organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 1H-pyrazole-3,5-di­carboxyl­ate trihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 October 2010; accepted 15 October 2010; online 20 October 2010)

In the title compound, 2C6H9N2+·C5H2N2O42−·3H2O, the 1H-pyrazole-3,5-dicarboxyl­ate anion is close to planar [maximum deviation = 0.208 (1) Å]. The two distinct 2-amino-5-methyl­pyridinium cations are also almost planar, with maximum deviations of 0.018 (2) and 0.014 (2) Å. In the crystal, pairs of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect neighbouring mol­ecules into dimers, generating R22(8) and R24(8) ring motifs, respectively. Further inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see; Xia et al. (2007[Xia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H.-B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg Chem. 46, 3450-3458.]); King et al. (2004[King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans, pp. 852-861.]). For details and applications of pyrazole-3,5-dicarb­oxy­lic acid, see: Lee et al. (1989[Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.]); Chambers et al. (1985[Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.]); Pan et al. (2000[Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527-530.]); Pan, Ching et al. (2001[Pan, L., Ching, N., Huang, X. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.]); Pan, Frydel et al. (2001[Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem. 40, 1271-1276.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H9N2+·C5H2N2O42−·3H2O

  • Mr = 426.44

  • Triclinic, [P \overline 1]

  • a = 7.8985 (1) Å

  • b = 9.2195 (1) Å

  • c = 15.3922 (2) Å

  • α = 101.942 (1)°

  • β = 93.883 (1)°

  • γ = 104.648 (1)°

  • V = 1052.40 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.47 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.952, Tmax = 0.978

  • 26056 measured reflections

  • 6103 independent reflections

  • 5085 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.07

  • 6103 reflections

  • 325 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O4i 0.931 (16) 1.871 (16) 2.7912 (12) 169.7 (15)
N4A—H3NA⋯O1Wii 0.861 (18) 2.024 (17) 2.8520 (14) 161.2 (17)
N3B—H1NB⋯O3iii 0.900 (17) 1.755 (17) 2.6483 (12) 171.4 (16)
N4B—H2NB⋯O4iii 0.914 (18) 2.022 (18) 2.9323 (13) 173.8 (16)
N4B—H3NB⋯O3Wiv 0.889 (18) 2.007 (18) 2.8641 (13) 161.6 (17)
N3A—H1NA⋯O2iv 0.942 (18) 1.732 (18) 2.6686 (12) 172.8 (17)
N4A—H2NA⋯O1iv 0.907 (18) 2.106 (18) 3.0021 (13) 169.4 (15)
O1W—H1W1⋯O3 0.871 (19) 1.902 (19) 2.7517 (12) 164.8 (17)
O1W—H2W1⋯O3Wiv 0.85 (2) 1.94 (2) 2.7878 (14) 178 (2)
O2W—H1W2⋯O1 0.850 (18) 2.003 (18) 2.8427 (12) 169.8 (17)
O2W—H2W2⋯O1v 0.858 (18) 1.987 (18) 2.8434 (13) 176.1 (15)
O3W—H1W3⋯O2 0.888 (17) 1.844 (17) 2.7299 (12) 174.8 (15)
O3W—H2W3⋯O2Wvi 0.881 (18) 1.900 (18) 2.7758 (13) 172.1 (17)
C10—H10A⋯O2W 0.93 2.50 3.3986 (15) 164
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z; (iv) x, y-1, z; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). 3,5-Pyrazole dicarboxylic acid (H2PzDCA) is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan et al., 2000). A variety of H2PzDCA coordination compounds have been synthesized and reported in the literature (Pan, Ching et al., 2001; Pan, Frydel et al., 2001). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound, (Fig. 1), consists of two 2-amino-5-methylpyridinium cations, a 1H-pyrazole-3-5-dicarboxylate anion and three water molecules. The 1H-pyrazole-3,5-dicarboxylate anion and 2-amino-5-methylpyridinium cations are approximately planar with a maximum deviations of 0.208 (1) Å at atom O2 and 0.018 (2) Å at atoms N4A, C11A and 0.014 (2) Å at atom N4B. The torsion angles (O2/C2/C1/N1), (C1–C3/O1), (C3–C5/O3) and (N2/C4/C5/04) are 8.81 (15), 10.46 (16), 4.89 (15) and 4.60 (16)°, respectively. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Xia et al., 2007; King et al., 2004).

In the crystal packing (Fig. 2), intermolecular N2—H1N2···O4, N4A—H3NA···O1W, N3B—H1NB···O3, N4B—H2NB···O4, N4B—H3NB···O3W, N3A—H1NA···O2, N4A—H2NA···O1, O1W—H1W1···O3, O1W—H2W1···O3W, O2W—H1W2···O1, O2W—H2W2···O1, O3W—H1W3···O2, O3W—H2W3···O2W and C10—H10A···O2W hydrogen bonds (Table 1) link the molecules into three-dimensional network. Within this network, pairs of intermolecular N3B—H1NB···O3, N4A—H2NA···O1 and O1—H1W2···O2W, O2W—H1W2···O1 hydrogen bonds connect neighbouring molecules to form dimers, generating R22(8) and R24(8) (Bernstein et al., 1995) ring motifs, respectively.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see; Xia et al. (2007); King et al. (2004). For details and applications of pyrazole-3,5-dicarboxylic acid, see: Lee et al. (1989); Chambers et al. (1985); Pan et al. (2000); Pan, Ching et al. (2001); Pan, Frydel et al. (2001).

Experimental top

A hot methanol/water solution (10/10 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and pyrazole-3,5-dicarboxylic acid (78 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless blocks of (I) appeared after a few days.

Refinement top

The hydrogen atoms bound to O atoms were located in a difference map and constrained to ride with their parent atoms, with Uiso(H) = 1.5Uiso(O) [O—H = 0.85 (2)–0.889 (18) Å]. The hydrogen atoms bound to N atoms were located in a difference map and were refined freely [N—H = 0.863 (18)–0.943 (18) Å]. All other H atoms to C were positioned geometrically [range of C—H = 0.93–0.96 Å] with Uiso(H) = 1.2 or 1.5Uiso(C).

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). 3,5-Pyrazole dicarboxylic acid (H2PzDCA) is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan et al., 2000). A variety of H2PzDCA coordination compounds have been synthesized and reported in the literature (Pan, Ching et al., 2001; Pan, Frydel et al., 2001). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound, (Fig. 1), consists of two 2-amino-5-methylpyridinium cations, a 1H-pyrazole-3-5-dicarboxylate anion and three water molecules. The 1H-pyrazole-3,5-dicarboxylate anion and 2-amino-5-methylpyridinium cations are approximately planar with a maximum deviations of 0.208 (1) Å at atom O2 and 0.018 (2) Å at atoms N4A, C11A and 0.014 (2) Å at atom N4B. The torsion angles (O2/C2/C1/N1), (C1–C3/O1), (C3–C5/O3) and (N2/C4/C5/04) are 8.81 (15), 10.46 (16), 4.89 (15) and 4.60 (16)°, respectively. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Xia et al., 2007; King et al., 2004).

In the crystal packing (Fig. 2), intermolecular N2—H1N2···O4, N4A—H3NA···O1W, N3B—H1NB···O3, N4B—H2NB···O4, N4B—H3NB···O3W, N3A—H1NA···O2, N4A—H2NA···O1, O1W—H1W1···O3, O1W—H2W1···O3W, O2W—H1W2···O1, O2W—H2W2···O1, O3W—H1W3···O2, O3W—H2W3···O2W and C10—H10A···O2W hydrogen bonds (Table 1) link the molecules into three-dimensional network. Within this network, pairs of intermolecular N3B—H1NB···O3, N4A—H2NA···O1 and O1—H1W2···O2W, O2W—H1W2···O1 hydrogen bonds connect neighbouring molecules to form dimers, generating R22(8) and R24(8) (Bernstein et al., 1995) ring motifs, respectively.

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see; Xia et al. (2007); King et al. (2004). For details and applications of pyrazole-3,5-dicarboxylic acid, see: Lee et al. (1989); Chambers et al. (1985); Pan et al. (2000); Pan, Ching et al. (2001); Pan, Frydel et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along b axis. Intermolecular hydrogen bonds linked the molecules into three-dimensional network.
2-Amino-5-methylpyridinium 1H-pyrazole-3,5-dicarboxylate trihydrate top
Crystal data top
2C6H9N2+·C5H2N2O42·3H2OZ = 2
Mr = 426.44F(000) = 452
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8985 (1) ÅCell parameters from 9892 reflections
b = 9.2195 (1) Åθ = 2.4–35.1°
c = 15.3922 (2) ŵ = 0.11 mm1
α = 101.942 (1)°T = 100 K
β = 93.883 (1)°Block, colourless
γ = 104.648 (1)°0.47 × 0.24 × 0.21 mm
V = 1052.40 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6103 independent reflections
Radiation source: fine-focus sealed tube5085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.952, Tmax = 0.978k = 1212
26056 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2775P]
where P = (Fo2 + 2Fc2)/3
6103 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C6H9N2+·C5H2N2O42·3H2Oγ = 104.648 (1)°
Mr = 426.44V = 1052.40 (2) Å3
Triclinic, P1Z = 2
a = 7.8985 (1) ÅMo Kα radiation
b = 9.2195 (1) ŵ = 0.11 mm1
c = 15.3922 (2) ÅT = 100 K
α = 101.942 (1)°0.47 × 0.24 × 0.21 mm
β = 93.883 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6103 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5085 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.978Rint = 0.026
26056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
6103 reflectionsΔρmin = 0.24 e Å3
325 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68720 (11)0.64094 (9)0.43780 (5)0.02004 (16)
O20.63845 (11)0.84955 (9)0.40067 (5)0.02212 (17)
O30.70719 (11)0.24170 (9)0.10667 (5)0.02152 (17)
O40.58424 (10)0.33899 (9)0.00540 (5)0.01827 (16)
N10.56503 (12)0.68973 (10)0.21937 (6)0.01756 (18)
N20.56444 (12)0.58634 (10)0.14333 (6)0.01631 (17)
C10.65092 (14)0.71292 (12)0.38074 (7)0.01627 (19)
C20.62433 (13)0.63055 (11)0.28462 (6)0.01510 (19)
C30.66147 (13)0.49037 (11)0.24972 (6)0.01555 (19)
H3A0.70320.42790.28120.019*
C40.62226 (13)0.46589 (11)0.15823 (6)0.01420 (18)
C50.63753 (13)0.33966 (11)0.08394 (6)0.01463 (18)
N3A0.80196 (12)0.03401 (11)0.55694 (6)0.01923 (18)
N4A0.90801 (14)0.15177 (12)0.60538 (7)0.0248 (2)
C6A0.89063 (14)0.00860 (13)0.62071 (7)0.0192 (2)
C7A0.96163 (15)0.10318 (14)0.70158 (7)0.0226 (2)
H7AA1.02350.07860.74750.027*
C8A0.93848 (15)0.24717 (14)0.71159 (8)0.0239 (2)
H8AA0.98380.31930.76530.029*
C9A0.84776 (15)0.29051 (13)0.64303 (8)0.0224 (2)
C100.78076 (15)0.17873 (13)0.56658 (7)0.0212 (2)
H10A0.71920.20170.51990.025*
C11A0.82578 (18)0.45015 (14)0.65337 (10)0.0324 (3)
H11A0.77790.46140.59690.049*
H11B0.93840.52450.67290.049*
H11C0.74700.46650.69690.049*
N3B0.26714 (12)0.00202 (10)0.01212 (6)0.01689 (17)
N4B0.37262 (14)0.08155 (12)0.13095 (7)0.02199 (19)
C6B0.30472 (14)0.02005 (12)0.10101 (7)0.01719 (19)
C7B0.26600 (15)0.14651 (13)0.15793 (7)0.0213 (2)
H7BA0.29090.16420.21970.026*
C8B0.19158 (15)0.24211 (12)0.12087 (8)0.0214 (2)
H8BA0.16500.32400.15850.026*
C9B0.15376 (14)0.22026 (12)0.02713 (8)0.0197 (2)
C10B0.19410 (14)0.09771 (12)0.02480 (7)0.0184 (2)
H10B0.17120.07910.08680.022*
C11B0.07429 (16)0.32759 (14)0.01255 (9)0.0264 (2)
H11D0.05640.29360.07660.040*
H11E0.15260.42990.00460.040*
H11F0.03690.32780.00900.040*
O3W0.52828 (12)1.04505 (10)0.31330 (5)0.02258 (17)
O2W0.54335 (13)0.32242 (10)0.43022 (6)0.02698 (19)
O1W0.84767 (12)0.15951 (12)0.25161 (6)0.0291 (2)
H1N20.523 (2)0.6047 (18)0.0897 (11)0.027 (4)*
H3NA0.968 (2)0.176 (2)0.6462 (12)0.040 (5)*
H1NB0.286 (2)0.080 (2)0.0250 (11)0.033 (4)*
H2NB0.393 (2)0.162 (2)0.0913 (12)0.039 (4)*
H3NB0.409 (2)0.063 (2)0.1891 (12)0.038 (4)*
H1NA0.749 (2)0.037 (2)0.5028 (12)0.040 (4)*
H2NA0.853 (2)0.220 (2)0.5538 (12)0.039 (4)*
H1W10.820 (2)0.200 (2)0.2082 (13)0.045 (5)*
H2W10.751 (3)0.123 (2)0.2703 (14)0.053 (6)*
H1W20.591 (2)0.414 (2)0.4263 (12)0.043 (5)*
H2W20.470 (2)0.330 (2)0.4684 (13)0.044 (5)*
H1W30.558 (2)0.9771 (19)0.3403 (11)0.034 (4)*
H2W30.529 (2)1.128 (2)0.3540 (12)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (4)0.0177 (4)0.0135 (3)0.0084 (3)0.0007 (3)0.0032 (3)
O20.0349 (4)0.0168 (4)0.0150 (3)0.0118 (3)0.0016 (3)0.0001 (3)
O30.0337 (4)0.0199 (4)0.0145 (3)0.0152 (3)0.0010 (3)0.0026 (3)
O40.0249 (4)0.0174 (4)0.0129 (3)0.0083 (3)0.0006 (3)0.0022 (3)
N10.0240 (4)0.0158 (4)0.0130 (4)0.0078 (3)0.0007 (3)0.0013 (3)
N20.0224 (4)0.0151 (4)0.0120 (4)0.0080 (3)0.0004 (3)0.0014 (3)
C10.0186 (5)0.0164 (4)0.0130 (4)0.0051 (4)0.0010 (3)0.0015 (3)
C20.0181 (4)0.0143 (4)0.0124 (4)0.0047 (4)0.0010 (3)0.0020 (3)
C30.0188 (5)0.0148 (4)0.0135 (4)0.0055 (4)0.0011 (3)0.0034 (3)
C40.0157 (4)0.0129 (4)0.0138 (4)0.0046 (3)0.0010 (3)0.0022 (3)
C50.0167 (4)0.0140 (4)0.0128 (4)0.0039 (3)0.0020 (3)0.0027 (3)
N3A0.0224 (4)0.0195 (4)0.0143 (4)0.0057 (3)0.0004 (3)0.0016 (3)
N4A0.0293 (5)0.0217 (5)0.0213 (5)0.0068 (4)0.0069 (4)0.0037 (4)
C6A0.0182 (5)0.0214 (5)0.0164 (5)0.0025 (4)0.0006 (4)0.0047 (4)
C7A0.0210 (5)0.0264 (5)0.0158 (5)0.0009 (4)0.0030 (4)0.0037 (4)
C8A0.0203 (5)0.0256 (6)0.0189 (5)0.0002 (4)0.0002 (4)0.0015 (4)
C9A0.0206 (5)0.0207 (5)0.0228 (5)0.0042 (4)0.0021 (4)0.0002 (4)
C100.0223 (5)0.0212 (5)0.0199 (5)0.0074 (4)0.0008 (4)0.0033 (4)
C11A0.0317 (6)0.0207 (6)0.0391 (7)0.0074 (5)0.0022 (5)0.0039 (5)
N3B0.0194 (4)0.0146 (4)0.0160 (4)0.0062 (3)0.0015 (3)0.0005 (3)
N4B0.0294 (5)0.0216 (5)0.0152 (4)0.0108 (4)0.0015 (4)0.0013 (3)
C6B0.0168 (4)0.0158 (5)0.0168 (5)0.0028 (4)0.0016 (3)0.0012 (4)
C7B0.0238 (5)0.0187 (5)0.0184 (5)0.0050 (4)0.0034 (4)0.0009 (4)
C8B0.0209 (5)0.0152 (5)0.0260 (5)0.0047 (4)0.0065 (4)0.0009 (4)
C9B0.0168 (5)0.0154 (5)0.0272 (5)0.0046 (4)0.0049 (4)0.0049 (4)
C10B0.0184 (5)0.0174 (5)0.0194 (5)0.0048 (4)0.0021 (4)0.0048 (4)
C11B0.0260 (6)0.0207 (5)0.0370 (6)0.0100 (4)0.0063 (5)0.0112 (5)
O3W0.0336 (5)0.0189 (4)0.0159 (4)0.0100 (3)0.0003 (3)0.0032 (3)
O2W0.0402 (5)0.0185 (4)0.0252 (4)0.0108 (4)0.0132 (4)0.0052 (3)
O1W0.0251 (4)0.0407 (5)0.0259 (4)0.0095 (4)0.0003 (3)0.0182 (4)
Geometric parameters (Å, º) top
O1—C11.2637 (12)C11A—H11A0.9600
O2—C11.2640 (13)C11A—H11B0.9600
O3—C51.2637 (12)C11A—H11C0.9600
O4—C51.2511 (12)N3B—C6B1.3468 (13)
N1—N21.3467 (12)N3B—C10B1.3618 (13)
N1—C21.3483 (13)N3B—H1NB0.897 (17)
N2—C41.3572 (12)N4B—C6B1.3329 (14)
N2—H1N20.929 (16)N4B—H2NB0.910 (18)
C1—C21.4907 (14)N4B—H3NB0.890 (18)
C2—C31.4038 (14)C6B—C7B1.4193 (14)
C3—C41.3798 (13)C7B—C8B1.3683 (16)
C3—H3A0.9300C7B—H7BA0.9300
C4—C51.4884 (13)C8B—C9B1.4153 (16)
N3A—C6A1.3468 (14)C8B—H8BA0.9300
N3A—C101.3656 (14)C9B—C10B1.3638 (15)
N3A—H1NA0.943 (18)C9B—C11B1.5027 (15)
N4A—C6A1.3356 (15)C10B—H10B0.9300
N4A—H3NA0.863 (18)C11B—H11D0.9600
N4A—H2NA0.909 (18)C11B—H11E0.9600
C6A—C7A1.4171 (15)C11B—H11F0.9600
C7A—C8A1.3643 (17)O3W—H1W30.889 (18)
C7A—H7AA0.9300O3W—H2W30.879 (19)
C8A—C9A1.4155 (17)O2W—H1W20.85 (2)
C8A—H8AA0.9300O2W—H2W20.86 (2)
C9A—C101.3656 (15)O1W—H1W10.87 (2)
C9A—C11A1.5026 (17)O1W—H2W10.85 (2)
C10—H10A0.9300
N2—N1—C2104.08 (8)N3A—C10—H10A119.2
N1—N2—C4112.83 (8)C9A—C10—H10A119.2
N1—N2—H1N2117.6 (9)C9A—C11A—H11A109.5
C4—N2—H1N2129.5 (9)C9A—C11A—H11B109.5
O1—C1—O2123.84 (9)H11A—C11A—H11B109.5
O1—C1—C2117.16 (9)C9A—C11A—H11C109.5
O2—C1—C2119.00 (9)H11A—C11A—H11C109.5
N1—C2—C3111.76 (9)H11B—C11A—H11C109.5
N1—C2—C1121.73 (9)C6B—N3B—C10B123.39 (9)
C3—C2—C1126.47 (9)C6B—N3B—H1NB118.8 (11)
C4—C3—C2104.59 (9)C10B—N3B—H1NB117.7 (11)
C4—C3—H3A127.7C6B—N4B—H2NB119.7 (11)
C2—C3—H3A127.7C6B—N4B—H3NB118.8 (11)
N2—C4—C3106.73 (9)H2NB—N4B—H3NB121.1 (16)
N2—C4—C5122.30 (9)N4B—C6B—N3B119.07 (10)
C3—C4—C5130.96 (9)N4B—C6B—C7B123.59 (10)
O4—C5—O3125.34 (9)N3B—C6B—C7B117.33 (10)
O4—C5—C4118.90 (9)C8B—C7B—C6B119.29 (10)
O3—C5—C4115.76 (9)C8B—C7B—H7BA120.4
C6A—N3A—C10123.07 (10)C6B—C7B—H7BA120.4
C6A—N3A—H1NA120.5 (11)C7B—C8B—C9B122.07 (10)
C10—N3A—H1NA116.5 (11)C7B—C8B—H8BA119.0
C6A—N4A—H3NA118.1 (12)C9B—C8B—H8BA119.0
C6A—N4A—H2NA119.0 (11)C10B—C9B—C8B116.49 (10)
H3NA—N4A—H2NA122.8 (16)C10B—C9B—C11B122.09 (10)
N4A—C6A—N3A119.34 (10)C8B—C9B—C11B121.41 (10)
N4A—C6A—C7A123.26 (10)N3B—C10B—C9B121.42 (10)
N3A—C6A—C7A117.41 (10)N3B—C10B—H10B119.3
C8A—C7A—C6A119.48 (10)C9B—C10B—H10B119.3
C8A—C7A—H7AA120.3C9B—C11B—H11D109.5
C6A—C7A—H7AA120.3C9B—C11B—H11E109.5
C7A—C8A—C9A122.21 (10)H11D—C11B—H11E109.5
C7A—C8A—H8AA118.9C9B—C11B—H11F109.5
C9A—C8A—H8AA118.9H11D—C11B—H11F109.5
C10—C9A—C8A116.20 (10)H11E—C11B—H11F109.5
C10—C9A—C11A121.63 (11)H1W3—O3W—H2W3109.1 (15)
C8A—C9A—C11A122.17 (11)H1W2—O2W—H2W2105.7 (17)
N3A—C10—C9A121.62 (10)H1W1—O1W—H2W1105.7 (18)
C2—N1—N2—C40.55 (11)N4A—C6A—C7A—C8A179.69 (11)
N2—N1—C2—C30.16 (11)N3A—C6A—C7A—C8A0.19 (16)
N2—N1—C2—C1177.98 (9)C6A—C7A—C8A—C9A1.06 (17)
O1—C1—C2—N1172.05 (10)C7A—C8A—C9A—C101.43 (17)
O2—C1—C2—N18.81 (15)C7A—C8A—C9A—C11A178.63 (11)
O1—C1—C2—C310.46 (16)C6A—N3A—C10—C9A0.66 (17)
O2—C1—C2—C3168.68 (10)C8A—C9A—C10—N3A0.58 (16)
N1—C2—C3—C40.25 (12)C11A—C9A—C10—N3A179.48 (11)
C1—C2—C3—C4177.44 (10)C10B—N3B—C6B—N4B178.55 (10)
N1—N2—C4—C30.72 (12)C10B—N3B—C6B—C7B0.34 (15)
N1—N2—C4—C5178.32 (9)N4B—C6B—C7B—C8B178.10 (11)
C2—C3—C4—N20.56 (11)N3B—C6B—C7B—C8B0.74 (15)
C2—C3—C4—C5178.37 (10)C6B—C7B—C8B—C9B0.84 (17)
N2—C4—C5—O44.89 (15)C7B—C8B—C9B—C10B0.50 (16)
C3—C4—C5—O4176.33 (10)C7B—C8B—C9B—C11B179.15 (10)
N2—C4—C5—O3174.18 (9)C6B—N3B—C10B—C9B0.02 (16)
C3—C4—C5—O34.60 (16)C8B—C9B—C10B—N3B0.08 (15)
C10—N3A—C6A—N4A178.84 (10)C11B—C9B—C10B—N3B179.57 (10)
C10—N3A—C6A—C7A1.05 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O4i0.931 (16)1.871 (16)2.7912 (12)169.7 (15)
N4A—H3NA···O1Wii0.861 (18)2.024 (17)2.8520 (14)161.2 (17)
N3B—H1NB···O3iii0.900 (17)1.755 (17)2.6483 (12)171.4 (16)
N4B—H2NB···O4iii0.914 (18)2.022 (18)2.9323 (13)173.8 (16)
N4B—H3NB···O3Wiv0.889 (18)2.007 (18)2.8641 (13)161.6 (17)
N3A—H1NA···O2iv0.942 (18)1.732 (18)2.6686 (12)172.8 (17)
N4A—H2NA···O1iv0.907 (18)2.106 (18)3.0021 (13)169.4 (15)
O1W—H1W1···O30.871 (19)1.902 (19)2.7517 (12)164.8 (17)
O1W—H2W1···O3Wiv0.85 (2)1.94 (2)2.7878 (14)178 (2)
O2W—H1W2···O10.850 (18)2.003 (18)2.8427 (12)169.8 (17)
O2W—H2W2···O1v0.858 (18)1.987 (18)2.8434 (13)176.1 (15)
O3W—H1W3···O20.888 (17)1.844 (17)2.7299 (12)174.8 (15)
O3W—H2W3···O2Wvi0.881 (18)1.900 (18)2.7758 (13)172.1 (17)
C10—H10A···O2W0.932.503.3986 (15)164
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H9N2+·C5H2N2O42·3H2O
Mr426.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8985 (1), 9.2195 (1), 15.3922 (2)
α, β, γ (°)101.942 (1), 93.883 (1), 104.648 (1)
V3)1052.40 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.47 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
26056, 6103, 5085
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.07
No. of reflections6103
No. of parameters325
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O4i0.931 (16)1.871 (16)2.7912 (12)169.7 (15)
N4A—H3NA···O1Wii0.861 (18)2.024 (17)2.8520 (14)161.2 (17)
N3B—H1NB···O3iii0.900 (17)1.755 (17)2.6483 (12)171.4 (16)
N4B—H2NB···O4iii0.914 (18)2.022 (18)2.9323 (13)173.8 (16)
N4B—H3NB···O3Wiv0.889 (18)2.007 (18)2.8641 (13)161.6 (17)
N3A—H1NA···O2iv0.942 (18)1.732 (18)2.6686 (12)172.8 (17)
N4A—H2NA···O1iv0.907 (18)2.106 (18)3.0021 (13)169.4 (15)
O1W—H1W1···O30.871 (19)1.902 (19)2.7517 (12)164.8 (17)
O1W—H2W1···O3Wiv0.85 (2)1.94 (2)2.7878 (14)178 (2)
O2W—H1W2···O10.850 (18)2.003 (18)2.8427 (12)169.8 (17)
O2W—H2W2···O1v0.858 (18)1.987 (18)2.8434 (13)176.1 (15)
O3W—H1W3···O20.888 (17)1.844 (17)2.7299 (12)174.8 (15)
O3W—H2W3···O2Wvi0.881 (18)1.900 (18)2.7758 (13)172.1 (17)
C10—H10A···O2W0.932.503.3986 (15)164
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship and MH thanks USM for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationChambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736–4738.  CSD CrossRef CAS Web of Science Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationKing, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans, pp. 852–861.  Google Scholar
First citationLee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428–431.  CSD CrossRef CAS Web of Science Google Scholar
First citationPan, L., Ching, N., Huang, X. & Li, J. (2001). Chem. Eur. J. 7, 4431–4437.  CrossRef PubMed CAS Google Scholar
First citationPan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem. 40, 1271–1276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527–530.  CrossRef PubMed CAS Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H.-B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg Chem. 46, 3450–3458.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds