organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro­indoline-2,3-dione

aCollege of Light Industry and Food Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 15 October 2010; accepted 20 October 2010; online 31 October 2010)

The title compound, C8H4ClNO2, is almost planar (r.m.s. deviation for the non-H atoms = 0.023 Å). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [001] and C—H⋯O inter­actions cross-link the chains.

Related literature

For further synthetic details, see: Silva et al. (2001[Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4ClNO2

  • Mr = 181.57

  • Orthorhombic, P n a 21

  • a = 24.706 (5) Å

  • b = 5.6890 (11) Å

  • c = 5.209 (1) Å

  • V = 732.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.955, Tmax = 0.977

  • 1746 measured reflections

  • 884 independent reflections

  • 734 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.00

  • 884 reflections

  • 109 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 862 Friedel pairs

  • Flack parameter: 0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.86 2.04 2.893 (4) 172
C7—H7A⋯O2ii 0.93 2.39 3.301 (5) 166
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) x, y-1, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Chloroindoline-2,3-dione is an important pharmaceutical intermediate for synthesizing 5-chlorooxindole and tenidap which was evaluated as novel nonsteroidal anti-inflammatory agents. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C1—C3/C8) and B (C3—C8) are nearly coplanar, and they are oriented at dihedral angles of A/B = 0.30 (3).

In the crystal structure, intermolecular N—H···O interaction may be effective in the stabilization of the structure.

Related literature top

For further synthetic details, see: Silva et al. (2001). For reference bond lengths, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, the method developed by Sandmeyer is the oldest and the most frequently used. It consists in the reaction of 4-chloroaniline with chloral hydrate and hydroxylamine hydrochloride in aqueous sodium sulfate to form an 4-chloroisonitrosoacetanilide, which after isolation, when treated with concentrated sulfuric acid, furnishes the title compound in 75% overall yield (Silva et al., 2001). Red blocks of (I) were obtained by slow evaporation of a methanol solution (m.p. 520 K).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for NH H and x = 1.2 for all other H atoms.

Structure description top

5-Chloroindoline-2,3-dione is an important pharmaceutical intermediate for synthesizing 5-chlorooxindole and tenidap which was evaluated as novel nonsteroidal anti-inflammatory agents. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C1—C3/C8) and B (C3—C8) are nearly coplanar, and they are oriented at dihedral angles of A/B = 0.30 (3).

In the crystal structure, intermolecular N—H···O interaction may be effective in the stabilization of the structure.

For further synthetic details, see: Silva et al. (2001). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram.
5-Chloroindoline-2,3-dione top
Crystal data top
C8H4ClNO2Dx = 1.647 Mg m3
Mr = 181.57Melting point: 520 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 24.706 (5) Åθ = 9–13°
b = 5.6890 (11) ŵ = 0.47 mm1
c = 5.209 (1) ÅT = 293 K
V = 732.1 (2) Å3Block, red
Z = 40.10 × 0.05 × 0.05 mm
F(000) = 368
Data collection top
Enraf–Nonius CAD-4
diffractometer
734 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
ω/2θ scansh = 3131
Absorption correction: ψ scan
(North et al., 1968)
k = 70
Tmin = 0.955, Tmax = 0.977l = 06
1746 measured reflections3 standard reflections every 200 reflections
884 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
884 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 862 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C8H4ClNO2V = 732.1 (2) Å3
Mr = 181.57Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 24.706 (5) ŵ = 0.47 mm1
b = 5.6890 (11) ÅT = 293 K
c = 5.209 (1) Å0.10 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
734 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.955, Tmax = 0.9773 standard reflections every 200 reflections
1746 measured reflections intensity decay: 1%
884 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.24 e Å3
884 reflectionsAbsolute structure: Flack (1983), 862 Friedel pairs
109 parametersAbsolute structure parameter: 0.11 (16)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.26410 (4)0.6028 (2)0.2215 (3)0.0588 (4)
N0.45038 (11)0.1571 (5)0.7251 (9)0.0378 (8)
H0A0.46760.02910.69240.045*
O10.49964 (12)0.2818 (5)1.0752 (7)0.0441 (7)
C10.46351 (13)0.3075 (6)0.9153 (9)0.0335 (8)
O20.42293 (11)0.6781 (5)1.0449 (7)0.0446 (7)
C20.42335 (13)0.5098 (6)0.9018 (8)0.0332 (8)
C30.38713 (13)0.4525 (6)0.6867 (8)0.0321 (8)
C40.34278 (14)0.5650 (7)0.5820 (9)0.0351 (9)
H4A0.33000.70580.64970.042*
C50.31808 (13)0.4609 (7)0.3733 (8)0.0373 (9)
C60.33568 (15)0.2468 (7)0.2760 (8)0.0409 (10)
H6A0.31750.17930.13810.049*
C70.37976 (16)0.1329 (6)0.3811 (10)0.0390 (9)
H7A0.39200.00930.31480.047*
C80.40480 (13)0.2366 (6)0.5864 (9)0.0333 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0493 (6)0.0757 (8)0.0512 (6)0.0147 (5)0.0117 (6)0.0048 (8)
N0.0425 (16)0.0279 (14)0.0430 (19)0.0100 (12)0.0008 (19)0.002 (2)
O10.0477 (13)0.0415 (14)0.0431 (17)0.0070 (13)0.0070 (15)0.0018 (16)
C10.0351 (18)0.0309 (18)0.034 (2)0.0025 (15)0.0050 (19)0.0035 (19)
O20.0524 (16)0.0387 (14)0.0427 (17)0.0069 (13)0.0030 (15)0.0108 (15)
C20.0398 (18)0.0263 (15)0.033 (2)0.0039 (15)0.0081 (18)0.0007 (18)
C30.0341 (16)0.0284 (15)0.034 (2)0.0043 (14)0.0069 (18)0.0027 (17)
C40.0402 (18)0.0330 (17)0.032 (2)0.0046 (15)0.0074 (18)0.0012 (18)
C50.0326 (16)0.045 (2)0.034 (2)0.0015 (16)0.0002 (18)0.006 (2)
C60.0439 (19)0.045 (2)0.033 (2)0.0096 (18)0.0013 (18)0.0013 (19)
C70.049 (2)0.0302 (17)0.038 (2)0.0020 (16)0.009 (2)0.0053 (18)
C80.0352 (17)0.0294 (17)0.035 (2)0.0004 (15)0.0059 (18)0.0018 (18)
Geometric parameters (Å, º) top
Cl—C51.748 (4)C3—C81.404 (5)
N—C11.349 (6)C4—C51.381 (6)
N—C81.412 (5)C4—H4A0.9300
N—H0A0.8600C5—C61.389 (6)
O1—C11.229 (5)C6—C71.380 (6)
C1—C21.521 (4)C6—H6A0.9300
O2—C21.213 (4)C7—C81.369 (6)
C2—C31.471 (5)C7—H7A0.9300
C3—C41.381 (5)
C1—N—C8111.4 (3)C3—C4—H4A121.2
C1—N—H0A124.3C4—C5—C6121.7 (4)
C8—N—H0A124.3C4—C5—Cl119.7 (3)
O1—C1—N126.7 (3)C6—C5—Cl118.6 (3)
O1—C1—C2126.5 (4)C7—C6—C5120.9 (4)
N—C1—C2106.8 (3)C7—C6—H6A119.5
O2—C2—C3129.6 (3)C5—C6—H6A119.5
O2—C2—C1125.1 (4)C8—C7—C6117.6 (4)
C3—C2—C1105.3 (3)C8—C7—H7A121.2
C4—C3—C8120.3 (4)C6—C7—H7A121.2
C4—C3—C2132.9 (3)C7—C8—C3121.8 (4)
C8—C3—C2106.7 (3)C7—C8—N128.5 (3)
C5—C4—C3117.6 (4)C3—C8—N109.7 (4)
C5—C4—H4A121.2
C8—N—C1—O1176.7 (4)C3—C4—C5—Cl176.5 (3)
C8—N—C1—C20.8 (4)C4—C5—C6—C71.8 (6)
O1—C1—C2—O22.4 (7)Cl—C5—C6—C7176.9 (3)
N—C1—C2—O2179.9 (4)C5—C6—C7—C81.0 (6)
O1—C1—C2—C3177.1 (4)C6—C7—C8—C30.7 (6)
N—C1—C2—C30.4 (4)C6—C7—C8—N179.5 (4)
O2—C2—C3—C40.2 (7)C4—C3—C8—C71.2 (6)
C1—C2—C3—C4179.2 (4)C2—C3—C8—C7179.6 (4)
O2—C2—C3—C8179.3 (4)C4—C3—C8—N179.8 (4)
C1—C2—C3—C80.2 (4)C2—C3—C8—N0.6 (4)
C8—C3—C4—C51.9 (6)C1—N—C8—C7179.8 (4)
C2—C3—C4—C5179.2 (4)C1—N—C8—C30.9 (5)
C3—C4—C5—C62.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.042.893 (4)172
C7—H7A···O2ii0.932.393.301 (5)166
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC8H4ClNO2
Mr181.57
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)24.706 (5), 5.6890 (11), 5.209 (1)
V3)732.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.955, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
1746, 884, 734
Rint0.048
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.00
No. of reflections884
No. of parameters109
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24
Absolute structureFlack (1983), 862 Friedel pairs
Absolute structure parameter0.11 (16)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.042.893 (4)172
C7—H7A···O2ii0.932.393.301 (5)166
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y1, z1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis of the Nanjing University for the support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds