organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-hy­dr­oxy­benzoic acid

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 16 October 2010; accepted 17 October 2010; online 23 October 2010)

The asymmetric unit of the title compound, C7H5ClO3, contains two mol­ecules; both feature an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, both mol­ecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds with R22(8) ring motifs. The dimers are inter­linked by C—H⋯O inter­actions.

Related literature

For biological background, see: Bright et al. (2010[Bright, S. A., McElligott, A. M., O'Connell, J. W., O'Connor, L., Carroll, P., Campiani, G., Deininger, M. W., Conneally, E., Lawler, M., Williams, D. C. & Zisterer, D. M. (2010). Br. J. Cancer, 102, 1474-1482.]): Fattorusso et al. (2005[Fattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem. 48, 7153-7165.]); Miki et al. (2002[Miki, T., Kori, M., Mabuchi, H., Tozawa, R. I., Nishimoto, T., Sugiyama, Y., Teshima, K. & Yukimasa, H. (2002). J. Med. Chem. 45, 4571-4580.]). For a related structure, see: Raza et al. (2010[Raza, A. R., Rubab, S. L. & Tahir, M. N. (2010). Acta Cryst. E66, o1484.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5ClO3

  • Mr = 172.56

  • Monoclinic, P 21 /c

  • a = 23.526 (2) Å

  • b = 3.7972 (4) Å

  • c = 16.7321 (16) Å

  • β = 104.852 (5)°

  • V = 1444.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.34 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.888

  • 14048 measured reflections

  • 3697 independent reflections

  • 2444 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.138

  • S = 1.03

  • 3697 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.83 (3) 1.88 (3) 2.710 (2) 171 (3)
O3—H3⋯O2 0.80 (3) 1.92 (3) 2.620 (2) 146 (3)
O4—H4A⋯O5ii 0.93 (3) 1.76 (3) 2.694 (2) 175 (2)
O6—H6⋯O5 0.87 (3) 1.80 (3) 2.606 (2) 154 (3)
C5—H5⋯O6iii 0.93 2.55 3.311 (3) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The benzoxazepines have a plethora of biological activities ranging from anti-inflammatory effect (Miki et al., 2002) to degenerative diseases like AIDS (Fattorusso et al., 2005) and cancer (Bright et al., 2010). Salicylic acid is an attractive substrate for the synthesis of 4,1-benzoxazepine. The objective of this work is to synthesize a variety of substituted salicylic acid derivatives as precursors for the asymmetric synthesis of 4,1-benzoxazepines by chiral-pool strategy.

We have reported the crystal structure of 2-methylamino-5-nitrobenzoic acid (Raza et al., 2010) and in continuation to synthesize substituted benzoic acid, the title compound (I, Fig. 1) is being reported.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. Both molecules, A (C1—C7/O1/O2/O3/CL1) and B (C8—C14/O4/O5/O6/CL2) are close to planar with r. m. s deviations of 0.023 and 0.007 Å, respectively. The dihedral angle between A/B is 1.77 (4)°. In each molecule, there exists an S(6) ring motif (Bernstein et al., 1995) due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The molecules form dimers with themselves due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2) with R22(8) ring motifs. These dimers are interlinked with each other due to H-bonding of C—H···O type (Fig. 2).

Related literature top

For biological background, see: Bright et al. (2010): Fattorusso et al. (2005); Miki et al. (2002). For a related structure, see: Raza et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of Cu2Cl2 (3.46 g, 0.0375 mol) in HCl (10 ml) was added as drops to the diazonium salt of 5-amino-2-hydroxybenzioc acid (3.825 g, 0.025 mol), which was prepared by adding ice chilled aqueous solution of NaNO2 (2.58 g, 0.0375 mol) to the solution of 5-amino-2-hydroxybenzoic acid in EtOAc and H2SO4 (2.8 ml, 4.9 g, 0.05 mol). The temperature of the reaction mixture was controlled below 268 K. After the complete addition of Cu2Cl2, the reaction mixture was refluxed for one hour, cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3 × 25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered, concentrated under reduced pressure and left for 48 h to afford light yellow needles of (I).

Refinement top

The coordinates of hydroxy H-atoms are refined. The aryl H-atoms were positioned geometrically with (C—H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for all H atoms.

Structure description top

The benzoxazepines have a plethora of biological activities ranging from anti-inflammatory effect (Miki et al., 2002) to degenerative diseases like AIDS (Fattorusso et al., 2005) and cancer (Bright et al., 2010). Salicylic acid is an attractive substrate for the synthesis of 4,1-benzoxazepine. The objective of this work is to synthesize a variety of substituted salicylic acid derivatives as precursors for the asymmetric synthesis of 4,1-benzoxazepines by chiral-pool strategy.

We have reported the crystal structure of 2-methylamino-5-nitrobenzoic acid (Raza et al., 2010) and in continuation to synthesize substituted benzoic acid, the title compound (I, Fig. 1) is being reported.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. Both molecules, A (C1—C7/O1/O2/O3/CL1) and B (C8—C14/O4/O5/O6/CL2) are close to planar with r. m. s deviations of 0.023 and 0.007 Å, respectively. The dihedral angle between A/B is 1.77 (4)°. In each molecule, there exists an S(6) ring motif (Bernstein et al., 1995) due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The molecules form dimers with themselves due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2) with R22(8) ring motifs. These dimers are interlinked with each other due to H-bonding of C—H···O type (Fig. 2).

For biological background, see: Bright et al. (2010): Fattorusso et al. (2005); Miki et al. (2002). For a related structure, see: Raza et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted lines indicate the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers and are interlinked.
5-Chloro-2-hydroxybenzoic acid top
Crystal data top
C7H5ClO3F(000) = 704
Mr = 172.56Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 931 reflections
a = 23.526 (2) Åθ = 2.8–26.0°
b = 3.7972 (4) ŵ = 0.48 mm1
c = 16.7321 (16) ÅT = 296 K
β = 104.852 (5)°Needle, light yellow
V = 1444.8 (2) Å30.34 × 0.12 × 0.10 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3697 independent reflections
Radiation source: fine-focus sealed tube2444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 3.6°
ω scansh = 3131
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 45
Tmin = 0.879, Tmax = 0.888l = 2222
14048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
3697 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C7H5ClO3V = 1444.8 (2) Å3
Mr = 172.56Z = 8
Monoclinic, P21/cMo Kα radiation
a = 23.526 (2) ŵ = 0.48 mm1
b = 3.7972 (4) ÅT = 296 K
c = 16.7321 (16) Å0.34 × 0.12 × 0.10 mm
β = 104.852 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2444 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.888Rint = 0.047
14048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
3697 reflectionsΔρmin = 0.50 e Å3
211 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37512 (3)0.69966 (16)0.07736 (3)0.0501 (2)
O10.49060 (7)0.6286 (5)0.38781 (10)0.0531 (6)
O20.43512 (7)0.3536 (5)0.45885 (9)0.0497 (5)
O30.32656 (7)0.1864 (5)0.38353 (10)0.0504 (6)
C10.44188 (9)0.4711 (6)0.39317 (12)0.0372 (6)
C20.39581 (8)0.4495 (5)0.31555 (11)0.0325 (6)
C30.34043 (9)0.3106 (5)0.31526 (13)0.0363 (6)
C40.29691 (10)0.3000 (6)0.24180 (14)0.0427 (7)
C50.30768 (9)0.4181 (6)0.16973 (13)0.0425 (7)
C60.36245 (9)0.5504 (5)0.16965 (12)0.0359 (6)
C70.40631 (9)0.5677 (5)0.24125 (12)0.0355 (6)
Cl20.13798 (3)0.73267 (17)0.21674 (4)0.0624 (3)
O40.01191 (7)0.1719 (5)0.39980 (11)0.0604 (6)
O50.06701 (7)0.1273 (5)0.52956 (10)0.0553 (6)
O60.17545 (7)0.3485 (5)0.56545 (10)0.0538 (6)
C80.06128 (9)0.2160 (6)0.45705 (14)0.0402 (7)
C90.10935 (9)0.3749 (5)0.42825 (12)0.0349 (6)
C100.16403 (9)0.4322 (6)0.48436 (13)0.0383 (7)
C110.20911 (9)0.5788 (6)0.45616 (14)0.0447 (7)
C120.20146 (10)0.6683 (6)0.37478 (15)0.0453 (8)
C130.14736 (10)0.6137 (6)0.31970 (13)0.0413 (7)
C140.10148 (9)0.4679 (6)0.34525 (13)0.0397 (7)
H10.5163 (12)0.635 (7)0.4326 (18)0.0636*
H30.3557 (12)0.189 (7)0.4210 (18)0.0604*
H40.259960.211640.241370.0512*
H50.278100.409240.120740.0510*
H70.442970.657610.240650.0425*
H4A0.0156 (12)0.058 (8)0.4222 (16)0.0725*
H60.1424 (13)0.258 (7)0.5696 (19)0.0646*
H110.245420.617520.493280.0536*
H120.232330.764780.356770.0543*
H140.065360.431380.307500.0476*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0588 (4)0.0597 (4)0.0332 (3)0.0012 (3)0.0142 (3)0.0039 (2)
O10.0349 (9)0.0858 (13)0.0354 (9)0.0154 (8)0.0034 (7)0.0057 (8)
O20.0443 (9)0.0749 (11)0.0300 (8)0.0096 (8)0.0096 (7)0.0028 (7)
O30.0427 (10)0.0719 (11)0.0399 (9)0.0131 (8)0.0167 (7)0.0048 (8)
C10.0340 (11)0.0433 (12)0.0359 (10)0.0004 (9)0.0119 (9)0.0002 (9)
C20.0314 (10)0.0349 (10)0.0318 (10)0.0006 (8)0.0092 (8)0.0018 (8)
C30.0356 (11)0.0370 (11)0.0395 (11)0.0004 (9)0.0153 (9)0.0010 (8)
C40.0324 (11)0.0477 (13)0.0473 (13)0.0058 (9)0.0091 (10)0.0004 (9)
C50.0358 (12)0.0474 (13)0.0405 (12)0.0017 (10)0.0028 (9)0.0011 (9)
C60.0408 (11)0.0353 (10)0.0319 (10)0.0017 (9)0.0098 (9)0.0008 (8)
C70.0331 (11)0.0386 (11)0.0358 (10)0.0009 (9)0.0109 (8)0.0028 (8)
Cl20.0825 (5)0.0671 (5)0.0442 (3)0.0108 (3)0.0284 (3)0.0069 (3)
O40.0345 (9)0.0962 (14)0.0511 (10)0.0143 (9)0.0121 (8)0.0148 (9)
O50.0414 (9)0.0852 (13)0.0429 (9)0.0100 (8)0.0173 (7)0.0136 (8)
O60.0402 (9)0.0821 (12)0.0387 (9)0.0076 (9)0.0093 (7)0.0030 (8)
C80.0313 (11)0.0481 (13)0.0447 (12)0.0001 (9)0.0159 (10)0.0023 (9)
C90.0326 (11)0.0374 (11)0.0386 (11)0.0008 (9)0.0163 (9)0.0002 (8)
C100.0357 (11)0.0429 (12)0.0378 (11)0.0017 (9)0.0123 (9)0.0023 (9)
C110.0317 (11)0.0528 (14)0.0499 (13)0.0065 (10)0.0113 (10)0.0034 (10)
C120.0413 (13)0.0420 (12)0.0597 (15)0.0090 (10)0.0261 (11)0.0056 (10)
C130.0517 (14)0.0385 (11)0.0400 (11)0.0019 (10)0.0230 (10)0.0004 (9)
C140.0374 (11)0.0450 (12)0.0386 (11)0.0018 (9)0.0130 (9)0.0005 (9)
Geometric parameters (Å, º) top
Cl1—C61.741 (2)C4—C51.370 (3)
Cl2—C131.740 (2)C5—C61.383 (3)
O1—C11.316 (3)C6—C71.368 (3)
O2—C11.234 (3)C4—H40.9300
O3—C31.351 (3)C5—H50.9300
O1—H10.83 (3)C7—H70.9300
O3—H30.80 (3)C8—C91.468 (3)
O4—C81.313 (3)C9—C141.399 (3)
O5—C81.233 (3)C9—C101.402 (3)
O6—C101.352 (3)C10—C111.383 (3)
O4—H4A0.93 (3)C11—C121.370 (3)
O6—H60.87 (3)C12—C131.382 (3)
C1—C21.465 (3)C13—C141.375 (3)
C2—C71.402 (3)C11—H110.9300
C2—C31.404 (3)C12—H120.9300
C3—C41.384 (3)C14—H140.9300
C1—O1—H1113.3 (19)C6—C7—H7120.00
C3—O3—H3108 (2)C2—C7—H7120.00
C8—O4—H4A109.9 (16)O5—C8—C9122.4 (2)
C10—O6—H6103 (2)O4—C8—C9115.14 (19)
O1—C1—C2115.11 (17)O4—C8—O5122.4 (2)
O2—C1—C2122.3 (2)C8—C9—C14120.85 (19)
O1—C1—O2122.58 (19)C8—C9—C10119.74 (18)
C1—C2—C7120.64 (18)C10—C9—C14119.4 (2)
C3—C2—C7119.43 (18)O6—C10—C11117.7 (2)
C1—C2—C3119.93 (17)O6—C10—C9123.2 (2)
C2—C3—C4119.24 (19)C9—C10—C11119.09 (19)
O3—C3—C4117.2 (2)C10—C11—C12121.5 (2)
O3—C3—C2123.58 (19)C11—C12—C13119.3 (2)
C3—C4—C5120.7 (2)Cl2—C13—C12118.86 (18)
C4—C5—C6120.2 (2)Cl2—C13—C14120.14 (17)
Cl1—C6—C7119.94 (17)C12—C13—C14121.0 (2)
C5—C6—C7120.69 (19)C9—C14—C13119.7 (2)
Cl1—C6—C5119.37 (16)C10—C11—H11119.00
C2—C7—C6119.77 (19)C12—C11—H11119.00
C5—C4—H4120.00C11—C12—H12120.00
C3—C4—H4120.00C13—C12—H12120.00
C4—C5—H5120.00C9—C14—H14120.00
C6—C5—H5120.00C13—C14—H14120.00
O1—C1—C2—C3175.24 (19)O4—C8—C9—C10179.8 (2)
O1—C1—C2—C74.5 (3)O4—C8—C9—C140.2 (3)
O2—C1—C2—C34.0 (3)O5—C8—C9—C100.4 (3)
O2—C1—C2—C7176.3 (2)O5—C8—C9—C14179.1 (2)
C1—C2—C3—O31.1 (3)C8—C9—C10—O60.1 (3)
C1—C2—C3—C4178.4 (2)C8—C9—C10—C11179.3 (2)
C7—C2—C3—O3179.12 (19)C14—C9—C10—O6179.7 (2)
C7—C2—C3—C41.3 (3)C14—C9—C10—C110.2 (3)
C1—C2—C7—C6178.98 (19)C8—C9—C14—C13179.5 (2)
C3—C2—C7—C60.8 (3)C10—C9—C14—C130.1 (3)
O3—C3—C4—C5179.4 (2)O6—C10—C11—C12179.4 (2)
C2—C3—C4—C51.0 (3)C9—C10—C11—C120.1 (3)
C3—C4—C5—C60.1 (3)C10—C11—C12—C130.5 (3)
C4—C5—C6—Cl1179.91 (18)C11—C12—C13—Cl2179.34 (18)
C4—C5—C6—C70.5 (3)C11—C12—C13—C140.7 (3)
Cl1—C6—C7—C2179.56 (15)Cl2—C13—C14—C9179.65 (17)
C5—C6—C7—C20.2 (3)C12—C13—C14—C90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)1.88 (3)2.710 (2)171 (3)
O3—H3···O20.80 (3)1.92 (3)2.620 (2)146 (3)
O4—H4A···O5ii0.93 (3)1.76 (3)2.694 (2)175 (2)
O6—H6···O50.87 (3)1.80 (3)2.606 (2)154 (3)
C5—H5···O6iii0.932.553.311 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H5ClO3
Mr172.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)23.526 (2), 3.7972 (4), 16.7321 (16)
β (°) 104.852 (5)
V3)1444.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.34 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.879, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
14048, 3697, 2444
Rint0.047
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.138, 1.03
No. of reflections3697
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)1.88 (3)2.710 (2)171 (3)
O3—H3···O20.80 (3)1.92 (3)2.620 (2)146 (3)
O4—H4A···O5ii0.93 (3)1.76 (3)2.694 (2)175 (2)
O6—H6···O50.87 (3)1.80 (3)2.606 (2)154 (3)
C5—H5···O6iii0.932.553.311 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBright, S. A., McElligott, A. M., O'Connell, J. W., O'Connor, L., Carroll, P., Campiani, G., Deininger, M. W., Conneally, E., Lawler, M., Williams, D. C. & Zisterer, D. M. (2010). Br. J. Cancer, 102, 1474–1482.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem. 48, 7153–7165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiki, T., Kori, M., Mabuchi, H., Tozawa, R. I., Nishimoto, T., Sugiyama, Y., Teshima, K. & Yukimasa, H. (2002). J. Med. Chem. 45, 4571–4580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaza, A. R., Rubab, S. L. & Tahir, M. N. (2010). Acta Cryst. E66, o1484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds