organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2-hy­dr­oxy­benzamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 16 October 2010; accepted 17 October 2010; online 23 October 2010)

In the title compound, C13H10ClNO2, the dihedral angle between the aromatic rings is 20.02 (6)° and intra­molecular N—H⋯O and C—H⋯O hydrogen bonds both generate S(6) rings. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into C(6) chains propagating in [010].

Related literature

For biological background, see: Samanta et al. (2010[Samanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett., 20, 283-287.]). For related structures, see: Raza et al. (2009[Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042.], 2010a[Raza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o1852.],b[Raza, A. R., Nisar, B. & Tahir, M. N. (2010b). Acta Cryst. E66, o2435.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO2

  • Mr = 247.67

  • Orthorhombic, P b c a

  • a = 7.6832 (3) Å

  • b = 11.0225 (3) Å

  • c = 27.1427 (11) Å

  • V = 2298.66 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.28 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.955

  • 9244 measured reflections

  • 2064 independent reflections

  • 1561 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.03

  • 2064 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.84 (2) 1.991 (18) 2.6588 (19) 136.4 (17)
O2—H2⋯O1i 0.82 (2) 1.85 (2) 2.6582 (17) 173 (2)
C9—H9⋯O1 0.93 2.31 2.895 (2) 121
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Different synthetic derivatives of benzoxazepine have been reported as anti-tumor and anti-inflammatory agents (Samanta et al., 2010). The title compound (I) was prepared as a precursor for the synthesis of chiral benzoxazepines and it will also be utilized for the complexation with various metals.

We have reported the crystal structures of (II) i.e., 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010a), (III) i.e., 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al., 2010b) and (IV) i.e., 2-Hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) which are related to the title compound.

In (I), the 2-hydroxyphenyl group A (C1–C6/O2) and 4-chloroanilinic group B (C8—C13/N1/CL1) are planar with r. m. s. deviation of 0.0072 and 0.0035 Å, respectively. The dihedral angle between A/B is 20.02 (6)°. There exist intramolecular H-bondings of N—H···O and C—H···O types (Table 1, Fig. 1) completing S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of one dimensional polymeric chains extending along the crystallographic b axis due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2).

Related literature top

For biological background, see: Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a well stirred solution of 2-hydroxy benzoic acid (1.38 g, 0.01 mol, 1 eq) and SOCl2 (0.87 ml, 1.42 g, 0.012 mol, 1.2 eq) in dry CHCl3, the 4-chloroaniline (1.27 g, 0.01 mol, 1 eq) and Et3N (2.08 ml, 1.5 g, 0.015 mol, 1.5 eq) was added slowly at room temperature followed by 3 h reflux. After commencement of reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3×25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford light yellowish solid. The column chromatographic purification with 0 and 1% EtOAc in petrol (0.5 L each) over a silica gel packed column (of 25.5 cm length) afforded colorless prisms of (I) in 24th–106th fraction (10 ml each) upon leaving at room temperature.

Refinement top

The coordinates of H-atoms of amide and hydroxy group were refined. H atoms were positioned geometrically with (C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Structure description top

Different synthetic derivatives of benzoxazepine have been reported as anti-tumor and anti-inflammatory agents (Samanta et al., 2010). The title compound (I) was prepared as a precursor for the synthesis of chiral benzoxazepines and it will also be utilized for the complexation with various metals.

We have reported the crystal structures of (II) i.e., 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010a), (III) i.e., 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al., 2010b) and (IV) i.e., 2-Hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) which are related to the title compound.

In (I), the 2-hydroxyphenyl group A (C1–C6/O2) and 4-chloroanilinic group B (C8—C13/N1/CL1) are planar with r. m. s. deviation of 0.0072 and 0.0035 Å, respectively. The dihedral angle between A/B is 20.02 (6)°. There exist intramolecular H-bondings of N—H···O and C—H···O types (Table 1, Fig. 1) completing S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of one dimensional polymeric chains extending along the crystallographic b axis due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2).

For biological background, see: Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted lines indicate the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing for (I), which shows that molecules form one dimensional polymeric chains parallel to b axis.
N-(4-Chlorophenyl)-2-hydroxybenzamide top
Crystal data top
C13H10ClNO2F(000) = 1024
Mr = 247.67Dx = 1.431 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1561 reflections
a = 7.6832 (3) Åθ = 3.0–25.3°
b = 11.0225 (3) ŵ = 0.32 mm1
c = 27.1427 (11) ÅT = 296 K
V = 2298.66 (14) Å3Needle, colorless
Z = 80.28 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2064 independent reflections
Radiation source: fine-focus sealed tube1561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.5 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = 96
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1311
Tmin = 0.942, Tmax = 0.955l = 2432
9244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.540P]
where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H10ClNO2V = 2298.66 (14) Å3
Mr = 247.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6832 (3) ŵ = 0.32 mm1
b = 11.0225 (3) ÅT = 296 K
c = 27.1427 (11) Å0.28 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1561 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.955Rint = 0.027
9244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2064 reflectionsΔρmin = 0.22 e Å3
160 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37823 (11)0.20751 (7)0.03285 (2)0.0959 (3)
O10.33904 (17)0.07407 (10)0.19332 (4)0.0464 (4)
O20.52554 (18)0.23574 (11)0.26024 (5)0.0482 (5)
N10.3890 (2)0.12607 (13)0.18202 (5)0.0423 (5)
C10.3726 (2)0.04847 (14)0.26498 (6)0.0355 (5)
C20.4477 (2)0.14916 (14)0.28844 (6)0.0373 (6)
C30.4430 (3)0.15880 (16)0.33940 (6)0.0461 (6)
C40.3619 (3)0.07148 (18)0.36719 (7)0.0519 (7)
C50.2852 (3)0.02736 (17)0.34495 (7)0.0513 (7)
C60.2926 (2)0.03846 (15)0.29454 (6)0.0421 (6)
C70.3672 (2)0.02787 (15)0.21083 (6)0.0369 (6)
C80.3852 (2)0.13776 (15)0.13042 (6)0.0400 (6)
C90.3543 (3)0.04338 (18)0.09804 (7)0.0552 (7)
C100.3524 (3)0.0662 (2)0.04786 (7)0.0622 (8)
C110.3811 (3)0.1803 (2)0.03022 (7)0.0569 (8)
C120.4125 (3)0.27414 (19)0.06207 (8)0.0622 (8)
C130.4130 (3)0.25274 (17)0.11203 (7)0.0529 (7)
H10.413 (2)0.1904 (18)0.1968 (7)0.0508*
H20.565 (3)0.291 (2)0.2768 (8)0.0723*
H30.495110.224820.354810.0553*
H40.358620.079100.401300.0623*
H50.229130.085920.363830.0615*
H60.242530.106080.279730.0505*
H90.334970.034670.109840.0663*
H100.331270.002960.025960.0746*
H120.433260.351790.050020.0747*
H130.432380.316720.133690.0635*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1415 (7)0.1043 (6)0.0418 (3)0.0140 (4)0.0015 (4)0.0171 (3)
O10.0660 (9)0.0328 (7)0.0405 (7)0.0004 (5)0.0077 (6)0.0046 (5)
O20.0679 (9)0.0339 (7)0.0428 (8)0.0089 (6)0.0031 (6)0.0018 (5)
N10.0591 (10)0.0321 (8)0.0358 (8)0.0004 (7)0.0009 (7)0.0028 (6)
C10.0373 (9)0.0326 (9)0.0366 (9)0.0072 (7)0.0002 (7)0.0006 (7)
C20.0416 (10)0.0296 (9)0.0406 (10)0.0064 (7)0.0003 (8)0.0004 (7)
C30.0546 (12)0.0406 (10)0.0431 (10)0.0015 (9)0.0044 (9)0.0076 (8)
C40.0661 (13)0.0547 (12)0.0349 (10)0.0049 (10)0.0035 (9)0.0031 (9)
C50.0592 (12)0.0490 (12)0.0456 (11)0.0030 (9)0.0109 (9)0.0038 (8)
C60.0441 (11)0.0371 (10)0.0450 (10)0.0014 (8)0.0035 (8)0.0034 (8)
C70.0370 (10)0.0341 (10)0.0395 (10)0.0058 (7)0.0015 (7)0.0010 (7)
C80.0425 (10)0.0412 (10)0.0364 (10)0.0049 (8)0.0015 (8)0.0001 (7)
C90.0797 (15)0.0471 (12)0.0389 (10)0.0058 (10)0.0010 (10)0.0005 (8)
C100.0862 (16)0.0611 (14)0.0393 (11)0.0050 (11)0.0014 (10)0.0059 (9)
C110.0687 (14)0.0661 (14)0.0359 (11)0.0103 (10)0.0010 (10)0.0072 (9)
C120.0852 (16)0.0488 (12)0.0527 (13)0.0050 (10)0.0011 (11)0.0149 (10)
C130.0713 (14)0.0409 (10)0.0466 (12)0.0039 (9)0.0017 (10)0.0018 (8)
Geometric parameters (Å, º) top
Cl1—C111.738 (2)C8—C131.379 (3)
O1—C71.239 (2)C8—C91.382 (3)
O2—C21.362 (2)C9—C101.385 (3)
O2—H20.82 (2)C10—C111.364 (3)
N1—C81.407 (2)C11—C121.370 (3)
N1—C71.346 (2)C12—C131.376 (3)
N1—H10.84 (2)C3—H30.9300
C1—C61.393 (2)C4—H40.9300
C1—C71.488 (2)C5—H50.9300
C1—C21.404 (2)C6—H60.9300
C2—C31.388 (2)C9—H90.9300
C3—C41.372 (3)C10—H100.9300
C4—C51.378 (3)C12—H120.9300
C5—C61.375 (3)C13—H130.9300
C2—O2—H2112.1 (15)Cl1—C11—C12119.58 (17)
C7—N1—C8130.51 (14)Cl1—C11—C10120.19 (16)
C8—N1—H1113.9 (13)C10—C11—C12120.23 (18)
C7—N1—H1115.5 (13)C11—C12—C13119.54 (19)
C2—C1—C6117.65 (15)C8—C13—C12120.92 (18)
C2—C1—C7125.47 (14)C2—C3—H3120.00
C6—C1—C7116.86 (14)C4—C3—H3120.00
O2—C2—C3121.20 (15)C3—C4—H4120.00
O2—C2—C1118.67 (14)C5—C4—H4120.00
C1—C2—C3120.13 (15)C4—C5—H5120.00
C2—C3—C4120.39 (17)C6—C5—H5120.00
C3—C4—C5120.52 (17)C1—C6—H6119.00
C4—C5—C6119.25 (18)C5—C6—H6119.00
C1—C6—C5122.03 (16)C8—C9—H9120.00
N1—C7—C1116.60 (14)C10—C9—H9120.00
O1—C7—C1121.48 (14)C9—C10—H10120.00
O1—C7—N1121.89 (15)C11—C10—H10120.00
N1—C8—C9124.58 (16)C11—C12—H12120.00
N1—C8—C13116.19 (15)C13—C12—H12120.00
C9—C8—C13119.22 (16)C8—C13—H13120.00
C8—C9—C10119.36 (18)C12—C13—H13120.00
C9—C10—C11120.73 (19)
C8—N1—C7—O10.3 (3)C1—C2—C3—C41.4 (3)
C8—N1—C7—C1177.67 (16)C2—C3—C4—C50.5 (3)
C7—N1—C8—C90.8 (3)C3—C4—C5—C60.8 (3)
C7—N1—C8—C13179.92 (18)C4—C5—C6—C11.2 (3)
C6—C1—C2—O2179.53 (14)N1—C8—C9—C10179.49 (18)
C6—C1—C2—C30.9 (2)C13—C8—C9—C100.2 (3)
C7—C1—C2—O21.1 (2)N1—C8—C13—C12179.81 (19)
C7—C1—C2—C3179.34 (16)C9—C8—C13—C120.8 (3)
C2—C1—C6—C50.4 (2)C8—C9—C10—C110.2 (3)
C7—C1—C6—C5178.18 (16)C9—C10—C11—Cl1179.98 (19)
C2—C1—C7—O1161.80 (16)C9—C10—C11—C120.1 (4)
C2—C1—C7—N120.2 (2)Cl1—C11—C12—C13179.35 (18)
C6—C1—C7—O119.8 (2)C10—C11—C12—C130.7 (4)
C6—C1—C7—N1158.21 (15)C11—C12—C13—C81.1 (3)
O2—C2—C3—C4179.11 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.84 (2)1.991 (18)2.6588 (19)136.4 (17)
O2—H2···O1i0.82 (2)1.85 (2)2.6582 (17)173 (2)
C9—H9···O10.932.312.895 (2)121
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10ClNO2
Mr247.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.6832 (3), 11.0225 (3), 27.1427 (11)
V3)2298.66 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.28 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
9244, 2064, 1561
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections2064
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.84 (2)1.991 (18)2.6588 (19)136.4 (17)
O2—H2···O1i0.82 (2)1.85 (2)2.6582 (17)173 (2)
C9—H9···O10.932.312.895 (2)121
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRaza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010b). Acta Cryst. E66, o2435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett., 20, 283–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds