organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,4,5-Tetra­fluoro-3,6-di­iodo­benzene–2,3-bis­­(pyridin-2-yl)pyrazine (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 14 October 2010; accepted 15 October 2010; online 23 October 2010)

The components of the title 1:1 co-crystal, C14H10N4·C6F4I2, are connected via an N⋯I [2.959 (4) Å] halogen bond, in which the N atom is part of the relatively electron-rich pyrazine ring. The C6F4I2 mol­ecule is almost planar [r.m.s. deviation = 0.038 Å] but there are significant twists in the pyrazine derivative, as seen in the dihedral angles [31.3 (2) and 54.6 (2)°] formed between the pendant pyridyl rings and the central pyrazine ring. The bimolecular aggregates are sustained in the crystal by C—H⋯F and ππ inter­actions [ring centroid(pyrid­yl)–ring centroid(benzene) = 3.678 (3) Å].

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.]). For background to halogen bonding, see: Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]); Pennington et al. (2008[Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65-104.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4·C6F4I2

  • Mr = 636.04

  • Triclinic, [P \overline 1]

  • a = 6.3997 (15) Å

  • b = 10.737 (2) Å

  • c = 15.092 (4) Å

  • α = 74.237 (10)°

  • β = 85.877 (11)°

  • γ = 80.283 (12)°

  • V = 983.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 98 K

  • 0.40 × 0.13 × 0.07 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.504, Tmax = 1.000

  • 5074 measured reflections

  • 3775 independent reflections

  • 3550 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.09

  • 3775 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −1.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯F4 0.95 2.54 3.145 (6) 121
C9—H9⋯F4 0.95 2.46 3.100 (6) 125
C18—H18⋯F2i 0.95 2.52 3.341 (7) 144
Symmetry code: (i) x+1, y+1, z-1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title co-crystal was prepared during on-going studies investigating co-crystals with pyridine-type molecules (Broker & Tiekink, 2007; Broker et al., 2008) including halogen bonding (Arman et al., 2010). The co-crystallization experiment whereby equimolar amounts of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 2,3-bis(pyridin-2-yl)pyrazine were dissolved in methylene chloride resulted in the isolation of the title 1/1 co-crystal, (I).

The molecule of 1,2,4,5-tetrafluoro-3,6-diiodobenzene, Fig. 1, is flat with the r.m.s. deviation of the 12 constituent atoms being 0.038 Å [maximum deviation = 0.084 (1) Å for atom I2]. In the molecule of 2,3-bis(pyridin-2-yl)pyrazine, Fig. 2, the N3- and N4-pyridyl rings form dihedral angles of 31.3 (2) and 54.6 (2) ° with the pyrazine ring; the dihedral angle formed between the pyridyl rings = 60.2 (2) °.

The primary connection between the constituent molecules of (I) is a N2···I2 contact of 2.959 (4) Å, representing an halogen bond (Metrangolo et al., 2008; Pennington et al., 2008). Of note is the observation that the interaction involves a pyrazine-N rather than a pyridine-N, consistent with the N in the pyrazine ring being more electron rich. The molecules are stabilized in the crystal packing via a combination of C—H···F [the F4 atom is bifurcated], Table 1, and π···π interactions [ring centroid(N3,C11–C15)···ring centroid(C1–C6)i = 3.678 (3) Å for i: 1 - x, 1 - y, 1 - z], Fig. 3.

Related literature top

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010). For background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008).

Experimental top

Initially 1,2,4,5-tetrafluoro-3,6-diiodobenzene (Aldrich, 0.09 mmol) and 2,3-bis(pyridin-2-yl)pyrazine (Aldrich, 0.04 mmol) were dissolved in chloroform and after evaporation of the solvent, the powder was then dissolved in tetrahydrafuran (THF). Upon evaporation of THF, methylene chloride was added to the powder. Colourless prisms of (I) were formed after three days through slow evaporation of solvent, m. pt. 409–411 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.32 and 1.20 e Å-3, respectively, were located 0.62 Å and 0.86 Å from the H13 and I1 atoms, respectively.

Structure description top

The title co-crystal was prepared during on-going studies investigating co-crystals with pyridine-type molecules (Broker & Tiekink, 2007; Broker et al., 2008) including halogen bonding (Arman et al., 2010). The co-crystallization experiment whereby equimolar amounts of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 2,3-bis(pyridin-2-yl)pyrazine were dissolved in methylene chloride resulted in the isolation of the title 1/1 co-crystal, (I).

The molecule of 1,2,4,5-tetrafluoro-3,6-diiodobenzene, Fig. 1, is flat with the r.m.s. deviation of the 12 constituent atoms being 0.038 Å [maximum deviation = 0.084 (1) Å for atom I2]. In the molecule of 2,3-bis(pyridin-2-yl)pyrazine, Fig. 2, the N3- and N4-pyridyl rings form dihedral angles of 31.3 (2) and 54.6 (2) ° with the pyrazine ring; the dihedral angle formed between the pyridyl rings = 60.2 (2) °.

The primary connection between the constituent molecules of (I) is a N2···I2 contact of 2.959 (4) Å, representing an halogen bond (Metrangolo et al., 2008; Pennington et al., 2008). Of note is the observation that the interaction involves a pyrazine-N rather than a pyridine-N, consistent with the N in the pyrazine ring being more electron rich. The molecules are stabilized in the crystal packing via a combination of C—H···F [the F4 atom is bifurcated], Table 1, and π···π interactions [ring centroid(N3,C11–C15)···ring centroid(C1–C6)i = 3.678 (3) Å for i: 1 - x, 1 - y, 1 - z], Fig. 3.

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010). For background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1,2,4,5-tetrafluoro-3,6-diiodobenzene found in the structure of (I) showing displacement ellipsoids at the 50% probability level
[Figure 2] Fig. 2. Molecular structure of 2,3-bis(pyridin-2-yl)pyrazine found in the structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view in projection down the a axis showing the unit-cell contents. The N···I, C—H···F and π···π interactions are shown as blue, orange and purple dashed lines, respectively.
1,2,4,5-Tetrafluoro-3,6-diiodobenzene–2,3-bis(pyridin-2-yl)pyrazine (1/1) top
Crystal data top
C14H10N4·C6F4I2Z = 2
Mr = 636.04F(000) = 600
Triclinic, P1Dx = 2.148 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3997 (15) ÅCell parameters from 2870 reflections
b = 10.737 (2) Åθ = 2.8–40.2°
c = 15.092 (4) ŵ = 3.25 mm1
α = 74.237 (10)°T = 98 K
β = 85.877 (11)°Prism, colourless
γ = 80.283 (12)°0.40 × 0.13 × 0.07 mm
V = 983.3 (4) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3775 independent reflections
Radiation source: fine-focus sealed tube3550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.504, Tmax = 1.000k = 1313
5074 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0647P)2 + 2.2885P]
where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 1.20 e Å3
Crystal data top
C14H10N4·C6F4I2γ = 80.283 (12)°
Mr = 636.04V = 983.3 (4) Å3
Triclinic, P1Z = 2
a = 6.3997 (15) ÅMo Kα radiation
b = 10.737 (2) ŵ = 3.25 mm1
c = 15.092 (4) ÅT = 98 K
α = 74.237 (10)°0.40 × 0.13 × 0.07 mm
β = 85.877 (11)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3775 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3550 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 1.000Rint = 0.025
5074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.09Δρmax = 1.32 e Å3
3775 reflectionsΔρmin = 1.20 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.02819 (5)0.31600 (3)0.57773 (2)0.02562 (13)
I20.78603 (5)0.24672 (3)0.69360 (2)0.02055 (12)
F10.0119 (4)0.0318 (3)0.7123 (2)0.0253 (6)
F20.2992 (5)0.1842 (3)0.7543 (2)0.0243 (6)
F30.7961 (5)0.0349 (3)0.5483 (2)0.0237 (6)
F40.5096 (5)0.2523 (3)0.5082 (2)0.0235 (6)
C10.2526 (8)0.1487 (5)0.6091 (3)0.0187 (10)
C20.2048 (7)0.0342 (5)0.6718 (3)0.0183 (9)
C30.3548 (8)0.0770 (5)0.6931 (3)0.0185 (9)
C40.5573 (8)0.0806 (5)0.6541 (3)0.0184 (9)
C50.6036 (7)0.0330 (4)0.5907 (3)0.0168 (9)
C60.4545 (8)0.1452 (5)0.5692 (3)0.0168 (9)
N10.4973 (6)0.6357 (4)0.3011 (3)0.0207 (8)
N20.8530 (6)0.4641 (4)0.2683 (3)0.0193 (8)
N30.7532 (6)0.8733 (4)0.1407 (3)0.0208 (8)
N40.8477 (6)0.6513 (4)0.0459 (3)0.0191 (8)
C70.6336 (8)0.6725 (4)0.2310 (3)0.0181 (9)
C80.5401 (8)0.5140 (5)0.3545 (3)0.0214 (10)
H80.44400.48420.40360.026*
C90.7207 (8)0.4295 (4)0.3405 (3)0.0215 (10)
H90.75140.34570.38280.026*
C100.8064 (7)0.5845 (4)0.2107 (3)0.0178 (9)
C110.5864 (8)0.8134 (5)0.1779 (3)0.0205 (10)
C120.7097 (8)1.0002 (5)0.0970 (3)0.0213 (10)
H120.82551.04420.07090.026*
C130.5087 (8)1.0721 (5)0.0870 (3)0.0223 (10)
H130.48731.16240.05500.027*
C140.3393 (8)1.0090 (5)0.1249 (3)0.0226 (10)
H140.19851.05520.11920.027*
C150.3776 (8)0.8781 (5)0.1710 (3)0.0205 (10)
H150.26380.83270.19770.025*
C160.9470 (8)0.6132 (4)0.1261 (3)0.0189 (9)
C170.9704 (9)0.6689 (5)0.0306 (4)0.0244 (10)
H170.90380.69480.08840.029*
C181.1934 (8)0.6509 (5)0.0298 (4)0.0241 (10)
H181.27510.66540.08570.029*
C191.2907 (8)0.6117 (5)0.0544 (4)0.0242 (10)
H191.44090.59790.05730.029*
C201.1658 (7)0.5928 (4)0.1341 (3)0.0191 (10)
H201.22810.56650.19290.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0227 (2)0.0220 (2)0.0325 (2)0.00505 (13)0.00955 (14)0.01061 (15)
I20.02250 (19)0.01648 (18)0.02206 (19)0.00093 (12)0.00667 (13)0.00489 (13)
F10.0179 (14)0.0322 (16)0.0267 (16)0.0065 (12)0.0029 (12)0.0084 (13)
F20.0296 (15)0.0220 (14)0.0202 (15)0.0091 (12)0.0007 (12)0.0006 (12)
F30.0172 (13)0.0283 (16)0.0228 (15)0.0035 (12)0.0027 (11)0.0031 (12)
F40.0250 (15)0.0171 (14)0.0234 (15)0.0021 (11)0.0037 (12)0.0032 (11)
C10.017 (2)0.018 (2)0.021 (2)0.0012 (18)0.0094 (18)0.0060 (19)
C20.018 (2)0.021 (2)0.018 (2)0.0044 (18)0.0010 (18)0.0076 (18)
C30.025 (2)0.016 (2)0.015 (2)0.0054 (18)0.0046 (18)0.0036 (17)
C40.023 (2)0.016 (2)0.016 (2)0.0024 (18)0.0045 (18)0.0042 (18)
C50.017 (2)0.016 (2)0.015 (2)0.0020 (17)0.0042 (17)0.0019 (17)
C60.022 (2)0.015 (2)0.012 (2)0.0050 (18)0.0021 (18)0.0007 (17)
N10.0182 (19)0.0185 (19)0.024 (2)0.0023 (15)0.0028 (16)0.0035 (16)
N20.0173 (19)0.0190 (19)0.021 (2)0.0005 (15)0.0022 (16)0.0060 (16)
N30.022 (2)0.020 (2)0.022 (2)0.0056 (16)0.0040 (16)0.0063 (16)
N40.024 (2)0.0169 (19)0.017 (2)0.0011 (15)0.0036 (16)0.0062 (15)
C70.022 (2)0.016 (2)0.016 (2)0.0019 (18)0.0047 (18)0.0044 (18)
C80.023 (2)0.021 (2)0.019 (2)0.0053 (19)0.0006 (19)0.0020 (18)
C90.030 (3)0.012 (2)0.022 (2)0.0043 (19)0.004 (2)0.0030 (18)
C100.022 (2)0.015 (2)0.018 (2)0.0013 (17)0.0074 (18)0.0069 (17)
C110.026 (2)0.016 (2)0.020 (2)0.0035 (18)0.0012 (19)0.0052 (18)
C120.027 (2)0.020 (2)0.019 (2)0.0094 (19)0.0001 (19)0.0038 (18)
C130.033 (3)0.014 (2)0.020 (2)0.0060 (19)0.006 (2)0.0026 (18)
C140.025 (2)0.018 (2)0.022 (2)0.0032 (19)0.003 (2)0.0050 (19)
C150.022 (2)0.020 (2)0.020 (2)0.0082 (19)0.0005 (19)0.0024 (19)
C160.024 (2)0.0089 (19)0.023 (2)0.0007 (17)0.0031 (19)0.0027 (17)
C170.037 (3)0.014 (2)0.019 (2)0.000 (2)0.006 (2)0.0005 (18)
C180.031 (3)0.017 (2)0.023 (3)0.0058 (19)0.007 (2)0.0056 (19)
C190.021 (2)0.023 (2)0.029 (3)0.0014 (19)0.001 (2)0.009 (2)
C200.016 (2)0.014 (2)0.023 (2)0.0018 (17)0.0075 (18)0.0032 (18)
Geometric parameters (Å, º) top
I1—C12.068 (5)C7—C111.497 (6)
I2—C42.085 (5)C8—C91.385 (7)
F1—C21.339 (5)C8—H80.9500
F2—C31.348 (5)C9—H90.9500
F3—C51.348 (5)C10—C161.500 (7)
F4—C61.346 (5)C11—C151.395 (7)
C1—C61.385 (7)C12—C131.380 (7)
C1—C21.398 (7)C12—H120.9500
C2—C31.378 (7)C13—C141.382 (7)
C3—C41.383 (7)C13—H130.9500
C4—C51.392 (7)C14—C151.377 (7)
C5—C61.382 (6)C14—H140.9500
N1—C81.331 (6)C15—H150.9500
N1—C71.340 (6)C16—C201.389 (6)
N2—C91.340 (7)C17—C181.408 (7)
N2—C101.345 (6)C17—H170.9500
N3—C121.333 (6)C18—C191.383 (7)
N3—C111.349 (6)C18—H180.9500
N4—C161.338 (6)C19—C201.383 (7)
N4—C171.337 (7)C19—H190.9500
C7—C101.402 (7)C20—H200.9500
C6—C1—C2117.4 (4)N2—C10—C16115.6 (4)
C6—C1—I1121.8 (4)C7—C10—C16124.4 (4)
C2—C1—I1120.8 (4)N3—C11—C15122.8 (4)
F1—C2—C3119.2 (4)N3—C11—C7117.1 (4)
F1—C2—C1120.0 (4)C15—C11—C7120.1 (4)
C3—C2—C1120.8 (4)N3—C12—C13124.7 (4)
F2—C3—C2117.9 (4)N3—C12—H12117.6
F2—C3—C4120.1 (4)C13—C12—H12117.6
C2—C3—C4122.0 (4)C14—C13—C12118.1 (4)
C3—C4—C5117.1 (4)C14—C13—H13121.0
C3—C4—I2121.1 (4)C12—C13—H13121.0
C5—C4—I2121.7 (4)C13—C14—C15119.0 (5)
F3—C5—C6118.6 (4)C13—C14—H14120.5
F3—C5—C4120.1 (4)C15—C14—H14120.5
C6—C5—C4121.3 (4)C14—C15—C11118.9 (4)
F4—C6—C5118.5 (4)C14—C15—H15120.5
F4—C6—C1120.2 (4)C11—C15—H15120.5
C5—C6—C1121.4 (4)N4—C16—C20124.3 (5)
C8—N1—C7117.1 (4)N4—C16—C10115.5 (4)
C9—N2—C10117.8 (4)C20—C16—C10120.0 (4)
C12—N3—C11116.5 (4)N4—C17—C18123.3 (5)
C16—N4—C17116.7 (4)N4—C17—H17118.4
N1—C7—C10121.6 (4)C18—C17—H17118.4
N1—C7—C11114.6 (4)C19—C18—C17118.4 (5)
C10—C7—C11123.7 (4)C19—C18—H18120.8
N1—C8—C9121.9 (4)C17—C18—H18120.8
N1—C8—H8119.0C18—C19—C20118.9 (5)
C9—C8—H8119.0C18—C19—H19120.5
N2—C9—C8121.1 (4)C20—C19—H19120.5
N2—C9—H9119.5C16—C20—C19118.3 (5)
C8—C9—H9119.5C16—C20—H20120.8
N2—C10—C7120.0 (4)C19—C20—H20120.8
C6—C1—C2—F1179.7 (4)C9—N2—C10—C16174.1 (4)
I1—C1—C2—F10.1 (6)N1—C7—C10—N27.7 (7)
C6—C1—C2—C30.6 (7)C11—C7—C10—N2171.8 (4)
I1—C1—C2—C3179.6 (4)N1—C7—C10—C16171.1 (4)
F1—C2—C3—F20.1 (7)C11—C7—C10—C169.4 (7)
C1—C2—C3—F2179.8 (4)C12—N3—C11—C150.7 (7)
F1—C2—C3—C4179.6 (4)C12—N3—C11—C7177.3 (4)
C1—C2—C3—C40.1 (7)N1—C7—C11—N3148.1 (4)
F2—C3—C4—C5179.3 (4)C10—C7—C11—N331.5 (7)
C2—C3—C4—C51.0 (7)N1—C7—C11—C1529.9 (7)
F2—C3—C4—I23.4 (6)C10—C7—C11—C15150.5 (5)
C2—C3—C4—I2176.3 (4)C11—N3—C12—C130.5 (7)
C3—C4—C5—F3178.1 (4)N3—C12—C13—C140.0 (8)
I2—C4—C5—F34.6 (6)C12—C13—C14—C150.3 (7)
C3—C4—C5—C61.2 (7)C13—C14—C15—C110.1 (7)
I2—C4—C5—C6176.1 (3)N3—C11—C15—C140.4 (8)
F3—C5—C6—F41.4 (6)C7—C11—C15—C14177.5 (5)
C4—C5—C6—F4179.2 (4)C17—N4—C16—C200.8 (7)
F3—C5—C6—C1178.8 (4)C17—N4—C16—C10175.5 (4)
C4—C5—C6—C10.6 (7)N2—C10—C16—N4124.0 (4)
C2—C1—C6—F4179.9 (4)C7—C10—C16—N454.8 (6)
I1—C1—C6—F40.0 (6)N2—C10—C16—C2052.5 (6)
C2—C1—C6—C50.3 (7)C7—C10—C16—C20128.7 (5)
I1—C1—C6—C5179.9 (4)C16—N4—C17—C180.8 (7)
C8—N1—C7—C104.1 (7)N4—C17—C18—C190.8 (7)
C8—N1—C7—C11175.5 (4)C17—C18—C19—C200.6 (7)
C7—N1—C8—C92.0 (7)N4—C16—C20—C190.6 (7)
C10—N2—C9—C81.1 (7)C10—C16—C20—C19175.5 (4)
N1—C8—C9—N24.8 (8)C18—C19—C20—C160.5 (7)
C9—N2—C10—C74.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F40.952.543.145 (6)121
C9—H9···F40.952.463.100 (6)125
C18—H18···F2i0.952.523.341 (7)144
Symmetry code: (i) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC14H10N4·C6F4I2
Mr636.04
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)6.3997 (15), 10.737 (2), 15.092 (4)
α, β, γ (°)74.237 (10), 85.877 (11), 80.283 (12)
V3)983.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.40 × 0.13 × 0.07
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.504, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5074, 3775, 3550
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.09
No. of reflections3775
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 1.20

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F40.952.543.145 (6)121
C9—H9···F40.952.463.100 (6)125
C18—H18···F2i0.952.523.341 (7)144
Symmetry code: (i) x+1, y+1, z1.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.  Web of Science CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65–104.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds