organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(3,4-Dimeth­­oxy­benzyl­­idene)-5,6-dimeth­­oxy-2,3-di­hydro-1H-inden-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 October 2010; accepted 15 October 2010; online 20 October 2010)

In the title compound, C20H20O5, the 2,3-dihydro-1H-indene ring system is essentially planar [maximum deviation = 0.010 (1) Å] and is inclined at an angle of 4.09 (4)° with respect to the phenyl ring. The C=C bond has an E configuration. In the crystal, the mol­ecules are linked into chains propagating in [102] via inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For general background to and the biological activity of chalcones, see: Nielsen et al. (1998[Nielsen, S. B., Christensen, S. F., Cruciani, G. & Kharazmi, A. (1998). J. Med. Chem. 41, 4819-4832]); Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Furusawa et al. (2005[Furusawa, M., Tanaka, T., Ito, T., Nishikawa, A., Yamazaki, N., Nakaya, K., Matsuura, N., Tsuchiya, H., Nagayama, M. & Iinuma, M. (2005). J. Health Sci. 51, 376-378.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O5

  • Mr = 340.36

  • Monoclinic, P 21 /c

  • a = 7.7991 (7) Å

  • b = 7.2595 (6) Å

  • c = 29.589 (2) Å

  • β = 101.977 (3)°

  • V = 1638.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.53 × 0.45 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.992

  • 19303 measured reflections

  • 5535 independent reflections

  • 4471 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.04

  • 5535 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the cetroid of C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O4i 0.96 2.34 3.0939 (13) 135
C1—H1ACg1ii 0.97 2.64 3.4804 (11) 146
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are a chemical class that has shown promising therapeutic efficacy for the management of several diseases. Many papers have been presented in the literature with references to structural modifications of the chalcone template (Nielsen et al., 1998). In fact, not many other structural templates can claim association with such a diverse range of pharmacological activities, among which cytotoxicity, antitumour, anti-inflammatory, antiplasmodial, immunosuppression and antioxidant, are widely cited (Go et al., 2005). They considered as the precursor of flavonoids and isoflavonoids. Chemically they consisted of open chain flavonoid by a three carbon α, β-unsaturated carbonyl system (Nowakowska, 2007). In fact, the pharmacological properties of chalcones are due to the presence of both α, β-unsaturation (Furusawa et al., 2005) and an aromatic ring.

In the title molecule (Fig. 1), the 2,3-dihydro-1H-indene (C1-C9) ring system is essentially planar (maximum deviation = 0.010 (1) Å for atom C7) and is inclined at an angle of 4.09 (4) ° with the phenyl ring (C11-C16), which indicates they are almost parallel to each other. The crystal structure determination shows the E configuration of the C9C10 and confirms that the molecule adopts an overall planar conformation, with the exception of the methyl moieties. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the solid state (Fig. 2), the molecules are linked into one-dimensional chains along [102] via intermolecular C18–H18A···O4 hydrogen bonds (Table 1). The crystal structure are further consolidated by C–H···π (Table 1) interactions.

Related literature top

For general background to and the biological activity of chalcones, see: Nielsen et al. (1998); Go et al. (2005); Nowakowska (2007); Furusawa et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 5,6-dimethoxy-2,3-dihydro-1H-indene-1-one (0.001 mmol) and 3,4-dimethoxy benzaldehyde (0.001 mmol) were dissolved in methanol (10 mL) and 30% sodium hydroxide solution (5 mL) was added and stirred for 5 h. After completion of the reaction as evident from TLC (thin layer chromatography), the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallised from ethanol to reveal yellow plates of (I).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.69 Å from C6 and the deepest hole is located at 1.13 Å from C7.

Structure description top

Chalcones are a chemical class that has shown promising therapeutic efficacy for the management of several diseases. Many papers have been presented in the literature with references to structural modifications of the chalcone template (Nielsen et al., 1998). In fact, not many other structural templates can claim association with such a diverse range of pharmacological activities, among which cytotoxicity, antitumour, anti-inflammatory, antiplasmodial, immunosuppression and antioxidant, are widely cited (Go et al., 2005). They considered as the precursor of flavonoids and isoflavonoids. Chemically they consisted of open chain flavonoid by a three carbon α, β-unsaturated carbonyl system (Nowakowska, 2007). In fact, the pharmacological properties of chalcones are due to the presence of both α, β-unsaturation (Furusawa et al., 2005) and an aromatic ring.

In the title molecule (Fig. 1), the 2,3-dihydro-1H-indene (C1-C9) ring system is essentially planar (maximum deviation = 0.010 (1) Å for atom C7) and is inclined at an angle of 4.09 (4) ° with the phenyl ring (C11-C16), which indicates they are almost parallel to each other. The crystal structure determination shows the E configuration of the C9C10 and confirms that the molecule adopts an overall planar conformation, with the exception of the methyl moieties. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the solid state (Fig. 2), the molecules are linked into one-dimensional chains along [102] via intermolecular C18–H18A···O4 hydrogen bonds (Table 1). The crystal structure are further consolidated by C–H···π (Table 1) interactions.

For general background to and the biological activity of chalcones, see: Nielsen et al. (1998); Go et al. (2005); Nowakowska (2007); Furusawa et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-2-(3,4-Dimethoxybenzylidene)-5,6-dimethoxy-2,3-dihydro-1H- inden-1-one top
Crystal data top
C20H20O5F(000) = 720
Mr = 340.36Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6986 reflections
a = 7.7991 (7) Åθ = 2.7–31.7°
b = 7.2595 (6) ŵ = 0.10 mm1
c = 29.589 (2) ÅT = 100 K
β = 101.977 (3)°Plate, yellow
V = 1638.8 (2) Å30.53 × 0.45 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 31.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.950, Tmax = 0.992k = 1010
19303 measured reflectionsl = 4143
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.002
230 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H20O5V = 1638.8 (2) Å3
Mr = 340.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7991 (7) ŵ = 0.10 mm1
b = 7.2595 (6) ÅT = 100 K
c = 29.589 (2) Å0.53 × 0.45 × 0.09 mm
β = 101.977 (3)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4471 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.992Rint = 0.027
19303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
5535 reflectionsΔρmin = 0.21 e Å3
230 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.13991 (11)0.89751 (10)1.10930 (2)0.02109 (16)
O21.10936 (10)0.63257 (10)1.16292 (2)0.02089 (16)
O30.67192 (11)0.17121 (11)1.04585 (3)0.02565 (18)
O40.20749 (12)0.09725 (11)0.79852 (3)0.02789 (19)
O50.29534 (11)0.38568 (11)0.75804 (2)0.02474 (18)
C10.73939 (12)0.57231 (13)0.97826 (3)0.01539 (17)
H1A0.81440.56950.95590.018*
H1B0.65120.66720.96950.018*
C20.84490 (12)0.60464 (13)1.02641 (3)0.01469 (17)
C30.94756 (13)0.75715 (13)1.04280 (3)0.01598 (18)
H3A0.95710.85571.02340.019*
C41.03547 (13)0.75888 (13)1.08879 (3)0.01591 (18)
C51.01914 (13)0.60926 (13)1.11875 (3)0.01583 (18)
C60.91645 (13)0.45957 (13)1.10221 (3)0.01591 (17)
H6A0.90450.36131.12150.019*
C70.83024 (12)0.45901 (13)1.05551 (3)0.01495 (17)
C80.71294 (12)0.31778 (13)1.03029 (3)0.01670 (18)
C90.65574 (12)0.38678 (13)0.98188 (3)0.01564 (18)
C100.54838 (12)0.28635 (13)0.94942 (3)0.01632 (18)
H10A0.50900.17640.95980.020*
C110.48499 (12)0.32517 (13)0.90031 (3)0.01607 (18)
C120.37662 (13)0.19248 (13)0.87386 (3)0.01689 (18)
H12A0.34640.08660.88810.020*
C130.31431 (14)0.21748 (14)0.82688 (3)0.01865 (19)
C140.36029 (13)0.37598 (14)0.80457 (3)0.01844 (19)
C150.46461 (14)0.50818 (14)0.83057 (3)0.0205 (2)
H15A0.49420.61430.81630.025*
C160.52578 (14)0.48376 (14)0.87797 (3)0.0202 (2)
H16A0.59480.57460.89500.024*
C171.16649 (16)1.04933 (14)1.08102 (4)0.0240 (2)
H17A1.24471.13621.09910.036*
H17B1.05621.10801.06890.036*
H17C1.21651.00611.05590.036*
C181.10498 (16)0.48297 (16)1.19368 (3)0.0249 (2)
H18A1.18190.50851.22280.037*
H18B1.14250.37251.18080.037*
H18C0.98760.46691.19830.037*
C190.14395 (17)0.05676 (16)0.81966 (4)0.0273 (2)
H19A0.06670.12760.79660.041*
H19B0.08130.01470.84240.041*
H19C0.24080.13220.83430.041*
C200.34068 (19)0.54410 (17)0.73445 (4)0.0317 (3)
H20A0.28630.53620.70230.048*
H20B0.46560.54960.73770.048*
H20C0.30060.65300.74750.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (4)0.0158 (3)0.0161 (3)0.0051 (3)0.0005 (3)0.0003 (2)
O20.0289 (4)0.0214 (3)0.0106 (3)0.0031 (3)0.0002 (3)0.0017 (2)
O30.0300 (4)0.0223 (4)0.0217 (3)0.0077 (3)0.0016 (3)0.0067 (3)
O40.0412 (5)0.0264 (4)0.0150 (3)0.0166 (3)0.0035 (3)0.0035 (3)
O50.0322 (4)0.0277 (4)0.0128 (3)0.0068 (3)0.0013 (3)0.0024 (3)
C10.0150 (4)0.0183 (4)0.0122 (3)0.0007 (3)0.0014 (3)0.0022 (3)
C20.0135 (4)0.0174 (4)0.0133 (4)0.0013 (3)0.0030 (3)0.0009 (3)
C30.0189 (4)0.0156 (4)0.0132 (4)0.0000 (3)0.0029 (3)0.0019 (3)
C40.0183 (4)0.0147 (4)0.0144 (4)0.0004 (3)0.0026 (3)0.0006 (3)
C50.0181 (4)0.0177 (4)0.0114 (3)0.0018 (3)0.0022 (3)0.0005 (3)
C60.0172 (4)0.0168 (4)0.0136 (4)0.0004 (3)0.0029 (3)0.0022 (3)
C70.0143 (4)0.0166 (4)0.0136 (4)0.0002 (3)0.0021 (3)0.0016 (3)
C80.0147 (4)0.0189 (4)0.0158 (4)0.0005 (3)0.0017 (3)0.0018 (3)
C90.0146 (4)0.0179 (4)0.0139 (4)0.0001 (3)0.0018 (3)0.0016 (3)
C100.0152 (4)0.0181 (4)0.0153 (4)0.0006 (3)0.0025 (3)0.0009 (3)
C110.0149 (4)0.0183 (4)0.0149 (4)0.0005 (3)0.0027 (3)0.0006 (3)
C120.0196 (4)0.0171 (4)0.0146 (4)0.0019 (3)0.0049 (3)0.0007 (3)
C130.0219 (5)0.0188 (4)0.0155 (4)0.0041 (4)0.0045 (3)0.0035 (3)
C140.0198 (4)0.0216 (4)0.0135 (4)0.0005 (4)0.0026 (3)0.0002 (3)
C150.0224 (5)0.0203 (4)0.0176 (4)0.0035 (4)0.0016 (4)0.0031 (3)
C160.0211 (4)0.0205 (4)0.0174 (4)0.0057 (4)0.0001 (3)0.0005 (3)
C170.0334 (6)0.0151 (4)0.0219 (4)0.0044 (4)0.0020 (4)0.0017 (3)
C180.0312 (5)0.0270 (5)0.0147 (4)0.0029 (4)0.0009 (4)0.0066 (4)
C190.0366 (6)0.0237 (5)0.0228 (5)0.0125 (5)0.0091 (4)0.0038 (4)
C200.0415 (7)0.0325 (6)0.0191 (5)0.0071 (5)0.0013 (5)0.0088 (4)
Geometric parameters (Å, º) top
O1—C41.3562 (11)C10—C111.4618 (12)
O1—C171.4247 (12)C10—H10A0.9300
O2—C51.3601 (11)C11—C161.3968 (14)
O2—C181.4220 (12)C11—C121.4072 (13)
O3—C81.2279 (12)C12—C131.3862 (13)
O4—C131.3674 (12)C12—H12A0.9300
O4—C191.4197 (13)C13—C141.4094 (14)
O5—C141.3667 (11)C14—C151.3839 (14)
O5—C201.4273 (14)C15—C161.3958 (13)
C1—C21.5084 (12)C15—H15A0.9300
C1—C91.5100 (14)C16—H16A0.9300
C1—H1A0.9700C17—H17A0.9600
C1—H1B0.9700C17—H17B0.9600
C2—C71.3832 (13)C17—H17C0.9600
C2—C31.3932 (13)C18—H18A0.9600
C3—C41.3909 (12)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.4244 (13)C19—H19A0.9600
C5—C61.3781 (13)C19—H19B0.9600
C6—C71.4057 (12)C19—H19C0.9600
C6—H6A0.9300C20—H20A0.9600
C7—C81.4703 (13)C20—H20B0.9600
C8—C91.4955 (12)C20—H20C0.9600
C9—C101.3497 (13)
C4—O1—C17117.28 (7)C13—C12—C11120.88 (9)
C5—O2—C18116.34 (8)C13—C12—H12A119.6
C13—O4—C19117.15 (8)C11—C12—H12A119.6
C14—O5—C20117.16 (8)O4—C13—C12125.03 (9)
C2—C1—C9103.34 (7)O4—C13—C14114.56 (8)
C2—C1—H1A111.1C12—C13—C14120.41 (9)
C9—C1—H1A111.1O5—C14—C15125.21 (9)
C2—C1—H1B111.1O5—C14—C13115.89 (9)
C9—C1—H1B111.1C15—C14—C13118.89 (9)
H1A—C1—H1B109.1C14—C15—C16120.63 (9)
C7—C2—C3120.42 (8)C14—C15—H15A119.7
C7—C2—C1111.71 (8)C16—C15—H15A119.7
C3—C2—C1127.88 (8)C15—C16—C11121.08 (9)
C4—C3—C2118.61 (8)C15—C16—H16A119.5
C4—C3—H3A120.7C11—C16—H16A119.5
C2—C3—H3A120.7O1—C17—H17A109.5
O1—C4—C3124.94 (8)O1—C17—H17B109.5
O1—C4—C5114.23 (8)H17A—C17—H17B109.5
C3—C4—C5120.82 (8)O1—C17—H17C109.5
O2—C5—C6125.87 (9)H17A—C17—H17C109.5
O2—C5—C4114.07 (8)H17B—C17—H17C109.5
C6—C5—C4120.05 (8)O2—C18—H18A109.5
C5—C6—C7118.39 (9)O2—C18—H18B109.5
C5—C6—H6A120.8H18A—C18—H18B109.5
C7—C6—H6A120.8O2—C18—H18C109.5
C2—C7—C6121.70 (9)H18A—C18—H18C109.5
C2—C7—C8109.88 (8)H18B—C18—H18C109.5
C6—C7—C8128.41 (9)O4—C19—H19A109.5
O3—C8—C7126.65 (8)O4—C19—H19B109.5
O3—C8—C9126.89 (9)H19A—C19—H19B109.5
C7—C8—C9106.45 (8)O4—C19—H19C109.5
C10—C9—C8121.23 (9)H19A—C19—H19C109.5
C10—C9—C1130.15 (8)H19B—C19—H19C109.5
C8—C9—C1108.62 (7)O5—C20—H20A109.5
C9—C10—C11129.43 (9)O5—C20—H20B109.5
C9—C10—H10A115.3H20A—C20—H20B109.5
C11—C10—H10A115.3O5—C20—H20C109.5
C16—C11—C12118.07 (8)H20A—C20—H20C109.5
C16—C11—C10124.47 (8)H20B—C20—H20C109.5
C12—C11—C10117.45 (9)
C9—C1—C2—C70.61 (11)C7—C8—C9—C10178.86 (9)
C9—C1—C2—C3179.23 (10)O3—C8—C9—C1179.52 (10)
C7—C2—C3—C40.46 (15)C7—C8—C9—C10.30 (11)
C1—C2—C3—C4179.72 (9)C2—C1—C9—C10179.22 (10)
C17—O1—C4—C32.52 (15)C2—C1—C9—C80.16 (10)
C17—O1—C4—C5178.15 (9)C8—C9—C10—C11176.82 (10)
C2—C3—C4—O1179.82 (9)C1—C9—C10—C112.15 (18)
C2—C3—C4—C50.89 (15)C9—C10—C11—C161.16 (17)
C18—O2—C5—C64.19 (15)C9—C10—C11—C12178.32 (10)
C18—O2—C5—C4176.80 (9)C16—C11—C12—C130.89 (15)
O1—C4—C5—O20.83 (13)C10—C11—C12—C13178.62 (9)
C3—C4—C5—O2178.53 (9)C19—O4—C13—C125.66 (17)
O1—C4—C5—C6179.91 (9)C19—O4—C13—C14174.51 (10)
C3—C4—C5—C60.55 (15)C11—C12—C13—O4179.43 (10)
O2—C5—C6—C7179.19 (9)C11—C12—C13—C140.74 (16)
C4—C5—C6—C70.23 (15)C20—O5—C14—C150.73 (16)
C3—C2—C7—C60.33 (15)C20—O5—C14—C13179.60 (10)
C1—C2—C7—C6179.52 (9)O4—C13—C14—O51.25 (14)
C3—C2—C7—C8179.02 (9)C12—C13—C14—O5178.59 (10)
C1—C2—C7—C80.83 (11)O4—C13—C14—C15178.44 (10)
C5—C6—C7—C20.67 (15)C12—C13—C14—C151.72 (16)
C5—C6—C7—C8179.10 (10)O5—C14—C15—C16179.29 (10)
C2—C7—C8—O3179.92 (10)C13—C14—C15—C161.05 (16)
C6—C7—C8—O31.51 (18)C14—C15—C16—C110.60 (17)
C2—C7—C8—C90.70 (11)C12—C11—C16—C151.57 (16)
C6—C7—C8—C9179.27 (10)C10—C11—C16—C15177.91 (10)
O3—C8—C9—C100.35 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the cetroid of C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O4i0.962.343.0939 (13)135
C1—H1A···Cg1ii0.972.643.4804 (11)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC20H20O5
Mr340.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7991 (7), 7.2595 (6), 29.589 (2)
β (°) 101.977 (3)
V3)1638.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.45 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
19303, 5535, 4471
Rint0.027
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.04
No. of reflections5535
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the cetroid of C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O4i0.962.343.0939 (13)135
C1—H1A···Cg1ii0.972.643.4804 (11)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFurusawa, M., Tanaka, T., Ito, T., Nishikawa, A., Yamazaki, N., Nakaya, K., Matsuura, N., Tsuchiya, H., Nagayama, M. & Iinuma, M. (2005). J. Health Sci. 51, 376–378.  Web of Science CrossRef CAS Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationNielsen, S. B., Christensen, S. F., Cruciani, G. & Kharazmi, A. (1998). J. Med. Chem. 41, 4819–4832  Web of Science CrossRef CAS PubMed Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds