.0026 (7) | 0.0057 (6) | 0.0112 (8) |
C9 | 0.0532 (9) | 0.0508 (9) | 0.0732 (11) | 0.0017 (7) | 0.0182 (8) | 0.0042 (7) |
C11 | 0.0554 (9) | 0.0501 (9) | 0.0506 (8) | −0.0030 (7) | 0.0110 (7) | 0.0037 (6) |
C5 | 0.0575 (10) | 0.0563 (10) | 0.0650 (10) | 0.0027 (8) | 0.0121 (7) | 0.0050 (7) |
O2 | 0.0713 (10) | 0.1084 (13) | 0.1668 (16) | 0.0208 (9) | 0.0394 (10) | 0.0879 (12) |
C2 | 0.0524 (9) | 0.0747 (12) | 0.0563 (9) | 0.0010 (8) | 0.0056 (7) | −0.0017 (8) |
C17 | 0.0790 (13) | 0.0524 (10) | 0.0675 (11) | 0.0010 (8) | 0.0074 (9) | −0.0063 (8) |
C4 | 0.0639 (11) | 0.0664 (12) | 0.0787 (12) | 0.0033 (9) | 0.0108 (9) | 0.0185 (9) |
C6 | 0.0606 (11) | 0.0611 (11) | 0.0765 (12) | −0.0023 (8) | −0.0002 (8) | 0.0152 (9) |
C13 | 0.0626 (11) | 0.0894 (15) | 0.0710 (11) | −0.0060 (10) | −0.0017 (9) | 0.0195 (10) |
C8 | 0.0621 (11) | 0.0569 (10) | 0.0816 (12) | 0.0061 (8) | 0.0200 (9) | 0.0130 (8) |
C7 | 0.0622 (11) | 0.0716 (12) | 0.0666 (10) | −0.0104 (9) | 0.0009 (8) | 0.0157 (9) |
C10 | 0.0582 (10) | 0.0566 (11) | 0.0972 (14) | 0.0080 (8) | 0.0229 (9) | 0.0234 (9) |
C3 | 0.0640 (12) | 0.0718 (12) | 0.0816 (12) | 0.0103 (9) | 0.0032 (9) | 0.0159 (10) |
C15 | 0.110 (2) | 0.105 (2) | 0.140 (2) | 0.0499 (18) | 0.0472 (19) | 0.0149 (19) |
C14 | 0.0599 (12) | 0.129 (2) | 0.1108 (18) | 0.0150 (13) | 0.0135 (12) | 0.0447 (18) |
C16 | 0.115 (2) | 0.0978 (19) | 0.0974 (16) | 0.0332 (16) | 0.0266 (15) | −0.0256 (14) |
C1 | 0.0627 (13) | 0.159 (3) | 0.0916 (16) | −0.0262 (14) | 0.0035 (11) | 0.0349 (16) |
O5—C10 | 1.348 (2) | C4—C3 | 1.365 (3) |
O5—C11 | 1.4281 (19) | C4—H4A | 0.9300 |
O4—C12 | 1.344 (2) | C6—C7 | 1.368 (3) |
O4—C11 | 1.4245 (19) | C6—H6A | 0.9300 |
O3—C12 | 1.2064 (19) | C13—C14 | 1.516 (3) |
C12—C9 | 1.473 (3) | C13—H13A | 0.9700 |
O1—C2 | 1.358 (2) | C13—H13B | 0.9700 |
O1—C1 | 1.423 (3) | C8—H8A | 0.9300 |
C9—C8 | 1.352 (3) | C7—H7A | 0.9300 |
C9—C10 | 1.481 (2) | C3—H3A | 0.9300 |
C11—C13 | 1.499 (3) | C15—C16 | 1.509 (4) |
C11—C17 | 1.504 (2) | C15—C14 | 1.535 (5) |
C5—C6 | 1.394 (3) | C15—H15A | 0.9700 |
C5—C4 | 1.400 (3) | C15—H15B | 0.9700 |
C5—C8 | 1.449 (3) | C14—H14A | 0.9700 |
O2—C10 | 1.201 (2) | C14—H14B | 0.9700 |
C2—C7 | 1.386 (3) | C16—H16A | 0.9700 |
C2—C3 | 1.387 (3) | C16—H16B | 0.9700 |
C17—C16 | 1.517 (3) | C1—H1A | 0.9600 |
C17—H17A | 0.9700 | C1—H1B | 0.9600 |
C17—H17B | 0.9700 | C1—H1C | 0.9600 |
C10—O5—C11 | 118.18 (13) | H13A—C13—H13B | 107.9 |
C12—O4—C11 | 119.39 (13) | C9—C8—C5 | 133.89 (17) |
O3—C12—O4 | 117.97 (17) | C9—C8—H8A | 113.1 |
O3—C12—C9 | 125.58 (18) | C5—C8—H8A | 113.1 |
O4—C12—C9 | 116.32 (14) | C6—C7—C2 | 119.86 (18) |
C2—O1—C1 | 118.23 (18) | C6—C7—H7A | 120.1 |
C8—C9—C12 | 126.06 (16) | C2—C7—H7A | 120.1 |
C8—C9—C10 | 116.61 (16) | O2—C10—O5 | 118.29 (17) |
C12—C9—C10 | 117.06 (16) | O2—C10—C9 | 125.55 (18) |
O4—C11—O5 | 110.20 (13) | O5—C10—C9 | 116.15 (15) |
O4—C11—C13 | 106.60 (14) | C4—C3—C2 | 119.86 (18) |
O5—C11—C13 | 105.28 (14) | C4—C3—H3A | 120.1 |
O4—C11—C17 | 110.06 (14) | C2—C3—H3A | 120.1 |
O5—C11—C17 | 110.83 (14) | C16—C15—C14 | 110.4 (2) |
C13—C11—C17 | 113.69 (16) | C16—C15—H15A | 109.6 |
C6—C5—C4 | 117.22 (17) | C14—C15—H15A | 109.6 |
C6—C5—C8 | 125.26 (17) | C16—C15—H15B | 109.6 |
C4—C5—C8 | 117.48 (16) | C14—C15—H15B | 109.6 |
O1—C2—C7 | 124.10 (17) | H15A—C15—H15B | 108.1 |
O1—C2—C3 | 116.19 (17) | C13—C14—C15 | 111.7 (2) |
C7—C2—C3 | 119.70 (17) | C13—C14—H14A | 109.3 |
C11—C17—C16 | 110.71 (19) | C15—C14—H14A | 109.3 |
C11—C17—H17A | 109.5 | C13—C14—H14B | 109.3 |
C16—C17—H17A | 109.5 | C15—C14—H14B | 109.3 |
C11—C17—H17B | 109.5 | H14A—C14—H14B | 107.9 |
C16—C17—H17B | 109.5 | C15—C16—C17 | 111.1 (2) |
H17A—C17—H17B | 108.1 | C15—C16—H16A | 109.4 |
C3—C4—C5 | 121.64 (18) | C17—C16—H16A | 109.4 |
C3—C4—H4A | 119.2 | C15—C16—H16B | 109.4 |
C5—C4—H4A | 119.2 | C17—C16—H16B | 109.4 |
C7—C6—C5 | 121.66 (18) | H16A—C16—H16B | 108.0 |
C7—C6—H6A | 119.2 | O1—C1—H1A | 109.5 |
C5—C6—H6A | 119.2 | O1—C1—H1B | 109.5 |
C11—C13—C14 | 111.92 (18) | H1A—C1—H1B | 109.5 |
C11—C13—H13A | 109.2 | O1—C1—H1C | 109.5 |
C14—C13—H13A | 109.2 | H1A—C1—H1C | 109.5 |
C11—C13—H13B | 109.2 | H1B—C1—H1C | 109.5 |
C14—C13—H13B | 109.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O3i | 0.93 | 2.58 | 3.405 (3) | 149 (3) |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H18O5 |
Mr | 302.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.723 (3), 10.531 (2), 9.2029 (18) |
β (°) | 90, 90.00 (3), 90 |
V (Å3) | 1523.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.25 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14509, 3493, 2450 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.185, 1.11 |
No. of reflections | 3493 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.41 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O3i | 0.93 | 2.5762 | 3.405 (3) | 149 (3) |
Symmetry code: (i) x, −y+3/2, z−1/2. |
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 6, 1354–1358. CrossRef Web of Science Google Scholar
Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189. CrossRef CAS Google Scholar
Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501–1514. CAS Google Scholar
Zeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2586. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We have recently reported the crystal structure of (Z)-3-(3-phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is reported here.
The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The cyclohexane exists in a distorted chair comformation, with the puckering parameters Q=0.552Å, theta=175.1°, Phi=39.2°; The crystal structure is stabilized by weak intra and intermolecular C—H···O hydrogen bonds (Table 1).