organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(2,4-Dimeth­­oxy­benzyl­­idene)-4-ethoxyaniline

aInstitute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and cInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 14 October 2010; accepted 15 October 2010; online 20 October 2010)

In the title compound, C17H19NO3, the mol­ecule has an E configuration with respect to the C=N bond and the dihedral angle between the aromatic rings is 56.07 (5)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur. The dimers are linked by weak C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For related structures and background references, see: Khalaji et al. (2010a[Khalaji, A., Fejfarová, K. & Dušek, M. (2010a). Acta Chim. Slov. 57, 257-261.],b[Khalaji, A. D., Najafi Chermahini, A., Fejfarová, K. & Dušek, M. (2010b). Struct. Chem. 21, 153-157.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3

  • Mr = 285.3

  • Monoclinic, P 21 /c

  • a = 8.4536 (1) Å

  • b = 9.6531 (2) Å

  • c = 18.0561 (3) Å

  • β = 90.9091 (10)°

  • V = 1473.25 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.50 × 0.12 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd., Oxford, UK.]), Tmin = 0.714, Tmax = 1.000

  • 18522 measured reflections

  • 2543 independent reflections

  • 2259 reflections with I > 3σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.098

  • S = 1.98

  • 2543 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8c⋯O2i 0.96 2.52 3.3745 (13) 148
C5—H5⋯Cg2ii 0.96 2.88 3.7529 (11) 152
C14—H14⋯Cg1iii 0.96 2.76 3.6019 (11) 147
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd., Oxford, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2007[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Khalaji et al., 2010a and 2010b) we now report the synthesis and crystal structure of the title compound, (I).

The title molecule with the atomic numbering scheme is depicted in Fig. 1. The C7—N1 and C10—N1 bond lengths of 1.2795 (13), 1.4171 (13) Å, respectively, conform to the value for a double and single bonds, respectively, and they are similar to the corresponding bond lengths in another Schiff-base compounds (Khalaji et al., 2010a and 2010b).

The torsion angle of the title compound, C10—N1—C7—C1 - 175.18 (9)°, indicates virtually planar E-configuration with respect to the imine C–N bond. Both methoxy groups are nearly coplanar with the C1—C6 ring, as indicated by torsion angles C3—C4—O2—C9 and C1—C2—O1—C8 of 178.16 (9)°, -175.74 (9)°, respectively. The ethoxy group is nearly coplanar with the C10—C15 ring, with the dihedral angle between the ring plane and plane defined by atoms O3, C16 and C17 of 6.28 (9)°.

In the crystal, molecules are connected by weak C—H···O interactions into dimers, which are further linked by C—H···π interactions into a three-dimensional network.

Related literature top

For related structures and background references, see: Khalaji et al. (2010a,b).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Structure description top

As part of our ongoing studies of Schiff bases (Khalaji et al., 2010a and 2010b) we now report the synthesis and crystal structure of the title compound, (I).

The title molecule with the atomic numbering scheme is depicted in Fig. 1. The C7—N1 and C10—N1 bond lengths of 1.2795 (13), 1.4171 (13) Å, respectively, conform to the value for a double and single bonds, respectively, and they are similar to the corresponding bond lengths in another Schiff-base compounds (Khalaji et al., 2010a and 2010b).

The torsion angle of the title compound, C10—N1—C7—C1 - 175.18 (9)°, indicates virtually planar E-configuration with respect to the imine C–N bond. Both methoxy groups are nearly coplanar with the C1—C6 ring, as indicated by torsion angles C3—C4—O2—C9 and C1—C2—O1—C8 of 178.16 (9)°, -175.74 (9)°, respectively. The ethoxy group is nearly coplanar with the C10—C15 ring, with the dihedral angle between the ring plane and plane defined by atoms O3, C16 and C17 of 6.28 (9)°.

In the crystal, molecules are connected by weak C—H···O interactions into dimers, which are further linked by C—H···π interactions into a three-dimensional network.

For related structures and background references, see: Khalaji et al. (2010a,b).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2007); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2007).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. C—H···O bonds are drawn as blue dashed lines. [Symmetry codes: (i) 2 - x, -y, 2 - z]
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the a axis. Hydrogen bonds are displayed as blue dashed lines, C—H···π interactions as red dashed lines.
(E)-N-(2,4-Dimethoxybenzylidene)-4-ethoxyaniline top
Crystal data top
C17H19NO3F(000) = 608
Mr = 285.3Dx = 1.286 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 13339 reflections
a = 8.4536 (1) Åθ = 4.6–66.4°
b = 9.6531 (2) ŵ = 0.71 mm1
c = 18.0561 (3) ÅT = 120 K
β = 90.9091 (10)°Prism, colourless
V = 1473.25 (4) Å30.50 × 0.12 × 0.11 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
2543 independent reflections
Radiation source: X-ray tube2259 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 66.6°, θmin = 4.9°
Rotation method data acquisition using ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009),
k = 1111
Tmin = 0.714, Tmax = 1.000l = 2121
18522 measured reflections
Refinement top
Refinement on F276 constraints
R[F > 3σ(F)] = 0.030H-atom parameters constrained
wR(F) = 0.098Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.98(Δ/σ)max = 0.013
2543 reflectionsΔρmax = 0.17 e Å3
190 parametersΔρmin = 0.13 e Å3
0 restraints
Crystal data top
C17H19NO3V = 1473.25 (4) Å3
Mr = 285.3Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.4536 (1) ŵ = 0.71 mm1
b = 9.6531 (2) ÅT = 120 K
c = 18.0561 (3) Å0.50 × 0.12 × 0.11 mm
β = 90.9091 (10)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
2543 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009),
2259 reflections with I > 3σ(I)
Tmin = 0.714, Tmax = 1.000Rint = 0.024
18522 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0300 restraints
wR(F) = 0.098H-atom parameters constrained
S = 1.98Δρmax = 0.17 e Å3
2543 reflectionsΔρmin = 0.13 e Å3
190 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84529 (8)0.12294 (8)0.81770 (4)0.0248 (2)
O20.78640 (8)0.15086 (8)1.07814 (4)0.0271 (2)
O30.16362 (8)0.12599 (7)0.48157 (4)0.0244 (2)
N10.38690 (10)0.18316 (9)0.77253 (5)0.0231 (3)
C10.59085 (11)0.15330 (10)0.86553 (6)0.0206 (3)
C20.75506 (12)0.13694 (10)0.87911 (6)0.0204 (3)
C30.81587 (11)0.13725 (10)0.95058 (6)0.0220 (3)
C40.71412 (12)0.15436 (10)1.00995 (6)0.0214 (3)
C50.55251 (12)0.17397 (10)0.99830 (6)0.0229 (3)
C60.49391 (12)0.17310 (10)0.92638 (6)0.0222 (3)
C70.52727 (11)0.14440 (10)0.79015 (6)0.0207 (3)
C81.01066 (11)0.09643 (12)0.82857 (6)0.0281 (3)
C90.68947 (13)0.17194 (12)1.14125 (6)0.0284 (3)
C100.33285 (11)0.16001 (11)0.69888 (5)0.0212 (3)
C110.23872 (11)0.26224 (11)0.66542 (6)0.0243 (3)
C120.18457 (11)0.24746 (11)0.59337 (6)0.0240 (3)
C130.22075 (11)0.12870 (10)0.55293 (5)0.0210 (3)
C140.30901 (11)0.02359 (11)0.58635 (6)0.0233 (3)
C150.36467 (11)0.03995 (11)0.65886 (6)0.0229 (3)
C160.19378 (12)0.00331 (11)0.43883 (6)0.0259 (3)
C170.13061 (13)0.02869 (12)0.36162 (6)0.0309 (3)
H30.9274130.1257580.9593220.0265*
H50.4832910.1877961.0392820.0275*
H60.3825320.1866070.918050.0267*
H70.5935250.1079130.7521230.0248*
H8a1.0598990.0858960.7813570.0337*
H8b1.058490.1725980.8547580.0337*
H8c1.0244880.0130120.8568910.0337*
H9a0.7546480.1732381.1852670.0341*
H9b0.6347430.2586881.1364120.0341*
H9c0.613880.0980511.1444730.0341*
H110.2114630.3436860.6929280.0292*
H120.1216310.3192950.5709090.0288*
H140.3314650.0598470.5595610.028*
H150.4259270.0326290.6816470.0274*
H16a0.1393360.073890.46020.0311*
H16b0.3057210.0128370.4371970.0311*
H17a0.1426470.0537320.3324950.0371*
H17b0.0205960.0528090.3636730.0371*
H17c0.1882990.1031880.3394340.0371*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (4)0.0359 (4)0.0213 (4)0.0025 (3)0.0015 (3)0.0005 (3)
O20.0258 (4)0.0364 (5)0.0190 (4)0.0060 (3)0.0017 (3)0.0013 (3)
O30.0267 (4)0.0261 (4)0.0204 (4)0.0031 (3)0.0028 (3)0.0019 (3)
N10.0203 (4)0.0268 (5)0.0222 (4)0.0007 (3)0.0013 (3)0.0002 (3)
C10.0193 (5)0.0176 (5)0.0248 (5)0.0007 (4)0.0006 (4)0.0012 (4)
C20.0203 (5)0.0180 (5)0.0230 (5)0.0002 (4)0.0021 (4)0.0004 (4)
C30.0183 (5)0.0225 (5)0.0252 (6)0.0013 (4)0.0018 (4)0.0005 (4)
C40.0249 (5)0.0184 (5)0.0208 (5)0.0009 (4)0.0026 (4)0.0001 (4)
C50.0233 (5)0.0230 (5)0.0226 (5)0.0016 (4)0.0038 (4)0.0002 (4)
C60.0172 (5)0.0224 (5)0.0271 (5)0.0009 (4)0.0003 (4)0.0007 (4)
C70.0192 (5)0.0200 (5)0.0228 (5)0.0010 (4)0.0025 (4)0.0008 (4)
C80.0168 (5)0.0392 (6)0.0284 (5)0.0011 (4)0.0020 (4)0.0011 (5)
C90.0338 (6)0.0323 (6)0.0193 (5)0.0019 (5)0.0022 (4)0.0003 (4)
C100.0155 (5)0.0261 (5)0.0222 (5)0.0015 (4)0.0013 (4)0.0005 (4)
C110.0212 (5)0.0266 (6)0.0252 (5)0.0030 (4)0.0009 (4)0.0028 (4)
C120.0207 (5)0.0251 (6)0.0262 (5)0.0039 (4)0.0008 (4)0.0010 (4)
C130.0174 (5)0.0250 (5)0.0206 (5)0.0023 (4)0.0010 (4)0.0012 (4)
C140.0222 (5)0.0214 (5)0.0264 (5)0.0006 (4)0.0002 (4)0.0022 (4)
C150.0194 (5)0.0225 (5)0.0266 (5)0.0001 (4)0.0016 (4)0.0031 (4)
C160.0257 (5)0.0266 (6)0.0256 (5)0.0014 (4)0.0001 (4)0.0040 (4)
C170.0347 (6)0.0332 (6)0.0248 (5)0.0006 (5)0.0008 (4)0.0039 (4)
Geometric parameters (Å, º) top
O1—C21.3626 (12)C8—H8c0.96
O1—C81.4317 (11)C9—H9a0.96
O2—C41.3662 (12)C9—H9b0.96
O2—C91.4286 (13)C9—H9c0.96
O3—C131.3690 (12)C10—C111.3988 (14)
O3—C161.4385 (13)C10—C151.3942 (14)
N1—C71.2795 (13)C11—C121.3797 (14)
N1—C101.4171 (13)C11—H110.96
C1—C21.4147 (14)C12—C131.3957 (14)
C1—C61.3943 (14)C12—H120.96
C1—C71.4578 (14)C13—C141.3915 (14)
C2—C31.3814 (14)C14—C151.3932 (14)
C3—C41.3948 (14)C14—H140.96
C3—H30.96C15—H150.96
C4—C51.3919 (14)C16—C171.5051 (15)
C5—C61.3824 (14)C16—H16a0.96
C5—H50.96C16—H16b0.96
C6—H60.96C17—H17a0.96
C7—H70.96C17—H17b0.96
C8—H8a0.96C17—H17c0.96
C8—H8b0.96
C2—O1—C8117.65 (7)H9a—C9—H9b109.4721
C4—O2—C9117.48 (8)H9a—C9—H9c109.4713
C13—O3—C16117.24 (8)H9b—C9—H9c109.4713
C7—N1—C10118.11 (8)N1—C10—C11117.83 (9)
C2—C1—C6117.78 (9)N1—C10—C15123.74 (9)
C2—C1—C7120.11 (9)C11—C10—C15118.41 (9)
C6—C1—C7122.08 (9)C10—C11—C12120.81 (10)
O1—C2—C1115.49 (8)C10—C11—H11119.5938
O1—C2—C3123.75 (9)C12—C11—H11119.5935
C1—C2—C3120.75 (9)C11—C12—C13120.40 (9)
C2—C3—C4119.55 (9)C11—C12—H12119.798
C2—C3—H3120.2241C13—C12—H12119.7978
C4—C3—H3120.2224O3—C13—C12115.53 (9)
O2—C4—C3114.66 (9)O3—C13—C14124.96 (9)
O2—C4—C5124.29 (9)C12—C13—C14119.50 (9)
C3—C4—C5121.05 (9)C13—C14—C15119.71 (9)
C4—C5—C6118.51 (9)C13—C14—H14120.1429
C4—C5—H5120.7434C15—C14—H14120.1429
C6—C5—H5120.7439C10—C15—C14121.08 (9)
C1—C6—C5122.32 (9)C10—C15—H15119.46
C1—C6—H6118.8378C14—C15—H15119.4596
C5—C6—H6118.8386O3—C16—C17107.44 (8)
N1—C7—C1122.80 (9)O3—C16—H16a109.4712
N1—C7—H7118.601O3—C16—H16b109.4719
C1—C7—H7118.601C17—C16—H16a109.471
O1—C8—H8a109.4708C17—C16—H16b109.4701
O1—C8—H8b109.4712H16a—C16—H16b111.434
O1—C8—H8c109.4709C16—C17—H17a109.4709
H8a—C8—H8b109.4718C16—C17—H17b109.4708
H8a—C8—H8c109.4713C16—C17—H17c109.4707
H8b—C8—H8c109.4713H17a—C17—H17b109.4715
O2—C9—H9a109.4707H17a—C17—H17c109.4719
O2—C9—H9b109.4712H17b—C17—H17c109.4715
O2—C9—H9c109.4708
C8—O1—C2—C1175.74 (9)O1—C2—C3—C4179.02 (9)
C8—O1—C2—C34.99 (14)C1—C2—C3—C40.22 (15)
C9—O2—C4—C3178.16 (9)C2—C3—C4—O2179.02 (9)
C9—O2—C4—C51.49 (14)C2—C3—C4—C51.32 (15)
C16—O3—C13—C12177.94 (8)O2—C4—C5—C6178.96 (9)
C16—O3—C13—C141.80 (13)C3—C4—C5—C61.42 (14)
C13—O3—C16—C17176.02 (8)C4—C5—C6—C10.03 (16)
C10—N1—C7—C1175.18 (9)N1—C10—C11—C12178.79 (9)
C7—N1—C10—C11141.76 (10)C15—C10—C11—C122.88 (14)
C7—N1—C10—C1540.01 (14)N1—C10—C15—C14179.59 (9)
C6—C1—C2—O1177.72 (9)C11—C10—C15—C142.20 (14)
C6—C1—C2—C31.57 (14)C10—C11—C12—C131.09 (15)
C7—C1—C2—O14.41 (13)C11—C12—C13—O3178.79 (9)
C7—C1—C2—C3176.30 (9)C11—C12—C13—C141.45 (14)
C2—C1—C6—C51.49 (15)O3—C13—C14—C15178.14 (9)
C7—C1—C6—C5176.34 (9)C12—C13—C14—C152.12 (14)
C2—C1—C7—N1166.67 (10)C13—C14—C15—C100.29 (15)
C6—C1—C7—N115.55 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8c···O2i0.962.523.3745 (13)148
C5—H5···Cg2ii0.962.883.7529 (11)152
C14—H14···Cg1iii0.962.763.6019 (11)147
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.4536 (1), 9.6531 (2), 18.0561 (3)
β (°) 90.9091 (10)
V3)1473.25 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.50 × 0.12 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009),
Tmin, Tmax0.714, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
18522, 2543, 2259
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F > 3σ(F)], wR(F), S 0.030, 0.098, 1.98
No. of reflections2543
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2007), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8c···O2i0.962.523.3745 (13)148
C5—H5···Cg2ii0.962.883.7529 (11)152
C14—H14···Cg1iii0.962.763.6019 (11)147
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

We acknowledge Golestan University (GU), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKhalaji, A., Fejfarová, K. & Dušek, M. (2010a). Acta Chim. Slov. 57, 257–261.  CAS PubMed Google Scholar
First citationKhalaji, A. D., Najafi Chermahini, A., Fejfarová, K. & Dušek, M. (2010b). Struct. Chem. 21, 153–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd., Oxford, UK.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds