metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Butyl­di­chlorido(2-{(1E)-1-[2-(pyridin-2-yl)hydrazin-1-yl­­idene]eth­yl}phenolato)tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 October 2010; accepted 10 October 2010; online 20 October 2010)

Two independent mol­ecules comprise the asymmetric unit of the title compound, [Sn(C4H9)(C13H12N3O)Cl2]. The Sn atom in each is coordinated by the tridentate ligand via the phenoxide O, hydrazine N and pyridyl N atoms, forming five- and six-membered chelate rings. The approximately octa­hedral coordination geometry is completed by the α-C atom of the n-butyl group (which is trans to the hydrazine N atom) and two mutually trans Cl atoms. Differences between the mol­ecules are evident in the relative planarity of the chelate rings and in the conformations of the n-butyl groups [C—C—C—C = 177.2 (5) and −64.4 (11)°]. Significant differences in the Sn—Cl bond lengths are related to the formation of N—H⋯Cl hydrogen bonds, which link the mol­ecules comprising the asymmetric unit into dimeric aggregates. These are consolidated in the crystal packing by C—H⋯Cl contacts. The structure was refined as an inversion twin; the minor twin component is 37 (3)%.

Related literature

For background to related organotin compounds, see: Affan et al. (2009[Affan, M. A., Foo, I. P. P., Fasihuddin, B. A. & Hapipah, M. A. (2009). Ind. J. Chem. Sect. A, 48, 1388-1393.]). For background to the varied biological activities of organotin compounds, see: Gielen & Tiekink (2005[Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421-439. Chichester: John Wiley & Sons.]). For additional structure analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)(C13H12N3O)Cl2]

  • Mr = 472.96

  • Monoclinic, P c

  • a = 8.9566 (6) Å

  • b = 21.0210 (13) Å

  • c = 10.3974 (7) Å

  • β = 110.567 (1)°

  • V = 1832.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.920

  • 17203 measured reflections

  • 8239 independent reflections

  • 7357 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.02

  • 8239 reflections

  • 442 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.28 e Å−3

  • Δρmin = −1.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4006 Friedel pairs

  • Flack parameter: 0.37 (3)

Table 1
Selected bond lengths (Å)

Sn1—Cl1 2.4504 (17)
Sn1—Cl2 2.5225 (16)
Sn1—O1 2.004 (5)
Sn1—N1 2.266 (6)
Sn1—N3 2.198 (6)
Sn1—C4 2.169 (7)
Sn2—Cl3 2.456 (2)
Sn2—Cl4 2.5116 (18)
Sn2—O2 2.017 (5)
Sn2—N4 2.248 (6)
Sn2—N6 2.212 (7)
Sn2—C21 2.142 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯Cl4 0.86 (3) 2.47 (4) 3.283 (7) 159 (7)
N5—H5n⋯Cl2 0.86 (3) 2.48 (5) 3.235 (7) 147 (7)
C15—H15⋯Cl2i 0.95 2.79 3.538 (9) 137
C17—H17⋯Cl1ii 0.95 2.80 3.540 (9) 135
C34—H34⋯Cl3iii 0.95 2.75 3.534 (9) 141
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was examined in connection with synthetic studies of organotin(IV) compounds with pyruvic acid-2-pyridylhydrazone ligands (Affan et al., 2009), studies motivated by their putative biological activity (Gielen & Tiekink, 2005).

Two independent molecules comprise the asymmetric unit of (I), Figs 1 and 2. The Sn atom in each is coordinated by the tridentate ligand via the phenoxide-O, hydrazine-N and pyridyl-N atoms to form five- and six-membered chelate rings, Table 1. For the Sn1 atom, distortions of these rings from planarity [r.m.s. deviation from the five- and six-membered rings = 0.083 and 0.216 Å, respectively] are greater than the equivalent rings involving the Sn2 atom [r.m.s. = 0.042 and 0.109 Å, respectively]. The dihedral angle formed between the chelate rings = 8.9 (3) ° for Sn1, and 7.4 (3) ° for Sn2. Overall, the tridentate ligand deviates further from co-planarity for the Sn1 atom compared to the Sn2 atom as seen in the respective dihedral angles formed between the pyridyl and benzene rings of 23.3 (4) and 17.3 (4) °. The coordination geometry is completed by two chlorido atoms and the alpha-C atom of the n-butyl group. The chlorido atoms occupy mutually trans positions and the butyl-C atom is trans to the hydrazine-N atom. The resulting CCl2N2O donor set defines an approximate octahedron. A further difference between the independent molecules is found in the conformation of the n-butyl groups. This is reflected in the C1—C2—C3—C4 and C2—C3—C4—Sn1 torsion angles of 177.2 (5) and -71.1 (6) °, respectively, compared to the C18—C19—C20—C21 and C19—C20—C21—Sn2 angles of -64.4 (11) and -72.9 (9) °, respectively.

As noted in Table 1, there are disparities in the Sn—Cl bond distances. This is directly related to the participation of the Cl2 and Cl4 atoms in N—H···Cl hydrogen bonding interactions, Table2, which connect the molecules comprising the asymmetric unit into dimeric aggregates. The latter are sustained in the crystal packing by C—H···Cl contacts, Fig. 3 and Table 2.

Related literature top

For background to related organotin compounds, see: Affan et al. (2009). For background to the varied biological activities of organotin compounds, see: Gielen & Tiekink (2005). For additional structure analysis, see: Spek (2009).

Experimental top

2-Hydroxyacetophenone 2-pyridylhydrazone (0.45 g, 0.002 mol) was dissolved in hot absolute methanol (20 ml) in a Schlenk round bottom flask under an nitrogen atmosphere. Potassium hydroxide (0.11 g, 0.002 mol) dissolved in methanol (5 ml) was added drop wise to the solution, resulting in a colour change from yellow to orange. The resulting mixture was refluxed for 1 h and a solution of n-BuSnCl3 (0.56 g, 0.002 mol) in methanol (10 ml) was added drop wise to the refluxed solution. The resulting mixture was refluxed for 5 h and allowed to cool to room temperature. The precipitated KCl was removed via filtration. Then the filtrate was evaporated to dryness by using a rotary evaporator to obtain orange microcrystals. The orange microcrystals were filtered off, washed with cold methanol and dried overnight over P2O5 in vacuo. Single crystals of (I) were obtained by slow evaporation of its methanol solution at room temperature. Yield: 0.67 g, 60%. M.pt. 538–540 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). The maximum and minimum residual electron density peaks of 2.28 and 1.21 e Å-3, respectively, were located 1.16 Å and 0.76 Å from the Sn2 and Cl3 atoms, respectively. The structure was refined as an inversion twin. The use of this twin law gave the minor twin component as 37 (3)%.

Structure description top

The title compound was examined in connection with synthetic studies of organotin(IV) compounds with pyruvic acid-2-pyridylhydrazone ligands (Affan et al., 2009), studies motivated by their putative biological activity (Gielen & Tiekink, 2005).

Two independent molecules comprise the asymmetric unit of (I), Figs 1 and 2. The Sn atom in each is coordinated by the tridentate ligand via the phenoxide-O, hydrazine-N and pyridyl-N atoms to form five- and six-membered chelate rings, Table 1. For the Sn1 atom, distortions of these rings from planarity [r.m.s. deviation from the five- and six-membered rings = 0.083 and 0.216 Å, respectively] are greater than the equivalent rings involving the Sn2 atom [r.m.s. = 0.042 and 0.109 Å, respectively]. The dihedral angle formed between the chelate rings = 8.9 (3) ° for Sn1, and 7.4 (3) ° for Sn2. Overall, the tridentate ligand deviates further from co-planarity for the Sn1 atom compared to the Sn2 atom as seen in the respective dihedral angles formed between the pyridyl and benzene rings of 23.3 (4) and 17.3 (4) °. The coordination geometry is completed by two chlorido atoms and the alpha-C atom of the n-butyl group. The chlorido atoms occupy mutually trans positions and the butyl-C atom is trans to the hydrazine-N atom. The resulting CCl2N2O donor set defines an approximate octahedron. A further difference between the independent molecules is found in the conformation of the n-butyl groups. This is reflected in the C1—C2—C3—C4 and C2—C3—C4—Sn1 torsion angles of 177.2 (5) and -71.1 (6) °, respectively, compared to the C18—C19—C20—C21 and C19—C20—C21—Sn2 angles of -64.4 (11) and -72.9 (9) °, respectively.

As noted in Table 1, there are disparities in the Sn—Cl bond distances. This is directly related to the participation of the Cl2 and Cl4 atoms in N—H···Cl hydrogen bonding interactions, Table2, which connect the molecules comprising the asymmetric unit into dimeric aggregates. The latter are sustained in the crystal packing by C—H···Cl contacts, Fig. 3 and Table 2.

For background to related organotin compounds, see: Affan et al. (2009). For background to the varied biological activities of organotin compounds, see: Gielen & Tiekink (2005). For additional structure analysis, see: Spek (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the a axis in (I). The N–H···Cl hydrogen bonding and C–H···Cl contacts are shown as blue and orange dashed lines, respectively.
n-Butyldichlorido(2-{(1E)-1-[2-(pyridin-2-yl)hydrazin-1- ylidene]ethyl}phenolato)tin(IV) top
Crystal data top
[Sn(C4H9)(C13H12N3O)Cl2]F(000) = 944
Mr = 472.96Dx = 1.714 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 6860 reflections
a = 8.9566 (6) Åθ = 2.3–28.2°
b = 21.0210 (13) ŵ = 1.70 mm1
c = 10.3974 (7) ÅT = 100 K
β = 110.567 (1)°Prism, orange
V = 1832.8 (2) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
8239 independent reflections
Radiation source: fine-focus sealed tube7357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.677, Tmax = 0.920k = 2627
17203 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0471P)2 + 7.3356P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8239 reflectionsΔρmax = 2.28 e Å3
442 parametersΔρmin = 1.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 4006 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.37 (3)
Crystal data top
[Sn(C4H9)(C13H12N3O)Cl2]V = 1832.8 (2) Å3
Mr = 472.96Z = 4
Monoclinic, PcMo Kα radiation
a = 8.9566 (6) ŵ = 1.70 mm1
b = 21.0210 (13) ÅT = 100 K
c = 10.3974 (7) Å0.25 × 0.15 × 0.05 mm
β = 110.567 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7357 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.920Rint = 0.032
17203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 2.28 e Å3
S = 1.02Δρmin = 1.21 e Å3
8239 reflectionsAbsolute structure: Flack (1983), 4006 Friedel pairs
442 parametersAbsolute structure parameter: 0.37 (3)
4 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.49996 (4)0.90443 (2)0.50000 (3)0.01474 (11)
Sn20.43258 (4)0.59873 (2)0.81542 (4)0.01729 (12)
Cl10.2560 (2)0.92741 (8)0.30505 (18)0.0234 (4)
Cl20.71385 (18)0.85448 (8)0.70222 (17)0.0170 (3)
Cl30.6382 (3)0.59138 (10)1.0451 (2)0.0429 (6)
Cl40.2538 (2)0.63490 (9)0.58185 (19)0.0263 (4)
O10.6157 (6)0.8917 (2)0.3683 (5)0.0195 (10)
O20.2612 (7)0.6248 (3)0.8890 (6)0.0351 (14)
N10.4371 (7)0.8008 (3)0.4495 (7)0.0174 (13)
N20.3150 (8)0.7796 (3)0.4922 (7)0.0182 (13)
H2N0.289 (9)0.7402 (11)0.492 (8)0.022*
N30.3350 (8)0.8773 (3)0.6049 (6)0.0177 (13)
N40.5039 (7)0.7016 (3)0.8490 (7)0.0159 (12)
N50.6249 (8)0.7180 (3)0.7999 (7)0.0172 (13)
H5N0.607 (9)0.7568 (12)0.773 (7)0.021*
N60.6218 (8)0.6147 (3)0.7280 (8)0.0233 (14)
C10.9471 (7)1.0332 (3)0.4834 (6)0.0184 (13)
H1A1.05411.01450.51850.028*
H1B0.95451.07920.49930.028*
H1C0.89861.02470.38470.028*
C20.8449 (7)1.0038 (3)0.5573 (6)0.0138 (11)
H2A0.89471.01210.65710.017*
H2B0.84030.95720.54330.017*
C30.6756 (7)1.0307 (3)0.5055 (6)0.0146 (12)
H3A0.68131.07710.52330.018*
H3B0.62941.02450.40480.018*
C40.5633 (8)1.0012 (3)0.5702 (7)0.0170 (14)
H4A0.46521.02730.54650.020*
H4B0.61531.00140.67140.020*
C50.6916 (9)0.8399 (3)0.3502 (7)0.0185 (15)
C60.8343 (9)0.8498 (4)0.3249 (7)0.0221 (15)
H60.87450.89180.32750.027*
C70.9166 (9)0.7998 (4)0.2965 (7)0.0244 (15)
H71.01350.80770.28130.029*
C80.8605 (9)0.7386 (4)0.2896 (8)0.0272 (17)
H80.91740.70450.26840.033*
C90.7194 (9)0.7269 (3)0.3140 (7)0.0222 (15)
H90.68010.68470.30910.027*
C100.6336 (8)0.7781 (3)0.3465 (7)0.0150 (14)
C110.4906 (9)0.7603 (3)0.3786 (7)0.0164 (15)
C120.4144 (10)0.6970 (3)0.3391 (8)0.0225 (16)
H12A0.29830.70150.30950.034*
H12B0.45170.66820.41810.034*
H12C0.44310.67950.26350.034*
C130.2705 (9)0.8186 (4)0.5790 (8)0.0165 (14)
C140.1616 (10)0.7971 (4)0.6375 (8)0.0248 (17)
H140.12270.75470.62340.030*
C150.1121 (9)0.8383 (4)0.7152 (8)0.0252 (17)
H150.03280.82540.75090.030*
C160.1784 (10)0.9006 (4)0.7434 (9)0.0259 (18)
H160.14780.92930.80030.031*
C170.2872 (9)0.9172 (4)0.6856 (8)0.0224 (16)
H170.33200.95870.70240.027*
C180.0622 (13)0.4490 (6)0.7565 (13)0.069 (3)
H18A0.05020.45770.74160.103*
H18B0.12860.46370.84820.103*
H18C0.07720.40310.74920.103*
C190.1096 (11)0.4834 (4)0.6495 (10)0.045 (2)
H19A0.09310.52960.65740.054*
H19B0.03840.46970.55730.054*
C200.2852 (11)0.4721 (4)0.6612 (9)0.042 (2)
H20A0.30350.42590.65620.050*
H20B0.30380.49270.58250.050*
C210.4014 (9)0.4978 (3)0.7918 (9)0.0265 (18)
H21A0.50680.47890.80430.032*
H21B0.36930.48210.86800.032*
C220.2329 (10)0.6778 (4)0.9437 (8)0.0244 (17)
C230.0932 (10)0.6776 (4)0.9770 (8)0.0301 (18)
H230.02940.64030.96010.036*
C240.0472 (10)0.7291 (5)1.0322 (8)0.0325 (19)
H240.04890.72791.05150.039*
C250.1403 (11)0.7833 (4)1.0605 (8)0.0345 (19)
H250.10900.81901.10120.041*
C260.2780 (10)0.7861 (4)1.0302 (7)0.0266 (17)
H260.34000.82391.05030.032*
C270.3303 (9)0.7333 (3)0.9691 (8)0.0188 (15)
C280.4673 (10)0.7429 (4)0.9257 (7)0.0200 (16)
C290.5648 (9)0.8019 (3)0.9702 (8)0.0230 (16)
H29A0.67650.79250.98350.034*
H29B0.55720.81711.05680.034*
H29C0.52480.83480.89960.034*
C300.6775 (9)0.6730 (3)0.7290 (8)0.0186 (15)
C310.7888 (9)0.6884 (3)0.6693 (8)0.0174 (14)
H310.83110.73020.67530.021*
C320.8356 (9)0.6406 (4)0.6005 (8)0.0236 (16)
H320.90980.64960.55650.028*
C330.7758 (10)0.5798 (4)0.5953 (10)0.0321 (19)
H330.80930.54670.54930.039*
C340.6673 (9)0.5683 (4)0.6575 (9)0.0251 (17)
H340.62240.52690.65170.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0153 (2)0.0133 (2)0.0172 (2)0.00001 (19)0.00764 (19)0.00070 (19)
Sn20.0182 (2)0.0132 (2)0.0207 (2)0.00161 (19)0.0071 (2)0.00055 (19)
Cl10.0231 (8)0.0194 (8)0.0223 (8)0.0007 (6)0.0014 (7)0.0046 (6)
Cl20.0148 (7)0.0153 (7)0.0211 (7)0.0007 (6)0.0065 (6)0.0025 (6)
Cl30.0488 (13)0.0265 (10)0.0326 (11)0.0111 (9)0.0119 (9)0.0101 (8)
Cl40.0220 (8)0.0242 (9)0.0278 (9)0.0064 (7)0.0026 (7)0.0074 (7)
O10.026 (3)0.013 (2)0.023 (2)0.0013 (19)0.014 (2)0.0039 (18)
O20.038 (3)0.024 (3)0.056 (4)0.016 (3)0.033 (3)0.022 (3)
N10.012 (3)0.023 (3)0.020 (3)0.002 (2)0.009 (2)0.001 (2)
N20.016 (3)0.021 (3)0.021 (3)0.006 (2)0.011 (2)0.003 (2)
N30.020 (3)0.020 (3)0.018 (3)0.004 (2)0.012 (2)0.003 (2)
N40.013 (3)0.010 (3)0.024 (3)0.001 (2)0.005 (2)0.000 (2)
N50.017 (3)0.013 (3)0.024 (3)0.003 (2)0.009 (3)0.002 (2)
N60.012 (3)0.022 (3)0.033 (4)0.002 (2)0.003 (3)0.004 (3)
C10.012 (3)0.024 (3)0.019 (3)0.007 (2)0.006 (2)0.004 (3)
C20.017 (3)0.014 (3)0.011 (3)0.004 (2)0.005 (2)0.002 (2)
C30.014 (3)0.010 (3)0.019 (3)0.000 (2)0.004 (2)0.005 (2)
C40.015 (3)0.016 (3)0.018 (3)0.001 (3)0.004 (3)0.004 (3)
C50.020 (3)0.019 (3)0.016 (3)0.004 (3)0.005 (3)0.000 (3)
C60.016 (3)0.033 (4)0.019 (3)0.001 (3)0.008 (3)0.001 (3)
C70.019 (3)0.038 (4)0.017 (3)0.004 (3)0.008 (3)0.001 (3)
C80.023 (4)0.037 (5)0.029 (4)0.006 (3)0.017 (3)0.003 (3)
C90.030 (4)0.016 (3)0.024 (4)0.005 (3)0.014 (3)0.001 (3)
C100.014 (3)0.019 (3)0.013 (3)0.003 (3)0.005 (3)0.005 (2)
C110.023 (4)0.012 (3)0.014 (3)0.000 (3)0.006 (3)0.000 (3)
C120.029 (4)0.019 (3)0.019 (3)0.002 (3)0.007 (3)0.001 (3)
C130.010 (3)0.023 (4)0.014 (3)0.001 (3)0.002 (3)0.002 (3)
C140.024 (4)0.026 (4)0.024 (4)0.004 (3)0.009 (3)0.008 (3)
C150.017 (3)0.034 (4)0.026 (4)0.004 (3)0.009 (3)0.008 (3)
C160.021 (4)0.035 (5)0.024 (4)0.006 (3)0.012 (3)0.001 (3)
C170.020 (4)0.026 (4)0.019 (3)0.002 (3)0.004 (3)0.004 (3)
C180.044 (6)0.076 (8)0.069 (7)0.009 (6)0.002 (5)0.031 (6)
C190.042 (5)0.025 (4)0.055 (5)0.002 (4)0.000 (4)0.005 (4)
C200.045 (5)0.030 (4)0.043 (5)0.000 (4)0.006 (4)0.001 (4)
C210.024 (4)0.014 (3)0.043 (5)0.003 (3)0.015 (4)0.012 (3)
C220.027 (4)0.028 (4)0.019 (3)0.002 (3)0.010 (3)0.009 (3)
C230.026 (4)0.047 (5)0.017 (3)0.006 (4)0.008 (3)0.006 (3)
C240.030 (5)0.045 (5)0.023 (4)0.014 (4)0.009 (3)0.003 (4)
C250.041 (5)0.039 (5)0.031 (4)0.016 (4)0.023 (4)0.009 (3)
C260.035 (4)0.028 (4)0.021 (4)0.012 (3)0.014 (3)0.000 (3)
C270.019 (4)0.017 (3)0.019 (3)0.001 (3)0.005 (3)0.005 (3)
C280.026 (4)0.020 (4)0.011 (3)0.001 (3)0.003 (3)0.001 (3)
C290.030 (4)0.015 (3)0.024 (4)0.005 (3)0.009 (3)0.003 (3)
C300.019 (4)0.016 (3)0.018 (3)0.002 (3)0.003 (3)0.003 (3)
C310.014 (3)0.009 (3)0.027 (4)0.001 (2)0.005 (3)0.004 (3)
C320.015 (3)0.033 (4)0.026 (4)0.001 (3)0.011 (3)0.000 (3)
C330.016 (4)0.037 (5)0.040 (5)0.007 (3)0.005 (3)0.010 (4)
C340.019 (4)0.020 (4)0.041 (5)0.002 (3)0.016 (3)0.005 (3)
Geometric parameters (Å, º) top
Sn1—Cl12.4504 (17)C10—C111.481 (10)
Sn1—Cl22.5225 (16)C11—C121.486 (10)
Sn1—O12.004 (5)C12—H12A0.9800
Sn1—N12.266 (6)C12—H12B0.9800
Sn1—N32.198 (6)C12—H12C0.9800
Sn1—C42.169 (7)C13—C141.394 (10)
Sn2—Cl32.456 (2)C14—C151.359 (11)
Sn2—Cl42.5116 (18)C14—H140.9500
Sn2—O22.017 (5)C15—C161.426 (11)
Sn2—N42.248 (6)C15—H150.9500
Sn2—N62.212 (7)C16—C171.358 (11)
Sn2—C212.142 (7)C16—H160.9500
O1—C51.332 (9)C17—H170.9500
O2—C221.314 (9)C18—C191.508 (15)
N1—C111.321 (9)C18—H18A0.9800
N1—N21.390 (8)C18—H18B0.9800
N2—C131.378 (10)C18—H18C0.9800
N2—H2n0.86 (3)C19—C201.553 (13)
N3—C131.349 (10)C19—H19A0.9900
N3—C171.358 (10)C19—H19B0.9900
N4—C281.295 (10)C20—C211.492 (11)
N4—N51.394 (8)C20—H20A0.9900
N5—C301.381 (10)C20—H20B0.9900
N5—H5n0.86 (3)C21—H21A0.9900
N6—C301.321 (10)C21—H21B0.9900
N6—C341.366 (10)C22—C231.410 (11)
C1—C21.517 (8)C22—C271.426 (11)
C1—H1A0.9800C23—C241.356 (11)
C1—H1B0.9800C23—H230.9500
C1—H1C0.9800C24—C251.382 (13)
C2—C31.529 (8)C24—H240.9500
C2—H2A0.9900C25—C261.378 (11)
C2—H2B0.9900C25—H250.9500
C3—C41.524 (9)C26—C271.437 (10)
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C27—C281.462 (11)
C4—H4A0.9900C28—C291.494 (10)
C4—H4B0.9900C29—H29A0.9800
C5—C101.394 (10)C29—H29B0.9800
C5—C61.408 (10)C29—H29C0.9800
C6—C71.373 (10)C30—C311.385 (11)
C6—H60.9500C31—C321.381 (10)
C7—C81.374 (11)C31—H310.9500
C7—H70.9500C32—C331.379 (12)
C8—C91.396 (10)C32—H320.9500
C8—H80.9500C33—C341.366 (12)
C9—C101.430 (9)C33—H330.9500
C9—H90.9500C34—H340.9500
O1—Sn1—C4102.6 (2)C9—C10—C11116.3 (6)
O1—Sn1—N3154.6 (2)N1—C11—C10118.4 (6)
C4—Sn1—N3102.6 (2)N1—C11—C12120.7 (7)
O1—Sn1—N181.9 (2)C10—C11—C12120.9 (6)
C4—Sn1—N1174.0 (2)C11—C12—H12A109.5
N3—Sn1—N173.1 (2)C11—C12—H12B109.5
O1—Sn1—Cl189.21 (15)H12A—C12—H12B109.5
C4—Sn1—Cl198.35 (19)C11—C12—H12C109.5
N3—Sn1—Cl184.38 (18)H12A—C12—H12C109.5
N1—Sn1—Cl185.49 (17)H12B—C12—H12C109.5
O1—Sn1—Cl295.17 (15)N3—C13—N2118.2 (6)
C4—Sn1—Cl294.46 (19)N3—C13—C14121.6 (7)
N3—Sn1—Cl285.67 (17)N2—C13—C14120.1 (7)
N1—Sn1—Cl281.18 (17)C15—C14—C13118.6 (7)
Cl1—Sn1—Cl2165.23 (6)C15—C14—H14120.7
O2—Sn2—C21103.1 (3)C13—C14—H14120.7
O2—Sn2—N6155.4 (2)C14—C15—C16120.5 (7)
C21—Sn2—N6101.0 (3)C14—C15—H15119.7
O2—Sn2—N483.8 (2)C16—C15—H15119.7
C21—Sn2—N4171.6 (3)C17—C16—C15117.1 (7)
N6—Sn2—N472.6 (2)C17—C16—H16121.4
O2—Sn2—Cl393.4 (2)C15—C16—H16121.4
C21—Sn2—Cl394.1 (2)C16—C17—N3123.1 (8)
N6—Sn2—Cl389.3 (2)C16—C17—H17118.5
N4—Sn2—Cl380.46 (17)N3—C17—H17118.5
O2—Sn2—Cl488.4 (2)C19—C18—H18A109.5
C21—Sn2—Cl4100.1 (2)C19—C18—H18B109.5
N6—Sn2—Cl482.92 (19)H18A—C18—H18B109.5
N4—Sn2—Cl484.77 (17)C19—C18—H18C109.5
Cl3—Sn2—Cl4164.83 (6)H18A—C18—H18C109.5
C5—O1—Sn1128.2 (4)H18B—C18—H18C109.5
C22—O2—Sn2133.1 (5)C18—C19—C20114.1 (8)
C11—N1—N2116.9 (6)C18—C19—H19A108.7
C11—N1—Sn1129.7 (5)C20—C19—H19A108.7
N2—N1—Sn1113.2 (4)C18—C19—H19B108.7
C13—N2—N1117.4 (6)C20—C19—H19B108.7
C13—N2—H2N115 (5)H19A—C19—H19B107.6
N1—N2—H2N124 (5)C21—C20—C19112.3 (8)
C13—N3—C17118.9 (6)C21—C20—H20A109.2
C13—N3—Sn1117.0 (5)C19—C20—H20A109.2
C17—N3—Sn1124.0 (5)C21—C20—H20B109.2
C28—N4—N5117.2 (6)C19—C20—H20B109.2
C28—N4—Sn2128.3 (5)H20A—C20—H20B107.9
N5—N4—Sn2113.3 (4)C20—C21—Sn2119.0 (6)
C30—N5—N4118.8 (6)C20—C21—H21A107.6
C30—N5—H5N123 (5)Sn2—C21—H21A107.6
N4—N5—H5N106 (5)C20—C21—H21B107.6
C30—N6—C34118.9 (7)Sn2—C21—H21B107.6
C30—N6—Sn2118.7 (5)H21A—C21—H21B107.0
C34—N6—Sn2121.8 (5)O2—C22—C23115.3 (7)
C2—C1—H1A109.5O2—C22—C27125.1 (7)
C2—C1—H1B109.5C23—C22—C27119.6 (7)
H1A—C1—H1B109.5C24—C23—C22122.0 (8)
C2—C1—H1C109.5C24—C23—H23119.0
H1A—C1—H1C109.5C22—C23—H23119.0
H1B—C1—H1C109.5C23—C24—C25119.9 (8)
C1—C2—C3111.8 (5)C23—C24—H24120.0
C1—C2—H2A109.2C25—C24—H24120.0
C3—C2—H2A109.2C24—C25—C26120.5 (8)
C1—C2—H2B109.2C24—C25—H25119.8
C3—C2—H2B109.2C26—C25—H25119.7
H2A—C2—H2B107.9C25—C26—C27121.8 (8)
C4—C3—C2114.9 (5)C25—C26—H26119.1
C4—C3—H3A108.5C27—C26—H26119.1
C2—C3—H3A108.5C22—C27—C26116.2 (7)
C4—C3—H3B108.5C22—C27—C28125.5 (7)
C2—C3—H3B108.5C26—C27—C28118.0 (7)
H3A—C3—H3B107.5N4—C28—C27121.3 (7)
C3—C4—Sn1111.6 (4)N4—C28—C29120.0 (7)
C3—C4—H4A109.3C27—C28—C29118.7 (6)
Sn1—C4—H4A109.3C28—C29—H29A109.5
C3—C4—H4B109.3C28—C29—H29B109.5
Sn1—C4—H4B109.3H29A—C29—H29B109.5
H4A—C4—H4B108.0C28—C29—H29C109.5
O1—C5—C10124.1 (6)H29A—C29—H29C109.5
O1—C5—C6116.7 (6)H29B—C29—H29C109.5
C10—C5—C6119.1 (7)N6—C30—N5116.2 (7)
C7—C6—C5121.3 (7)N6—C30—C31122.9 (7)
C7—C6—H6119.4N5—C30—C31120.9 (7)
C5—C6—H6119.4C32—C31—C30117.3 (7)
C6—C7—C8120.9 (7)C32—C31—H31121.4
C6—C7—H7119.6C30—C31—H31121.4
C8—C7—H7119.6C33—C32—C31120.7 (7)
C7—C8—C9119.5 (7)C33—C32—H32119.6
C7—C8—H8120.2C31—C32—H32119.6
C9—C8—H8120.2C34—C33—C32118.5 (8)
C8—C9—C10120.5 (7)C34—C33—H33120.8
C8—C9—H9119.8C32—C33—H33120.8
C10—C9—H9119.8N6—C34—C33121.5 (8)
C5—C10—C9118.8 (7)N6—C34—H34119.2
C5—C10—C11124.9 (6)C33—C34—H34119.2
C4—Sn1—O1—C5140.7 (6)C6—C5—C10—C11176.4 (7)
N3—Sn1—O1—C545.8 (9)C8—C9—C10—C51.4 (11)
N1—Sn1—O1—C535.4 (6)C8—C9—C10—C11176.5 (7)
Cl1—Sn1—O1—C5120.9 (6)N2—N1—C11—C10172.5 (6)
Cl2—Sn1—O1—C544.9 (6)Sn1—N1—C11—C1013.2 (10)
C21—Sn2—O2—C22167.9 (8)N2—N1—C11—C124.1 (10)
N6—Sn2—O2—C2222.9 (12)Sn1—N1—C11—C12170.3 (5)
N4—Sn2—O2—C227.1 (8)C5—C10—C11—N118.9 (11)
Cl3—Sn2—O2—C2272.9 (8)C9—C10—C11—N1158.9 (7)
Cl4—Sn2—O2—C2292.0 (8)C5—C10—C11—C12164.6 (7)
O1—Sn1—N1—C118.3 (6)C9—C10—C11—C1217.6 (10)
N3—Sn1—N1—C11176.4 (7)C17—N3—C13—N2177.3 (7)
Cl1—Sn1—N1—C1198.1 (7)Sn1—N3—C13—N21.5 (9)
Cl2—Sn1—N1—C1188.3 (7)C17—N3—C13—C142.7 (11)
O1—Sn1—N1—N2166.3 (5)Sn1—N3—C13—C14178.4 (6)
Cl1—Sn1—N1—N276.4 (5)N1—N2—C13—N37.2 (10)
Cl2—Sn1—N1—N297.2 (5)N1—N2—C13—C14172.9 (7)
C11—N1—N2—C13172.9 (7)N3—C13—C14—C154.3 (12)
Sn1—N1—N2—C1311.8 (8)N2—C13—C14—C15175.6 (7)
C4—Sn1—N3—C13178.6 (5)C13—C14—C15—C164.1 (12)
N1—Sn1—N3—C135.7 (5)C14—C15—C16—C172.3 (12)
Cl1—Sn1—N3—C1381.3 (5)C15—C16—C17—N30.6 (12)
Cl2—Sn1—N3—C1387.8 (5)C13—N3—C17—C160.8 (11)
O1—Sn1—N3—C17170.4 (5)Sn1—N3—C17—C16176.3 (6)
C4—Sn1—N3—C173.1 (6)C18—C19—C20—C2164.4 (11)
N1—Sn1—N3—C17178.8 (6)C19—C20—C21—Sn272.9 (9)
Cl1—Sn1—N3—C1794.3 (6)O2—Sn2—C21—C2086.9 (7)
Cl2—Sn1—N3—C1796.7 (6)N6—Sn2—C21—C2088.5 (7)
O2—Sn2—N4—C2818.6 (7)Cl3—Sn2—C21—C20178.7 (6)
N6—Sn2—N4—C28168.2 (7)Cl4—Sn2—C21—C203.9 (7)
Cl3—Sn2—N4—C2875.9 (7)Sn2—O2—C22—C23177.2 (6)
Cl4—Sn2—N4—C28107.6 (7)Sn2—O2—C22—C272.2 (13)
O2—Sn2—N4—N5174.0 (5)O2—C22—C23—C24179.1 (8)
N6—Sn2—N4—N50.8 (5)C27—C22—C23—C240.4 (12)
Cl3—Sn2—N4—N591.5 (5)C22—C23—C24—C251.5 (13)
Cl4—Sn2—N4—N585.0 (5)C23—C24—C25—C261.4 (12)
C28—N4—N5—C30173.8 (7)C24—C25—C26—C270.2 (12)
Sn2—N4—N5—C304.9 (8)O2—C22—C27—C26179.8 (7)
O2—Sn2—N6—C3013.0 (11)C23—C22—C27—C260.8 (11)
C21—Sn2—N6—C30177.8 (6)O2—C22—C27—C286.9 (13)
N4—Sn2—N6—C303.5 (6)C23—C22—C27—C28172.5 (8)
Cl3—Sn2—N6—C3083.7 (6)C25—C26—C27—C220.9 (11)
Cl4—Sn2—N6—C3083.2 (6)C25—C26—C27—C28173.0 (7)
O2—Sn2—N6—C34158.4 (6)N5—N4—C28—C27172.9 (7)
C21—Sn2—N6—C3410.9 (7)Sn2—N4—C28—C2720.1 (11)
N4—Sn2—N6—C34174.8 (7)N5—N4—C28—C296.5 (10)
Cl3—Sn2—N6—C34105.0 (6)Sn2—N4—C28—C29160.5 (5)
Cl4—Sn2—N6—C3488.1 (6)C22—C27—C28—N45.4 (12)
C1—C2—C3—C4177.2 (5)C26—C27—C28—N4167.8 (7)
C2—C3—C4—Sn171.1 (6)C22—C27—C28—C29175.2 (7)
O1—Sn1—C4—C31.2 (5)C26—C27—C28—C2911.5 (11)
N3—Sn1—C4—C3178.3 (4)C34—N6—C30—N5178.9 (7)
Cl1—Sn1—C4—C392.2 (4)Sn2—N6—C30—N57.3 (9)
Cl2—Sn1—C4—C395.1 (4)C34—N6—C30—C314.4 (12)
Sn1—O1—C5—C1042.3 (10)Sn2—N6—C30—C31175.9 (6)
Sn1—O1—C5—C6141.8 (5)N4—N5—C30—N68.1 (10)
O1—C5—C6—C7176.0 (6)N4—N5—C30—C31175.1 (7)
C10—C5—C6—C70.1 (11)N6—C30—C31—C323.2 (12)
C5—C6—C7—C81.1 (11)N5—C30—C31—C32179.8 (7)
C6—C7—C8—C91.0 (12)C30—C31—C32—C331.5 (12)
C7—C8—C9—C100.2 (11)C31—C32—C33—C341.1 (13)
O1—C5—C10—C9174.5 (7)C30—N6—C34—C333.9 (12)
C6—C5—C10—C91.3 (10)Sn2—N6—C34—C33175.2 (6)
O1—C5—C10—C117.8 (11)C32—C33—C34—N62.2 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···Cl40.86 (3)2.47 (4)3.283 (7)159 (7)
N5—H5n···Cl20.86 (3)2.48 (5)3.235 (7)147 (7)
C15—H15···Cl2i0.952.793.538 (9)137
C17—H17···Cl1ii0.952.803.540 (9)135
C34—H34···Cl3iii0.952.753.534 (9)141
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)(C13H12N3O)Cl2]
Mr472.96
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)8.9566 (6), 21.0210 (13), 10.3974 (7)
β (°) 110.567 (1)
V3)1832.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.677, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
17203, 8239, 7357
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.02
No. of reflections8239
No. of parameters442
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.28, 1.21
Absolute structureFlack (1983), 4006 Friedel pairs
Absolute structure parameter0.37 (3)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—Cl12.4504 (17)Sn2—Cl32.456 (2)
Sn1—Cl22.5225 (16)Sn2—Cl42.5116 (18)
Sn1—O12.004 (5)Sn2—O22.017 (5)
Sn1—N12.266 (6)Sn2—N42.248 (6)
Sn1—N32.198 (6)Sn2—N62.212 (7)
Sn1—C42.169 (7)Sn2—C212.142 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···Cl40.86 (3)2.47 (4)3.283 (7)159 (7)
N5—H5n···Cl20.86 (3)2.48 (5)3.235 (7)147 (7)
C15—H15···Cl2i0.952.793.538 (9)137
C17—H17···Cl1ii0.952.803.540 (9)135
C34—H34···Cl3iii0.952.753.534 (9)141
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1/2; (iii) x, y+1, z1/2.
 

Footnotes

Additional correspondence author, e-mail: maaffan@frst.unimas.my.

Acknowledgements

The authors express their gratitude to the Ministry of Science, Technology and Innovation (MOSTI) for a research grant (No. 06–01-09-SF0046), and to Universiti Malaysia Sarawak (UNIMAS) for financial support. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAffan, M. A., Foo, I. P. P., Fasihuddin, B. A. & Hapipah, M. A. (2009). Ind. J. Chem. Sect. A, 48, 1388–1393.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds