organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzoic acid–4-{(1E)-[(E)-2-(pyridin-4-yl­methyl­­idene)hydrazin-1-yl­­idene]meth­yl}pyridine (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 October 2010; accepted 15 October 2010; online 23 October 2010)

In the title co-crystal, C12H10N4·2C7H6O2, the complete 4-pyridine­aldazine mol­ecule is generated by a crystallographic centre of inversion. In the crystal, mol­ecules are connected into a three component aggregate via O—H⋯N hydrogen bonds. As both the benzoic acid [O—C—C—C torsion angle = 174.8 (2)°] and 4-pyridine­aldazine (r.m.s. deviation of the 16 non-H atoms = 0.041 Å) mol­ecules are almost planar, the resulting three-component aggregate is essentially planar. The crystal packing comprises layers of the three-component aggregates of alternating orientation stacked along the b axis; the connections between the mol­ecules are of the types C—H⋯π and ππ [pyridine–benzene centroid–centroid distance = 3.787 (4) Å].

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010a[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356.],b[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4·2C7H6O2

  • Mr = 454.48

  • Monoclinic, P 21 /n

  • a = 6.873 (6) Å

  • b = 26.059 (19) Å

  • c = 7.117 (6) Å

  • β = 116.245 (13)°

  • V = 1143.3 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.40 × 0.26 × 0.08 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 6111 measured reflections

  • 1956 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.191

  • S = 1.12

  • 1956 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1i 0.85 (3) 1.80 (3) 2.642 (4) 175 (4)
C6—H6⋯Cg1ii 0.95 2.64 3.540 (5) 159
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with co-crystallization studies of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010a,b), the co-crystallization of benzoic acid and 4-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of benzoic acid, Fig. 1, and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate. The carboxylic acid group is co-planar with the benzene ring to which it is connected [the O1—C1—C2—C3 torsion angle is 174.8 (2) °] and, similarly, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.041 Å [maximum deviation = 0.075 (3) Å for the methylene-C13 atom]. Accordingly, the three component aggregate is essentially planar.

In the crystal packing, layers of three component aggregates of alternating orientation stack along the b axis, Fig. 3. Connections between the molecules are of the type C—H···π, Table 1, and ππ [ring centroid(N1,C8–C12)···ring centroid(C2–C7) = 3.787 (4) Å].

Related literature top

For related studies on co-crystal formation involving the isomeric n-pyridinealdazines, see: Broker et al. (2008); Arman et al. (2010a,b).

Experimental top

Yellow blocks of (I) were isolated from the 2/1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine(Sigma Aldrich), in ethanol; m. pt. 395–397 K.

IR assignment (cm-1): 2923 ν(C—H); 1693 ν(CO); 1602 ν(CN); 1492, 1453, 1409 ν(C—C(aromatic)); 1306 ν(C—N); 817, 716 δ(C—H).

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

In connection with co-crystallization studies of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010a,b), the co-crystallization of benzoic acid and 4-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of benzoic acid, Fig. 1, and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate. The carboxylic acid group is co-planar with the benzene ring to which it is connected [the O1—C1—C2—C3 torsion angle is 174.8 (2) °] and, similarly, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.041 Å [maximum deviation = 0.075 (3) Å for the methylene-C13 atom]. Accordingly, the three component aggregate is essentially planar.

In the crystal packing, layers of three component aggregates of alternating orientation stack along the b axis, Fig. 3. Connections between the molecules are of the type C—H···π, Table 1, and ππ [ring centroid(N1,C8–C12)···ring centroid(C2–C7) = 3.787 (4) Å].

For related studies on co-crystal formation involving the isomeric n-pyridinealdazines, see: Broker et al. (2008); Arman et al. (2010a,b).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of benzoic acid found in the structure of (I) showing displacement ellipsoids at the 50% probability level
[Figure 2] Fig. 2. Molecular structure of 4-pyridinealdazine found in the structure of (I) showing displacement ellipsoids at the 50% probability level. The molecule is disposed about a centre of inversion with i = 1 - x, -y, 1 - z.
[Figure 3] Fig. 3. A view in projection down the a axis showing the stacking of layers comprising three component aggregates along b. The O—H···N, C—H···π and ππ interactions are shown as orange, purple and blue dashed lines, respectively.
Benzoic acid–4-{(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin- 1-ylidene]methyl}pyridine (2/1) top
Crystal data top
C12H10N4·2C7H6O2F(000) = 476
Mr = 454.48Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4161 reflections
a = 6.873 (6) Åθ = 3.3–40.2°
b = 26.059 (19) ŵ = 0.09 mm1
c = 7.117 (6) ÅT = 98 K
β = 116.245 (13)°Block, yellow
V = 1143.3 (16) Å30.40 × 0.26 × 0.08 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1620 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ω scansh = 88
6111 measured reflectionsk = 3030
1956 independent reflectionsl = 86
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.083P)2 + 0.7947P]
where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C12H10N4·2C7H6O2V = 1143.3 (16) Å3
Mr = 454.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.873 (6) ŵ = 0.09 mm1
b = 26.059 (19) ÅT = 98 K
c = 7.117 (6) Å0.40 × 0.26 × 0.08 mm
β = 116.245 (13)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1620 reflections with I > 2σ(I)
6111 measured reflectionsRint = 0.063
1956 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.30 e Å3
1956 reflectionsΔρmin = 0.28 e Å3
157 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2366 (3)0.14824 (8)0.4031 (3)0.0367 (5)
H1o0.254 (6)0.1339 (13)0.305 (4)0.055*
O20.0291 (3)0.09135 (7)0.3447 (3)0.0348 (5)
C10.0732 (4)0.12953 (10)0.4330 (4)0.0279 (6)
C20.0247 (4)0.15989 (10)0.5862 (4)0.0272 (6)
C30.1544 (5)0.14691 (10)0.6194 (4)0.0294 (6)
H30.24280.11850.54800.035*
C40.2032 (5)0.17572 (11)0.7573 (4)0.0363 (7)
H40.32650.16730.77840.044*
C50.0723 (6)0.21684 (12)0.8644 (5)0.0422 (8)
H50.10610.23630.95910.051*
C60.1078 (6)0.22960 (12)0.8335 (5)0.0415 (8)
H60.19740.25760.90740.050*
C70.1563 (5)0.20132 (11)0.6942 (4)0.0334 (7)
H70.27880.21010.67230.040*
N10.2915 (4)0.09852 (9)1.1065 (3)0.0308 (6)
N20.5060 (4)0.01762 (9)0.5783 (3)0.0316 (6)
C80.3397 (4)0.03986 (10)0.8005 (4)0.0268 (6)
C90.1647 (4)0.03201 (10)0.8464 (4)0.0285 (6)
H90.05940.00650.77430.034*
C100.1466 (5)0.06209 (10)0.9991 (4)0.0312 (7)
H100.02640.05671.02880.037*
C110.4597 (4)0.10580 (11)1.0616 (4)0.0293 (6)
H110.56320.13151.13650.035*
C120.4898 (5)0.07771 (10)0.9114 (4)0.0297 (6)
H120.61100.08420.88430.036*
C130.3593 (4)0.00791 (10)0.6385 (4)0.0278 (6)
H130.26270.02000.57830.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (12)0.0415 (12)0.0340 (12)0.0088 (9)0.0215 (9)0.0103 (9)
O20.0347 (11)0.0351 (11)0.0342 (11)0.0036 (9)0.0150 (9)0.0074 (8)
C10.0293 (14)0.0281 (14)0.0218 (14)0.0032 (11)0.0073 (11)0.0008 (10)
C20.0322 (14)0.0282 (14)0.0206 (13)0.0035 (11)0.0112 (11)0.0028 (10)
C30.0353 (15)0.0253 (14)0.0256 (14)0.0018 (11)0.0116 (11)0.0043 (11)
C40.0401 (17)0.0392 (16)0.0346 (16)0.0054 (13)0.0210 (13)0.0058 (12)
C50.059 (2)0.0381 (17)0.0346 (17)0.0030 (15)0.0255 (15)0.0042 (13)
C60.0503 (19)0.0390 (17)0.0370 (17)0.0072 (14)0.0210 (14)0.0098 (13)
C70.0371 (16)0.0337 (16)0.0293 (15)0.0027 (12)0.0145 (12)0.0005 (11)
N10.0353 (13)0.0328 (13)0.0241 (12)0.0048 (10)0.0130 (10)0.0024 (9)
N20.0405 (14)0.0303 (13)0.0235 (12)0.0005 (10)0.0138 (11)0.0029 (9)
C80.0301 (14)0.0278 (14)0.0211 (13)0.0076 (11)0.0100 (11)0.0044 (10)
C90.0313 (14)0.0321 (14)0.0198 (13)0.0020 (11)0.0091 (11)0.0013 (10)
C100.0295 (15)0.0341 (15)0.0286 (15)0.0027 (11)0.0115 (12)0.0031 (11)
C110.0300 (14)0.0302 (14)0.0250 (14)0.0018 (11)0.0098 (11)0.0002 (10)
C120.0298 (14)0.0323 (15)0.0263 (14)0.0024 (11)0.0118 (12)0.0011 (11)
C130.0328 (14)0.0246 (13)0.0234 (14)0.0025 (11)0.0100 (11)0.0022 (10)
Geometric parameters (Å, º) top
O1—C11.325 (3)N1—C111.342 (4)
O1—H1O0.85 (3)N1—C101.343 (4)
O2—C11.220 (3)N2—C131.283 (4)
C1—C21.499 (4)N2—N2i1.418 (4)
C2—C31.395 (4)C8—C121.393 (4)
C2—C71.400 (4)C8—C91.394 (4)
C3—C41.389 (4)C8—C131.476 (4)
C3—H30.9500C9—C101.390 (4)
C4—C51.390 (4)C9—H90.9500
C4—H40.9500C10—H100.9500
C5—C61.390 (5)C11—C121.384 (4)
C5—H50.9500C11—H110.9500
C6—C71.389 (4)C12—H120.9500
C6—H60.9500C13—H130.9500
C7—H70.9500
C1—O1—H1o114 (3)C2—C7—H7120.0
O2—C1—O1123.6 (3)C11—N1—C10117.7 (2)
O2—C1—C2122.8 (3)C13—N2—N2i110.7 (3)
O1—C1—C2113.6 (2)C12—C8—C9118.1 (2)
C3—C2—C7119.9 (3)C12—C8—C13122.8 (3)
C3—C2—C1119.5 (2)C9—C8—C13119.1 (2)
C7—C2—C1120.6 (3)C10—C9—C8119.0 (3)
C4—C3—C2119.7 (3)C10—C9—H9120.5
C4—C3—H3120.1C8—C9—H9120.5
C2—C3—H3120.1N1—C10—C9122.9 (3)
C3—C4—C5120.3 (3)N1—C10—H10118.5
C3—C4—H4119.8C9—C10—H10118.5
C5—C4—H4119.8N1—C11—C12123.2 (3)
C6—C5—C4120.2 (3)N1—C11—H11118.4
C6—C5—H5119.9C12—C11—H11118.4
C4—C5—H5119.9C11—C12—C8119.1 (3)
C5—C6—C7119.8 (3)C11—C12—H12120.5
C5—C6—H6120.1C8—C12—H12120.5
C7—C6—H6120.1N2—C13—C8120.4 (2)
C6—C7—C2120.1 (3)N2—C13—H13119.8
C6—C7—H7120.0C8—C13—H13119.8
O2—C1—C2—C35.1 (4)C12—C8—C9—C100.2 (4)
O1—C1—C2—C3174.8 (2)C13—C8—C9—C10180.0 (2)
O2—C1—C2—C7175.5 (2)C11—N1—C10—C90.3 (4)
O1—C1—C2—C74.6 (4)C8—C9—C10—N10.4 (4)
C7—C2—C3—C41.0 (4)C10—N1—C11—C120.0 (4)
C1—C2—C3—C4178.4 (2)N1—C11—C12—C80.1 (4)
C2—C3—C4—C51.0 (4)C9—C8—C12—C110.1 (4)
C3—C4—C5—C60.3 (4)C13—C8—C12—C11179.7 (2)
C4—C5—C6—C70.3 (5)N2i—N2—C13—C8179.7 (2)
C5—C6—C7—C20.3 (5)C12—C8—C13—N27.2 (4)
C3—C2—C7—C60.3 (4)C9—C8—C13—N2173.0 (2)
C1—C2—C7—C6179.1 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1ii0.85 (3)1.80 (3)2.642 (4)175 (4)
C6—H6···Cg1iii0.952.643.540 (5)159
Symmetry codes: (ii) x, y, z1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N4·2C7H6O2
Mr454.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)98
a, b, c (Å)6.873 (6), 26.059 (19), 7.117 (6)
β (°) 116.245 (13)
V3)1143.3 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.26 × 0.08
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6111, 1956, 1620
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.191, 1.12
No. of reflections1956
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.85 (3)1.80 (3)2.642 (4)175 (4)
C6—H6···Cg1ii0.952.643.540 (5)159
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds